996
Views
0
CrossRef citations to date
0
Altmetric
Oncology

Effect of neoadjuvant chemotherapy on the immune microenvironment of gynaecological tumours

, , , , & ORCID Icon
Article: 2282181 | Received 31 May 2023, Accepted 06 Nov 2023, Published online: 20 Nov 2023

References

  • Frei E. 3rd. Clinical cancer research: an embattled species. Cancer. 1982;50(10):1–14. doi: 10.1002/1097-0142(19821115)50:10<1979::AID-CNCR2820501002>3.0.CO;2-D.
  • Schuhmacher C, Gretschel S, Lordick F, et al. Neoadjuvant chemotherapy compared with surgery alone for locally advanced cancer of the stomach and cardia: European organisation for research and treatment of cancer randomized trial 40954. J Clin Oncol. 2010;28(35):5210–5218. doi: 10.1200/JCO.2009.26.6114.
  • Read RL, Flitcroft K, Snook KL, et al. Utility of neoadjuvant chemotherapy in the treatment of operable breast cancer. ANZ J Surg. 2015;85(5):315–320. doi: 10.1111/ans.12975.
  • Saigusa S, Inoue Y, Tanaka K, et al. Significant correlation between LKB1 and LGR5 gene expression and the association with poor recurrence-free survival in rectal cancer after preoperative chemoradiotherapy. J Cancer Res Clin Oncol. 2013;139(1):131–138. doi: 10.1007/s00432-012-1308-x.
  • Salmenkylä S, Kouri M, Österlund P, et al. Does preoperative radiotherapy with postoperative chemotherapy increase acute side-effects and postoperative complications of total mesorectal excision? Report of the randomized Finnish rectal cancer trial. Scand J Surg. 2012;101(4):275–282. doi: 10.1177/145749691210100410.
  • Hayes DF, Schott AF. Neoadjuvant chemotherapy: what are the benefits for the patient and for the investigator? J Natl Cancer Inst Monogr. 2015;2015(51):36–39. doi: 10.1093/jncimonographs/lgv004.
  • Kallergi G, Aggouraki D, Zacharopoulou N, et al. Evaluation of α-tubulin, detyrosinated α-tubulin, and vimentin in CTCs: identification of the interaction between CTCs and blood cells through cytoskeletal elements. Breast Cancer Res. 2018;20(1):67. doi: 10.1186/s13058-018-0993-z.
  • Hu Y, Hu D, Li W, et al. Neoadjuvant chemotherapy brings more survival benefits than postoperative chemotherapy for resectable gastric cancer: a meta-analysis of randomized controlled trials. J Buon. 2019;24(1):201–214.
  • Zhao Q, Li Y, Tian Y, et al. Histological complete response after neoadjuvant XELOX in advanced gastric carcinoma. Hepatogastroenterology. 2013;60(123):638–640.
  • Bo H, Gong Z, Zhang W, et al. Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma. Oncotarget. 2015;6(24):20404–20418. doi: 10.18632/oncotarget.4057.
  • Karvonen HM, Lehtonen ST, Sormunen RT, et al. Lung cancer-associated myofibroblasts reveal distinctive ultrastructure and function. J Thorac Oncol. 2014;9(5):664–674. doi: 10.1097/JTO.0000000000000149.
  • Li Q, Chen P, Zeng Z, et al. Yeast two-hybrid screening identified WDR77 as a novel interacting partner of TSC22D2. Tumour Biol. 2016;37(9):12503–12512. doi: 10.1007/s13277-016-5113-z.
  • Zhou S-L, Zhou Z-J, Hu Z-Q, et al. Tumor-Associated neutrophils recruit macrophages and T-Regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib. Gastroenterology. 2016;150(7):1646–1658.e17. doi: 10.1053/j.gastro.2016.02.040.
  • Song H-J, Srivastava A, Lee J, et al. Host inflammatory response predicts survival of patients with Epstein-Barr virus-associated gastric carcinoma. Gastroenterology. 2010;139(1):84–92.e2. doi: 10.1053/j.gastro.2010.04.002.
  • Loeser H, Kraemer M, Gebauer F, et al. Indoleamine 2,3-Dioxygenase (IDO) expression is an independent prognostic marker in esophageal adenocarcinoma. J Immunol Res. 2020;2020:2862647.
  • Krysko DV, Garg AD, Kaczmarek A, et al. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–875. doi: 10.1038/nrc3380.
  • Mendes AS, Romão R, Febra J, et al. Chemotherapy: a partnership with immunotherapy in non-small cell lung cancer. Thorac Cancer. 2023;14(5):437–441. doi: 10.1111/1759-7714.14779.
  • Galluzzi L, Humeau J, Buqué A, et al. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. 2020;17(12):725–741. doi: 10.1038/s41571-020-0413-z.
  • Pfirschke C, Engblom C, Rickelt S, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint ­blockade therapy. Immunity. 2016;44(2):343–354. doi: 10.1016/j.immuni.2015.11.024.
  • Crespo J, Sun H, Welling TH, et al. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25(2):214–221. doi: 10.1016/j.coi.2012.12.003.
  • Zhao Y, Shao Q, Peng G. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell Mol Immunol. 2020;17(1):27–35. doi: 10.1038/s41423-019-0344-8.
  • Ye J, Peng G. Controlling T cell senescence in the tumor microenvironment for tumor immunotherapy. Oncoimmunology. 2015;4(3):e994398. doi: 10.4161/2162402X.2014.994398.
  • Zhao Y, Dong P, He W, et al. γδ T cells: major advances in basic and clinical research in tumor immunotherapy. Chin Med J (Engl). 2023. doi: 10.1097/CM9.0000000000002781.
  • Bruno TC, Ebner PJ, Moore BL, et al. Antigen-presenting intratumoral B cells affect CD4(+) TIL phenotypes in non-small cell lung cancer patients. Cancer Immunol Res. 2017;5(10):898–907. doi: 10.1158/2326-6066.CIR-17-0075.
  • Sautès-Fridman C, Petitprez F, Calderaro J, et al. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 2019;19(6):307–325. doi: 10.1038/s41568-019-0144-6.
  • Sharonov GV, Serebrovskaya EO, Yuzhakova DV, et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020;20(5):294–307. doi: 10.1038/s41577-019-0257-x.
  • Marcus A, et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91–128.
  • Dahlberg CIM, Sarhan D, Chrobok M, et al. Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity. Front Immunol. 2015;6:605. doi: 10.3389/fimmu.2015.00605.
  • Klemm F, Maas RR, Bowman RL, et al. Interrogation of the microenvironmental landscape in brain tumors reveals Disease-Specific alterations of immune cells. Cell. 2020;181(7):1643–1660.e17. doi: 10.1016/j.cell.2020.05.007.
  • Shaul ME, Fridlender ZG. Neutrophils as active regulators of the immune system in the tumor microenvironment. J Leukoc Biol. 2017;102(2):343–349. doi: 10.1189/jlb.5MR1216-508R.
  • Pillay J, den Braber I, Vrisekoop N, et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 2010;116(4):625–627. doi: 10.1182/blood-2010-01-259028.
  • Piccard H, Muschel RJ, Opdenakker G. On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Crit Rev Oncol Hematol. 2012;82(3):296–309. doi: 10.1016/j.critrevonc.2011.06.004.
  • Yan C, Huo X, Wang S, et al. Stimulation of hepatocarcinogenesis by neutrophils upon induction of oncogenic kras expression in transgenic zebrafish. J Hepatol. 2015;63(2):420–428. doi: 10.1016/j.jhep.2015.03.024.
  • Gungabeesoon J, Gort-Freitas NA, Kiss M, et al. A neutrophil response linked to tumor control in immunotherapy. Cell. 2023;186(7):1448–1464.e20. doi: 10.1016/j.cell.2023.02.032.
  • Wculek SK, Cueto FJ, Mujal AM, et al. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20(1):7–24. doi: 10.1038/s41577-019-0210-z.
  • Ma Y, Shurin GV, Gutkin DW, et al. Tumor associated regulatory dendritic cells. Semin Cancer Biol. 2012;22(4):298–306. doi: 10.1016/j.semcancer.2012.02.010.
  • Katz T, Avivi I, Benyamini N, et al. Dendritic cell cancer vaccines: from the bench to the bedside. Rambam Maimonides Med J. 2014;5(4):e0024. doi: 10.5041/RMMJ.10158.
  • Chen H, Shi R, Luo B, et al. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice. Cell Death Dis. 2015;6(1):e1597–e1597. doi: 10.1038/cddis.2014.544.
  • Yang L, Zhang Y. Tumor-associated macrophages: from basic research to clinical application. J Hematol Oncol. 2017;10(1):58. doi: 10.1186/s13045-017-0430-2.
  • Li B, Li C, Guo M, et al. Predictive value of LDH kinetics in bevacizumab treatment and survival of patients with advanced NSCLC. Onco Targets Ther. 2018;11:6287–6294. doi: 10.2147/OTT.S171566.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi: 10.3322/caac.21492.
  • Dorhoi A, Du Plessis N. Monocytic myeloid-derived suppressor cells in chronic infections. Front Immunol. 2017;8:1895. doi: 10.3389/fimmu.2017.01895.
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–174. doi: 10.1038/nri2506.
  • Takeuchi S, Baghdadi M, Tsuchikawa T, et al. Chemotherapy-Derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res. 2015;75(13):2629–2640. doi: 10.1158/0008-5472.CAN-14-2921.
  • Wesolowski R, Duggan MC, Stiff A, et al. Circulating myeloid-derived suppressor cells increase in patients undergoing neo-adjuvant chemotherapy for breast cancer. Cancer Immunol Immunother. 2017;66(11):1437–1447. doi: 10.1007/s00262-017-2038-3.
  • Wanderley CW, Colón DF, Luiz JPM, et al. Paclitaxel reduces tumor growth by reprogramming tumor-associated macrophages to an M1 profile in a TLR4-Dependent manner. Cancer Res. 2018;78(20):5891–5900. doi: 10.1158/0008-5472.CAN-17-3480.
  • Shang L, Jiang X, Yang T, et al. Enhancing cancer chemo-immunotherapy by biomimetic nanogel with tumor targeting capacity and rapid drug-releasing in tumor microenvironment. Acta Pharm Sin B. 2022;12(5):2550–2567. doi: 10.1016/j.apsb.2021.11.004.
  • Kinoshita R, Ishima Y, Chuang VTG, et al. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer. Biomaterials. 2017;140:162–169. doi: 10.1016/j.biomaterials.2017.06.021.
  • Ishima Y, Maruyama T, Otagiri M, et al. The new delivery strategy of albumin carrier utilizing the interaction with albumin receptors. Chem Pharm Bull (Tokyo). 2022;70(5):330–333. doi: 10.1248/cpb.c21-01024.
  • Chen Y, Liu R, Li C, et al. Nab-paclitaxel promotes the cancer-immunity cycle as a potential immunomodulator. Am J Cancer Res. 2021;11(7):3445–3460.
  • Lin T, Zhao P, Jiang Y, et al. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano. 2016;10(11):9999–10012. doi: 10.1021/acsnano.6b04268.
  • Cullis J, Siolas D, Avanzi A, et al. Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol Res. 2017;5(3):182–190. doi: 10.1158/2326-6066.CIR-16-0125.
  • Grabosch S, Bulatovic M, Zeng F, et al. Cisplatin-induced immune modulation in ovarian cancer mouse models with distinct inflammation profiles. Oncogene. 2019;38(13):2380–2393. doi: 10.1038/s41388-018-0581-9.
  • Zhou L, Xu Q, Huang L, et al. Low-dose carboplatin reprograms tumor immune microenvironment through STING signaling pathway and synergizes with PD-1 inhibitors in lung cancer. Cancer Lett. 2021;500:163–171. doi: 10.1016/j.canlet.2020.11.049.
  • Kong X, Zuo H, Huang H-D, et al. STING as an emerging therapeutic target for drug discovery: perspectives from the global patent landscape. J Adv Res. 2023;44:119–133. doi: 10.1016/j.jare.2022.05.006.
  • Hong JK, Kim DY, Shin JS, et al. CJ14939, a novel JAK inhibitor, increases oxaliplatin-induced cell death through JAK/STAT pathway in colorectal cancer. Anticancer Res. 2022;42(4):1813–1819. doi: 10.21873/anticanres.15657.
  • de Haas N, de Koning C, di Blasio S, et al. STAT family protein expression and phosphorylation state during moDC development is altered by Platinum-Based chemotherapeutics. J Immunol Res. 2019;2019:7458238–7458212. doi: 10.1155/2019/7458238.
  • Yao H, Shen N, Ji G, et al. Cisplatin nanoparticles promote intratumoral CD8(+) T cell priming via antigen presentation and T cell receptor crosstalk. Nano Lett. 2022;22(8):3328–3339. doi: 10.1021/acs.nanolett.2c00478.
  • Wang Q, Wang Y, Ding J, et al. A orean gonal system reveals antitumour immune function of pyroptosis. Nature. 2020;579(7799):421–426. doi: 10.1038/s41586-020-2079-1.
  • Wang Y, Gao W, Shi X, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 2017;547(7661):99–103. doi: 10.1038/nature22393.
  • Chen J, Ge L, Shi X, et al. Lobaplatin induces pyroptosis in cervical cancer cells via the caspase-3/GSDME pathway. Anticancer Agents Med Chem. 2022;22(11):2091–2097.
  • Mai FY, He P, Ye JZ, et al. Caspase-3-mediated GSDME activation contributes to cisplatin- and doxorubicin-induced secondary necrosis in mouse macrophages. Cell Prolif. 2019;52(5):e12663.
  • Min L, Han J-C, Zhang W, et al. Strategies and lessons learned from total synthesis of taxol. Chem Rev. 2023;123(8):4934–4971. doi: 10.1021/acs.chemrev.2c00763.
  • Richardson DL, Eskander RN, O’Malley DM. Advances in ovarian cancer care and unmet treatment needs for patients with platinum resistance: a narrative review. JAMA Oncol. 2023;9(6):851–859. doi: 10.1001/jamaoncol.2023.0197.
  • Berg T, Nøttrup TJ, Roed H. Gemcitabine for recurrent ovarian cancer – a systematic review and meta-analysis. Gynecol Oncol. 2019;155(3):530–537. doi: 10.1016/j.ygyno.2019.09.026.
  • Principe DR, et al. Calcium channel blockers potentiate gemcitabine chemotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2022;119(18):e2200143119.
  • Ho TTB, Nasti A, Seki A, et al. Combination of gemcitabine and anti-PD-1 antibody enhances the anticancer effect of M1 macrophages and the Th1 response in a murine model of pancreatic cancer liver metastasis. J Immunother Cancer. 2020;8(2):e001367. doi: 10.1136/jitc-2020-001367.
  • Obradovic A, Ager C, Turunen M, et al. Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators. Cancer Cell. 2023;41(5):933–949.e11. doi: 10.1016/j.ccell.2023.04.003.
  • Wang Y-J, Fletcher R, Yu J, et al. Immunogenic effects of chemotherapy-induced tumor cell death. Genes Dis. 2018;5(3):194–203. doi: 10.1016/j.gendis.2018.05.003.
  • Lei L, Dong Z, Xu L, et al. Metal-fluorouracil networks with disruption of mitochondrion enhanced ferroptosis for synergistic immune activation. Theranostics. 2022;12(14):6207–6222. doi: 10.7150/thno.75323.
  • Sriram G, Milling LE, Chen J-K, et al. The injury response to DNA damage in live tumor cells promotes antitumor immunity. Sci Signal. 2021;14(705):eabc4764. doi: 10.1126/scisignal.abc4764.
  • Huang Y, Chen L, Cai J, et al. Neoadjuvant chemotherapy followed by radical surgery reduces radiation therapy in patients with stage IB2 to IIA2 cervical cancer. World J Surg Oncol. 2022;20(1):264. doi: 10.1186/s12957-022-02731-x.
  • Heeren AM, van Luijk IF, Lakeman J, et al. Neoadjuvant cisplatin and paclitaxel modulate tumor-infiltrating T cells in patients with cervical cancer. Cancer Immunol Immunother. 2019;68(11):1759–1767. doi: 10.1007/s00262-019-02412-x.
  • Zhang Y, Yu M, Jing Y, et al. Baseline immunity and impact of chemotherapy on immune microenvironment in cervical cancer. Br J Cancer. 2021;124(2):414–424. doi: 10.1038/s41416-020-01123-w.
  • D’Alessandris N, et al. PD-L1 expression is associated with tumor infiltrating lymphocytes that predict response to NACT in squamous cell cervical cancer. Virchows Arch. 2021;478(3):517–525.
  • Someya M, Tsuchiya T, Fukushima Y, et al. Prediction of treatment response from the microenvironment of tumor immunity in cervical cancer patients treated with chemoradiotherapy. Med Mol Morphol. 2021;54(3):245–252. doi: 10.1007/s00795-021-00290-w.
  • Liang Y, Lü W, Zhang X, et al. Tumor-infiltrating CD8+ and FOXP3+ lymphocytes before and after neoadjuvant chemotherapy in cervical cancer. Diagn Pathol. 2018;13(1):93. doi: 10.1186/s13000-018-0770-4.
  • Liang Y, Yu M, Zhou C, et al. Variation of PD-L1 expression in locally advanced cervical cancer following neoadjuvant chemotherapy. Diagn Pathol. 2020;15(1):67. doi: 10.1186/s13000-020-00977-1.
  • Meng Y, Liang H, Hu J, et al. PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J Cancer. 2018;9(16):2938–2945. doi: 10.7150/jca.22532.
  • Palaia I, Tomao F, DI Pinto A, et al. Response to neoadjuvant chemotherapy in locally advanced cervical cancer: the role of immune-related factors. In Vivo. 2021;35(2):1277–1283. doi: 10.21873/invivo.12379.
  • Li R, Liu Y, Yin R, et al. The dynamic alternation of local and systemic tumor immune microenvironment during concurrent chemoradiotherapy of cervical cancer: a prospective clinical trial. Int J Radiat Oncol Biol Phys. 2021;110(5):1432–1441. doi: 10.1016/j.ijrobp.2021.03.003.
  • Herter JM, Kiljan M, Kunze S, et al. Influence of chemoradiation on the immune microenvironment of cervical cancer patients. Strahlenther Onkol. 2023;199(2):121–130. doi: 10.1007/s00066-022-02007-z.
  • Cosiski Marana HR, Santana da Silva J, Moreira de Andrade J. NK cell activity in the presence of IL-12 is a prognostic assay to neoadjuvant chemotherapy in cervical cancer. Gynecol Oncol. 2000;78(3 Pt 1):318–323. doi: 10.1006/gyno.2000.5878.
  • Wang X, Cheng J, Sun W, et al. Influences of neoadjuvant chemotherapy on clinical indicators, prognosis and neutrophil/lymphocyte ratio of stage IB2-IIB cervical cancer. J Buon. 2020;25(2):757–763.
  • Fagotti A, Ferrandina MG, Vizzielli G, et al. Randomized trial of primary debulking surgery versus neoadjuvant chemotherapy for advanced epithelial ovarian cancer (SCORPION-NCT01461850). Int J Gynecol Cancer. 2020;30(11):1657–1664. doi: 10.1136/ijgc-2020-001640.
  • Onda T, Satoh T, Ogawa G, et al. Comparison of survival between primary debulking surgery and neoadjuvant chemotherapy for stage III/IV ovarian, tubal and peritoneal cancers in phase III randomised trial. Eur J Cancer. 2020;130:114–125. doi: 10.1016/j.ejca.2020.02.020.
  • Kehoe S, Hook J, Nankivell M, et al. Primary chemotherapy versus primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): an open-label, randomised, controlled, non-inferiority trial. Lancet. 2015;386(9990):249–257. doi: 10.1016/S0140-6736(14)62223-6.
  • Lodewijk I, Bernardini A, Suárez-Cabrera C, et al. Genomic landscape and immune-related gene expression profiling of epithelial ovarian cancer after neoadjuvant chemotherapy. NPJ Precis Oncol. 2022;6(1):7. doi: 10.1038/s41698-021-00247-3.
  • Leary A, Genestie C, Blanc-Durand F, et al. Neoadjuvant chemotherapy alters the balance of effector to suppressor immune cells in advanced ovarian cancer. Cancer Immunol Immunother. 2021;70(2):519–531. doi: 10.1007/s00262-020-02670-0.
  • Pölcher M, Braun M, Friedrichs N, et al. Foxp3(+) cell infiltration and granzyme B(+)/Foxp3(+) cell ratio are associated with outcome in neoadjuvant chemotherapy-treated ovarian carcinoma. Cancer Immunol Immunother. 2010;59(6):909–919. doi: 10.1007/s00262-010-0817-1.
  • Suarez Mora A, Strange M, Fang Y, et al. Longitudinal modulation of Loco-Regional immunity in ovarian cancer patients receiving intraperitoneal chemotherapy. Cancers (Basel). 2022;14(22):5647. doi: 10.3390/cancers14225647.
  • Lee YJ, Woo HY, Kim YN, et al. Dynamics of the tumor immune microenvironment during neoadjuvant chemotherapy of high-grade serous ovarian cancer. Cancers (Basel). 2022;14(9):2308, doi: 10.3390/cancers14092308.
  • Shen Y, Ren Y, Chen K, et al. The impact of neoadjuvant chemotherapy on the tumor microenvironment in advanced high-grade serous carcinoma. Oncogenesis. 2022;11(1):43. doi: 10.1038/s41389-022-00419-1.
  • Iwahashi H, Miyamoto M, Ito T, et al. Clinical significance of CD8-positive lymphocytes on tumor cell clusters of ascites cell block in ovarian high-grade serous carcinoma. Cancer Med. 2022;11(10):2085–2095. doi: 10.1002/cam4.4592.
  • van Baal JOAM, Lok CAR, Jordanova ES, et al. The effect of the peritoneal tumor microenvironment on invasion of peritoneal metastases of high-grade serous ovarian cancer and the impact of neoadjuvant chemotherapy. Virchows Arch. 2020;477(4):535–544. doi: 10.1007/s00428-020-02795-8.
  • Liu M, Tayob N, Penter L, et al. Improved T-cell immunity following neoadjuvant chemotherapy in ovarian cancer. Clin Cancer Res. 2022;28(15):3356–3366. doi: 10.1158/1078-0432.CCR-21-2834.
  • Bansal A, Srinivasan R, Rohilla M, et al. Immunotyping in tubo-ovarian high-grade serous carcinoma by PD-L1 and CD8+ T-lymphocytes predicts disease-free survival. APMIS. 2021;129(5):254–264. doi: 10.1111/apm.13116.
  • Böhm S, Montfort A, Pearce OMT, et al. Neoadjuvant chemotherapy modulates the immune microenvironment in metastases of tubo-ovarian high-grade serous carcinoma. Clin Cancer Res. 2016;22(12):3025–3036. doi: 10.1158/1078-0432.CCR-15-2657.
  • Lo CS, Sanii S, Kroeger DR, et al. Neoadjuvant chemotherapy of ovarian cancer results in three patterns of Tumor-Infiltrating lymphocyte response with distinct implications for immunotherapy. Clin Cancer Res. 2017;23(4):925–934. doi: 10.1158/1078-0432.CCR-16-1433.
  • Mesnage SJL, Auguste A, Genestie C, et al. Neoadjuvant chemotherapy (NACT) increases immune infiltration and programmed death-ligand 1 (PD-L1) expression in epithelial ovarian cancer (EOC). Ann Oncol. 2017;28(3):651–657. doi: 10.1093/annonc/mdw625.
  • Kim H-S, Kim J-Y, Lee YJ, et al. Expression of programmed cell death ligand 1 and immune checkpoint markers in residual tumors after neoadjuvant chemotherapy for advanced high-grade serous ovarian cancer. Gynecol Oncol. 2018;151(3):414–421. doi: 10.1016/j.ygyno.2018.08.023.
  • Brunekreeft KL, Paijens ST, Wouters MCA, et al. Deep immune profiling of ovarian tumors identifies minimal MHC-I expression after neoadjuvant chemotherapy as negatively associated with T-cell-dependent outcome. Oncoimmunology. 2020;9(1):1760705. doi: 10.1080/2162402X.2020.1760705.
  • Jiménez-Sánchez A, Cybulska P, Mager KL, et al. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of ­chemotherapy. Nat Genet. 2020;52(6):582–593. doi: 10.1038/s41588-020-0630-5.
  • Lalos A, Neri O, Ercan C, et al. High density of CD16+ tumor-infiltrating immune cells in recurrent ovarian cancer is associated with enhanced responsiveness to chemotherapy and prolonged overall survival. Cancers (Basel). 2021;13(22):5783. doi: 10.3390/cancers13225783.
  • Vanguri R, Benhamida J, Young JH, et al. Understanding the impact of chemotherapy on the immune landscape of high-grade serous ovarian cancer. Gynecol Oncol Rep. 2022;39:100926. doi: 10.1016/j.gore.2022.100926.
  • Heath O, Berlato C, Maniati E, et al. Chemotherapy induces tumor-associated macrophages that aid adaptive immune responses in ovarian cancer. Cancer Immunol Res. 2021;9(6):665–681. doi: 10.1158/2326-6066.CIR-20-0968.
  • Vankerckhoven A, Wouters R, Mathivet T, et al. Opposite macrophage polarization in different subsets of ovarian cancer: observation from a pilot study. Cells. 2020;9(2):305. doi: 10.3390/cells9020305.
  • Hopkins D, Sanchez H, Berwin B, et al. Cisplatin increases immune activity of monocytes and cytotoxic T-cells in a murine model of epithelial ovarian cancer. Transl Oncol. 2021;14(12):101217. doi: 10.1016/j.tranon.2021.101217.
  • Salman L, Sabah G, Jakobson-Setton A, et al. Neutrophil-to-lymphocyte ratio as a prognostic factor in advanced stage ovarian carcinoma treated with neoadjuvant chemotherapy. Int J Gynaecol Obstet. 2020;148(1):102–106. doi: 10.1002/ijgo.12986.
  • Sanna E, Tanca L, Cherchi C, et al. Decrease in neutrophil-to-Lymphocyte ratio during neoadjuvant chemotherapy as a predictive and prognostic marker in advanced ovarian cancer. Diagnostics (Basel). 2021;11(7):1298. doi: 10.3390/diagnostics11071298.
  • Resnik E, Taxy JB. Neoadjuvant chemotherapy in uterine papillary serous carcinoma. Gynecol Oncol. 1996;62(1):123–127. doi: 10.1006/gyno.1996.0201.
  • Le TD, Yamada SD, Rutgers JL, et al. Complete response of a stage IV uterine papillary serous carcinoma to neoadjuvant chemotherapy with taxol and carboplatin. Gynecol Oncol. 1999;73(3):461–463. doi: 10.1006/gyno.1999.5361.
  • Price FV, Amin RM, Sumkin J. Complete clinical responses to neoadjuvant chemotherapy for uterine serous carcinoma. Gynecol Oncol. 1999;73(1):140–144. doi: 10.1006/gyno.1998.5303.
  • Despierre E, Moerman P, Vergote I, et al. Is there a role for neoadjuvant chemotherapy in the treatment of stage IV serous endometrial carcinoma? Int J Gynecol Cancer. 2006;16(Suppl 1):273–277. doi: 10.1136/ijgc-00009577-200602001-00044.
  • Wan T, Huang H, Feng Y, et al. 184MO efficacy and safety of sintilimab plus paclitaxel and cisplatin as neoadjuvant therapy for locally advanced cervical cancer: a phase II trial. Ann Oncol. 2022;33: s 1508. doi: 10.1016/j.annonc.2022.10.220.
  • Chen J, Li K, Han Y, et al. 560P neoadjuvant cam­relizumab plus chemotherapy in patients with locally advanced cervical cancer (NACI): a prospective, single-arm, phase II trial. Ann Oncol. 2022;33: s 804. doi: 10.1016/j.annonc.2022.07.688.
  • Wu X, Ji J, Lou H, et al. Efficacy and safety of cadonilimab, an anti-PD-1/CTLA4 bi-specific antibody, in previously treated recurrent or metastatic (R/M) cervical cancer: a multicenter, open-label, single-arm, phase II trial (075). Gynecol Oncol. 2022;166: s 47–S48. doi: 10.1016/S0090-8258(22)01293-8.
  • Park J, Park E, Joung J-G, et al. Abstract CT010: a phase II study of durvalumab and tremelimumab with front-line neoadjuvant chemotherapy in patients with advanced-stage ovarian cancer (KGOG 3046/TRU-D). Cancer Research. 2022;82(12_Supplement):CT010–CT010. P. doi: 10.1158/1538-7445.AM2022-CT010.
  • Maiorano BA, Maiorano MFP, Cormio G, et al. How immunotherapy modified the therapeutic scenario of endometrial cancer: a systematic review. Front Oncol. 2022;12:844801. doi: 10.3389/fonc.2022.844801.
  • Eskander R. Testing the addition of the immunotherapy drug pembrolizumab to the usual chemotherapy treatment (paclitaxel and carboplatin) in stage III-IV or recurrent endometrial cancer ClinicalTrials. Gov: NIH. 2021. NCT03914612
  • Eskander RN, Sill MW, Beffa L, et al. Pembrolizumab plus chemotherapy in advanced endometrial cancer. N Engl J Med. 2023;388(23):2159–2170. doi: 10.1056/NEJMoa2302312.
  • Mirza MR, Chase DM, Slomovitz BM, et al. Dostarlimab for primary advanced or recurrent endometrial cancer. N Engl J Med. 2023;388(23):2145–2158. doi: 10.1056/NEJMoa2216334.
  • Smyth MJ, Ngiow SF, Ribas A, et al. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13(3):143–158. doi: 10.1038/nrclinonc.2015.209.
  • Zhang H, Ye L, Yu X, et al. Neoadjuvant therapy alters the immune microenvironment in pancreatic cancer. Front Immunol. 2022;13:956984. doi: 10.3389/fimmu.2022.956984.
  • Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38(4):473–488. doi: 10.1016/j.ccell.2020.07.005.
  • Wang L, Yao R, Zhang L, et al. Chimeric antigen receptor T cell therapy and other therapeutics for malignancies: combination and opportunity. Int Immunopharmacol. 2019;70:498–503. doi: 10.1016/j.intimp.2019.01.010.
  • Parente-Pereira AC, Whilding LM, Brewig N, et al. Synergistic chemoimmunotherapy of epithelial ovarian cancer using ErbB-Retargeted T cells combined with carboplatin. J Immunol. 2013;191(5):2437–2445. doi: 10.4049/jimmunol.1301119.
  • Whilding LM, Maher J. ErbB-targeted CAR T-cell immunotherapy of cancer. Immunotherapy. 2015;7(3):229–241. doi: 10.2217/imt.14.120.
  • Schoutrop E, Poiret T, El-Serafi I, et al. Tuned activation of MSLN-CAR T cells induces superior antitumor responses in ovarian cancer models. J Immunother Cancer. 2023;11(2):e005691. doi: 10.1136/jitc-2022-005691.
  • Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74. doi: 10.1126/science.aaa4971.
  • Smalley Rumfield C, Pellom ST, Morillon Ii YM, et al. Immunomodulation to enhance the efficacy of an HPV therapeutic vaccine. J Immunother Cancer. 2020;8(1):e000612. doi: 10.1136/jitc-2020-000612.
  • Colombo N, Dubot C, Lorusso D, et al. Pembrolizumab for persistent, recurrent, or metastatic cervical cancer. N Engl J Med. 2021;385(20):1856–1867. doi: 10.1056/NEJMoa2112435.
  • Tewari KS, Monk BJ, Vergote I, et al. Survival with cemiplimab in recurrent cervical cancer. N Engl J Med. 2022;386(6):544–555. doi: 10.1056/NEJMoa2112187.
  • Pujade-Lauraine E, Fujiwara K, Dychter SS, et al. Avelumab (anti-PD-L1) in platinum-resistant/refractory ovarian cancer: JAVELIN ovarian 200 phase III study design. Future Oncol. 2018;14(21):2103–2113. doi: 10.2217/fon-2018-0070.
  • Pignata S, Bookman M, Sehouli J, et al. Atezolizumab, bevacizumab, and chemotherapy for newly diagnosed stage III or IV ovarian cancer: placebo-Controlled randomized phase III trial (Imagyn050/GOG 3015/ENGOT-OV39). Gynecol Oncol. 2023;177(17):20–31. doi: 10.1200/JCO.21.00306.
  • Monk BJ, Colombo N, Oza AM, et al. Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN ovarian 100): an open-label, randomised, phase 3 trial. Lancet Oncol. 2021;22(9):1275–1289. doi: 10.1016/S1470-2045(21)00342-9.
  • Matei D, et al. Phase II trial of guadecitabine priming and pembrolizumab in platinum resistant recurrent ovarian cancer. Am J Clin Oncol. 2020. doi: 10.1200/JCO.2020.38.15_suppl.6025
  • Zsiros E, Lynam S, Attwood KM, et al. Efficacy and safety of pembrolizumab in combination with bevacizumab and oral metronomic cyclophosphamide in the treatment of recurrent ovarian cancer: a phase 2 nonrandomized clinical trial. JAMA Oncol. 2021;7(1):78–85. doi: 10.1001/jamaoncol.2020.5945.
  • Lee JY, Kim JW, Lim MC, et al. A phase II study of neoadjuvant chemotherapy plus durvalumab and tremelimumab in advanced-stage ovarian cancer: a orean gynecologic oncology group study (KGOG 3046), TRU-D. J Gynecol Oncol. 2019;30(6):e112. doi: 10.3802/jgo.2019.30.e112.