584
Views
0
CrossRef citations to date
0
Altmetric
Pediatrics

The alterations in ocular biometric parameters following short-term discontinuation of long-term orthokeratology and prior to subsequent lens fitting: a preliminary study

ORCID Icon, , , &
Article: 2282745 | Received 26 Apr 2023, Accepted 06 Nov 2023, Published online: 21 Nov 2023

References

  • Burton MJ, Ramke J, Marques AP, et al. The lancet global health commission on global eye health: vision beyond 2020. Lancet Glob Health. 2021;9(4):1–10. doi: 10.1016/S2214-109X(20)30488-5.
  • Sankaridurg P, Tahhan N, Kandel H, et al. IMI impact of myopia. Invest Ophthalmol Vis Sci. 2021;62(5):2. doi: 10.1167/iovs.62.5.2.
  • Biswas S, Biswas P. Longitudinal evaluation of the structural and functional changes associated with glaucoma in myopia. Optom Vis Sci. 2020;97(6):448–456. doi: 10.1097/OPX.0000000000001519.
  • Gabriel M, Großpötzl M, Wallisch F, et al. In-depth analysis of risk factors for pseudophakic retinal detachments and retinal breaks. Acta Ophthalmol. 2022;100:e694–e700.
  • Khatwani N, Makhija S, Ahuja A. Clinical profile and distribution of peripheral retinal changes in myopic population in a hospital-based study in North India. Indian J Ophthalmol. 2022;70(4):1280–1285. doi:10.4103/ijo.IJO_946_21.
  • Sun MT, Tran M, Singh K, et al. Glaucoma and myopia: diagnostic challenges. Biomolecules. 2023;13(3):562. doi: 10.3390/biom13030562.
  • Chong RS, Li H, Cheong AJY, et al. Mendelian randomization implicates bidirectional association between myopia and primary Open-Angle glaucoma or intraocular pressure. Ophthalmology. 2023;130(4):394–403. doi: 10.1016/j.ophtha.2022.11.030.
  • Wolffsohn JS, Flitcroft DI, Gifford KL, et al. IMI - Myopia control reports overview and introduction. Invest Ophthalmol Vis Sci. 2019;60(3):M1–M19. doi: 10.1167/iovs.18-25980.
  • Lanca C, Pang CP, Grzybowski A. Effectiveness of myopia control interventions: a systematic review of 12 randomized control trials published between 2019 and 2021. Front Public Health. 2023;11:1125000. doi: 10.3389/fpubh.2023.1125000.
  • Bullimore MA, Johnson LA. Overnight orthokeratology. Cont Lens Anterior Eye. 2020;43(4):322–332. doi: 10.1016/j.clae.2020.03.018.
  • Zhu Z, Chen Y, Tan Z, et al. Interventions recommended for myopia prevention and control among children and adolescents in China: a systematic review. Br J Ophthalmol. 2023;107(2):160–166. doi: 10.1136/bjophthalmol-2021-319306.
  • Hiraoka T, Sekine Y, Okamoto F, et al. Safety and efficacy following 10-years of overnight orthokeratology for myopia control. Ophthalmic Physiol Opt. 2018;38(3):281–289. doi: 10.1111/opo.12460.
  • Ma L, Xu M, Wang J, et al. Analysis of the reasons for the discontinuation of orthokeratology lens use: a 4-Year retrospective study. Eye Contact Lens. 2022;48(8):335–339. doi: 10.1097/ICL.0000000000000910.
  • Barr JT, Rah MJ, Meyers W, et al. Recovery of refractive error after corneal refractive therapy. Eye Contact Lens. 2004;30(4):247–251. discussion 63-4. doi: 10.1097/01.icl.0000140234.85617.88.
  • Hiraoka T, Okamoto C, Ishii Y, et al. Recovery of corneal irregular astigmatism, ocular higher-order aberrations, and contrast sensitivity after discontinuation of overnight orthokeratology. Br J Ophthalmol. 2009;93(2):203–208. doi: 10.1136/bjo.2007.136655.
  • Soni PS, Nguyen TT, Bonanno JA. Overnight orthokeratology: refractive and corneal recovery after discontinuation of reverse-geometry lenses. Eye Contact Lens. 2004;30(4):254–262. discussion 63-4. doi: 10.1097/01.icl.0000140637.58027.9b.
  • Chen Z, Zhou J, Xue F, et al. Increased corneal toricity after Long-Term orthokeratology lens wear. J Ophthalmol. 2018;2018:7106028. doi: 10.1155/2018/7106028.
  • Kobayashi Y, Yanai R, Chikamoto N, et al. Reversibility of effects of orthokeratology on visual acuity, refractive error, corneal topography, and contrast sensitivity. Eye Contact Lens. 2008;34(4):224–228. doi: 10.1097/ICL.0b013e318165d501.
  • Wan K, Yau HT, Cheung SW, et al. Corneal thickness changes in myopic children during and after short-term orthokeratology lens wear. Ophthalmic Physiol Opt. 2021;41(4):757–767. doi: 10.1111/opo.12824.
  • Zhao L, Jing L, Li J, et al. Changes in corneal densitometry after long-term orthokeratology for myopia and short-term discontinuation. PLoS One. 2022;17(2):e0263121. doi: 10.1371/journal.pone.0263121.
  • Kang P, Swarbrick H. Discontinuation of long term orthokeratology lens wear and subsequent refractive surgery outcome. Cont Lens Anterior Eye. 2017;40(6):436–439. doi: 10.1016/j.clae.2017.07.001.
  • Li Z, Hu Y, Cui D, et al. Change in subfoveal choroidal thickness secondary to orthokeratology and its cessation: a predictor for the change in axial length. Acta Ophthalmol. 2019;97:e454–e9.
  • Chen X, Xiong Y, Liu F, et al. Factors determining the myopia control effect of an orthokeratology lens: a two-year multi-level model. Ophthalmic Physiol Opt. 2022;42(4):786–796. doi: 10.1111/opo.12990.
  • Prousali E, Haidich AB, Fontalis A, et al. Efficacy and safety of interventions to control myopia progression in children: an overview of systematic reviews and meta-analyses. BMC Ophthalmol. 2019;19(1):106. doi: 10.1186/s12886-019-1112-3.
  • Hiraoka T, Kakita T, Okamoto F, et al. Long-term effect of overnight orthokeratology on axial length elongation in childhood myopia: a 5-year follow-up study. Invest Ophthalmol Vis Sci. 2012;53(7):3913–3919. doi: 10.1167/iovs.11-8453.
  • Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, et al. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci. 2012;53(8):5060–5065. doi: 10.1167/iovs.11-8005.
  • Jakobsen TM, Møller F. Control of myopia using orthokeratology lenses in scandinavian children aged 6 to 12 years. Eighteen-month data from the Danish randomized study: clinical study of near-sightedness; treatment with orthokeratology lenses (CONTROL study). Acta Ophthalmol. 2022;100(2):175–182. doi: 10.1111/aos.14911.
  • Swarbrick HA, Alharbi A, Watt K, et al. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology. 2015;122(3):620–630. doi: 10.1016/j.ophtha.2014.09.028.
  • Sankaridurg P, Conrad F, Tran H, et al. Controlling progression of myopia: optical and pharmaceutical strategies. Asia Pac J Ophthalmol (Phila). 2018;7:405–414.
  • Cho P, Cheung SW. Discontinuation of orthokeratology on eyeball elongation (DOEE). Cont Lens Anterior Eye. 2017;40(2):82–87. doi: 10.1016/j.clae.2016.12.002.
  • Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol. 2009;93(9):1181–1185. doi: 10.1136/bjo.2008.151365.
  • Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, et al. Short-term changes in ocular biometry and refraction after discontinuation of long-term orthokeratology. Eye Contact Lens. 2014;40(2):84–90. doi: 10.1097/ICL.0000000000000014.
  • Cheung SW, Cho P. Long-term effect of orthokeratology on the anterior segment length. Cont Lens Anterior Eye. 2016;39(4):262–265. doi: 10.1016/j.clae.2016.02.003.
  • Tong L, Saw SM, Siak JK, et al. Corneal thickness determination and correlates in singaporean schoolchildren. Invest Ophthalmol Vis Sci. 2004;45(11):4004–4009. doi: 10.1167/iovs.04-0121.
  • Jones LA, Mitchell GL, Mutti DO, et al. Comparison of ocular component growth curves among refractive error groups in children. Invest Ophthalmol Vis Sci. 2005;46(7):2317–2327. doi: 10.1167/iovs.04-0945.
  • Ojaimi E, Rose KA, Morgan IG, et al. Distribution of ocular biometric parameters and refraction in a population-based study of Australian children. Invest Ophthalmol Vis Sci. 2005;46(8):2748–2754. doi: 10.1167/iovs.04-1324.
  • Ip JM, Huynh SC, Kifley A, et al. Variation of the contribution from axial length and other oculometric parameters to refraction by age and ethnicity. Invest Ophthalmol Vis Sci. 2007;48(10):4846–4853. doi: 10.1167/iovs.07-0101.
  • Shih YF, Chiang TH, Lin LL. Lens thickness changes among schoolchildren in Taiwan. Invest Ophthalmol Vis Sci. 2009;50(6):2637–2644. doi: 10.1167/iovs.08-3090.
  • Wong HB, Machin D, Tan SB, et al. Ocular component growth curves among singaporean children with different refractive error status. Invest Ophthalmol Vis Sci. 2010;51(3):1341–1347. doi: 10.1167/iovs.09-3431.
  • Lian RR, Sella R, Chen S, et al. Changes in corneal tomography following corneal refractive therapy discontinuation in a patient with history of long-term use. Am J Ophthalmol Case Rep. 2022;26:101450. doi: 10.1016/j.ajoc.2022.101450.
  • Wu R, Stapleton F, Swarbrick HA. Residual corneal flattening after discontinuation of long-term orthokeratology lens wear in Asian children. Eye Contact Lens. 2009;35(6):333–337. doi: 10.1097/ICL.0b013e3181bdc41f.
  • Nieto-Bona A, Gonzalez-Mesa A, Nieto-Bona MP, et al. Long-term changes in corneal morphology induced by overnight orthokeratology. Curr Eye Res. 2011;36(10):895–904. doi: 10.3109/02713683.2011.593723.
  • Kerns RL. Research in orthokeratology. J Am Optom Assoc. 1977;48(3):345–359.
  • Polse KA, Brand RJ, Schwalbe JS, et al. The Berkeley orthokeratology study, part II: efficacy and duration. Am J Optom Physiol Opt. 1983;60(3):187–198. doi: 10.1097/00006324-198303000-00006.
  • Xu Y, Ye Y, Chong IT, et al. A novel indentation assessment to measure corneal biomechanical properties in glaucoma and ocular hypertension. Transl Vis Sci Technol. 2021;10(9):36. doi: 10.1167/tvst.10.9.36.
  • Zhang Z, Chen Z, Chen Z, et al. Change in corneal power distribution in orthokeratology: a predictor for the change in axial length. Transl Vis Sci Technol. 2022;11(2):18. doi: 10.1167/tvst.11.2.18.
  • Giloyan A, Harutyunyan T, Petrosyan V. Risk factors for developing myopia among schoolchildren in Yerevan and Gegharkunik province, Armenia. Ophthalmic Epidemiol. 2017;24(2):97–103. doi: 10.1080/09286586.2016.1257028.
  • Greene PR. Mechanical considerations in myopia: relative effects of accommodation, convergence, intraocular pressure, and the extraocular muscles. Am J Optom Physiol Opt. 1980;57(12):902–914.
  • Ishida Y, Yanai R, Sagara T, et al. Decrease in intraocular pressure following orthokeratology measured with a noncontact tonometer. Jpn J Ophthalmol. 2011;55(3):190–195. doi: 10.1007/s10384-011-0018-2.
  • Chang CJ, Yang HH, Chang CA, et al. The influence of orthokeratology on intraocular pressure measurements. Semin Ophthalmol. 2013;28(4):210–215. doi: 10.3109/08820538.2013.768679.