1,192
Views
0
CrossRef citations to date
0
Altmetric
Cardiology & Cardiovascular Disorders

Activation of the Nrf-2/HO-1 signalling axis can alleviate metabolic syndrome in cardiovascular disease

, , , , , , & show all
Article: 2284890 | Received 28 May 2023, Accepted 10 Nov 2023, Published online: 01 Dec 2023

References

  • Tune JD, Goodwill AG, Sassoon DJ, et al. Cardiovascular consequences of metabolic syndrome. Transl Res. 2017;183:1–15. doi:10.1016/j.trsl.2017.01.001.
  • Kazamel M, Stino AM, Smith AG. Metabolic syndrome and peripheral neuropathy. Muscle Nerve. 2021;63(3):285–293. doi:10.1002/mus.27086.
  • Kasper P, Martin A, Lang S, et al. NAFLD and cardiovascular diseases: a clinical review. Clin Res Cardiol. 2021; 10(7):921–937. doi:10.1007/s00392-020-01709-7.
  • Caussy C, Aubin A, Loomba R. The relationship between type 2 diabetes, NAFLD, and cardiovascular risk. Curr Diab Rep. 2021; 21(5):15. doi:10.1007/s11892-021-01383-7.
  • Silveira Rossi JL, Barbalho SM, Reverete de Araujo R, et al. Metabolic syndrome and cardiovascular diseases: going beyond traditional risk factors. Diabetes Metab Res Rev. 2022;38(3):e3502.
  • Paquette M, Bernard S, Cariou B, et al. Metabolic syndrome predicts cardiovascular risk and mortality in familial hypercholesterolemia. J Clin Lipidol. 2023; 17(3):376–383. doi:10.1016/j.jacl.2023.03.008.
  • Sykiotis GP, Bohmann D. Stress-activated cap’n’collar transcription factors in aging and human disease. Sci Signal. 2010;93(112):re3. doi:10.1126/scisignal.3112re3.
  • Kang MI, Kobayashi A, Wakabayashi N, et al. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci U S A. 2004; 101(7):2046–2051. doi:10.1073/pnas.0308347100.
  • Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004; 10(11):549–557. doi:10.1016/j.molmed.2004.09.003.
  • McMahon M, Thomas N, Itoh K, et al. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J Biol Chem. 2004; 279(30):31556–31567. doi:10.1074/jbc.M403061200.
  • Li W, Kong AN. Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog. 2009;48(2):91–104. doi:10.1002/mc.20465.
  • Holtzclaw WD, Dinkova-Kostova AT, Talalay P. Protection against electrophile and oxidative stress by induction of phase 2 genes: the quest for the elusive sensor that responds to inducers. Adv Enzyme Regul. 2004;44(1):335–367. doi:10.1016/j.advenzreg.2003.11.013.
  • Hu C, Eggler AL, Mesecar AD, et al. Modification of keap1 cysteine residues by sulforaphane. Chem Res Toxicol. 2011; 24(4):515–521. doi:10.1021/tx100389r.
  • Kobayashi M, Yamamoto M. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul. 2006;46(1):113–140. doi:10.1016/j.advenzreg.2006.01.007.
  • Kobayashi A, Kang MI, Watai Y, et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol. 2006; 26(1):221–229. doi:10.1128/MCB.26.1.221-229.2006.
  • Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med. 2015;88(Pt B):101–107. doi:10.1016/j.freeradbiomed.2015.05.034.
  • Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 2011;85(4):241–272. doi:10.1007/s00204-011-0674-5.
  • Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016; 73(17):3221–3247. doi:10.1007/s00018-016-2223-0.
  • Loboda A, Jazwa A, Grochot-Przeczek A, et al. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2008; 10(10):1767–1812. doi:10.1089/ars.2008.2043.
  • Stucki D, Stahl W. Carbon monoxide - beyond toxicity? Toxicol Lett. 2020; 333:251–260. doi:10.1016/j.toxlet.2020.08.010.
  • Sack MN, Fyhrquist FY, Saijonmaa OJ, et al. Basic biology of oxidative stress and the cardiovascular system: part 1 of a 3-Part series. J Am Coll Cardiol. 2017; 70(2):196–211. doi:10.1016/j.jacc.2017.05.034.
  • Munzel T, Camici GG, Maack C, et al. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-Part series. J Am Coll Cardiol. 2017; 70(2):212–229. doi:10.1016/j.jacc.2017.05.035.
  • Yan SH, Zhao NW, Geng ZR, et al. Modulations of Keap1-Nrf2 signaling axis by TIIA ameliorated the oxidative stress-induced myocardial apoptosis. Free Radic Biol Med. 2018; 115:191–201. doi:10.1016/j.freeradbiomed.2017.12.001.
  • Bai Y, Wang X, Zhao S, et al. Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxid Med Cell Longev. 2015;2015:407580–407513. doi:10.1155/2015/407580.
  • Wu L, Li HH, Wu Q, et al. Lipoxin A4 activates Nrf2 pathway and ameliorates cell damage in cultured cortical astrocytes exposed to oxygen-glucose deprivation/reperfusion insults. J Mol Neurosci. 2015;56(4):848–857. doi:10.1007/s12031-015-0525-6.
  • Chang CL, Au LC, Huang SW, et al. Insulin up-regulates heme oxygenase-1 expression in 3T3-L1 adipocytes via PI3-kinase- and PKC-dependent pathways and heme oxygenase-1-associated microRNA downregulation. Endocrinology. 2011;152(2):384–393. doi:10.1210/en.2010-0493.
  • Geraldes P, Yagi K, Ohshiro Y, et al. Selective regulation of heme oxygenase-1 expression and function by insulin through IRS1/phosphoinositide 3-kinase/akt-2 pathway. J Biol Chem. 2008; 283(49):34327–34336. doi:10.1074/jbc.M807036200.
  • Yu ZW, Li D, Ling WH, et al. Role of nuclear factor (erythroid-derived 2)-like 2 in metabolic homeostasis and insulin action: a novel opportunity for diabetes treatment? World J Diabetes. 2012;3(1):19–28. 3 doi:10.4239/wjd.v3.i1.19.
  • Tullet JM, Hertweck M, An JH, et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell. 2008;132(6):1025–1038. doi:10.1016/j.cell.2008.01.030.
  • Kumar A, Katz LS, Schulz AM, et al. Activation of Nrf2 is required for normal and ChREBPalpha-augmented glucose-stimulated beta-cell proliferation. Diabetes. 2018;67(8):1561–1575. doi:10.2337/db17-0943.
  • Baumel-Alterzon S, Katz LS, Brill G, et al. Nrf2: the master and captain of beta cell fate. Trends Endocrinol Metab. 2021; 32(1):7–19. doi:10.1016/j.tem.2020.11.002.
  • Kuosmanen SM, Kansanen E, Kaikkonen MU, et al. NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation. Nucleic Acids Res. 2018; 46(3):1124–1138. doi:10.1093/nar/gkx1155.
  • Ghesquiere B, Wong BW, Kuchnio A, et al. Metabolism of stromal and immune cells in health and disease. Nature. 2014;511(7508):167–176. doi:10.1038/nature13312.
  • Potente M, Makinen T. Vascular heterogeneity and specialization in development and disease. Nat Rev Mol Cell Biol. 2017;18(8):477–494. doi:10.1038/nrm.2017.36.
  • Bochkov VN, Oskolkova OV, Birukov KG, et al. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal. 2010;12(8):1009–1059. doi:10.1089/ars.2009.2597.
  • Schoors S, De Bock K, Cantelmo AR, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 2014; 19(1):37–48. doi:10.1016/j.cmet.2013.11.008.
  • De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154(3):651–663. doi:10.1016/j.cell.2013.06.037.
  • Wang Z, Zuo Z, Li L, et al. Nrf2 in adipocytes. Arch Pharm Res. 2020;43(3):350–360. doi:10.1007/s12272-020-01227-0.
  • Takahashi T, Tabuchi T, Tamaki Y, et al. Carnosic acid and carnosol inhibit adipocyte differentiation in mouse 3T3-L1 cells through induction of phase2 enzymes and activation of glutathione metabolism. Biochem Biophys Res Commun. 2009; 382(3):549–554. doi:10.1016/j.bbrc.2009.03.059.
  • Yu Z, Shao W, Chiang Y, et al. Oltipraz upregulates the nuclear factor (erythroid-derived 2)-like 2 [corrected](NRF2) antioxidant system and prevents insulin resistance and obesity induced by a high-fat diet in C57BL/6J mice. Diabetologia. 2011;54(4):922–934. doi:10.1007/s00125-010-2001-8.
  • Shin S, Wakabayashi J, Yates MS, et al. Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. Eur J Pharmacol. 2009; 620(1–3):138–144. doi:10.1016/j.ejphar.2009.08.022.
  • Kitteringham NR, Abdullah A, Walsh J, et al. Proteomic analysis of Nrf2 deficient transgenic mice reveals cellular defence and lipid metabolism as primary Nrf2-dependent pathways in the liver. J Proteomics. 2010; 73(8):1612–1631. doi:10.1016/j.jprot.2010.03.018.
  • Jin X, Xu Z, Cao J, et al. HO-1/EBP interaction alleviates cholesterol-induced hypoxia through the activation of the AKT and Nrf2/mTOR pathways and inhibition of carbohydrate metabolism in cardiomyocytes. Int J Mol Med. 2017; 39(6):1409–1420. doi:10.3892/ijmm.2017.2979.
  • Ooi BK, Goh BH, Yap WH. Oxidative stress in cardiovascular diseases: involvement of Nrf2 antioxidant redox signaling in macrophage foam cells formation. Int J Mol Sci. 2017;18(11):2336. doi:10.3390/ijms18112336.
  • Alonso-Pineiro JA, Gonzalez-Rovira A, Sanchez-Gomar I, et al. Nrf2 and heme oxygenase-1 involvement in atherosclerosis related oxidative stress. Antioxidants. 2021;10(9):1463. doi:10.3390/antiox10091463.
  • Sacerdoti D, Singh SP, Schragenheim J, et al. Development of NASH in obese mice is confounded by adipose tissue increase in inflammatory NOV and oxidative stress. Int J Hepatol. 2018;2018:3484107–3484114. doi:10.1155/2018/3484107.
  • de la Rosa F, De Troch M, Gabriela M, et al. Physiological responses and specific fatty acids composition of Microcystis aeruginosa exposed to total solar radiation and increased temperature. Photochem Photobiol Sci. 2021;20(6):805–821. doi:10.1007/s43630-021-00061-7.
  • Chen X, Li J, Kang R, et al. Ferroptosis: machinery and regulation. Autophagy. 2021;17(9):2054–2081. doi:10.1080/15548627.2020.1810918.
  • Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014; 156(1–2):317–331. doi:10.1016/j.cell.2013.12.010.
  • Tang H, Inoki K, Brooks SV, et al. mTORC1 underlies age-related muscle fiber damage and loss by inducing oxidative stress and catabolism. Aging Cell. 2019;18(3):e12943. doi:10.1111/acel.12943.
  • Wu B, Li J, Ni H, et al. TLR4 activation promotes the progression of experimental autoimmune myocarditis to dilated cardiomyopathy by inducing mitochondrial dynamic imbalance. Oxid Med Cell Longev. 2018;2018:3181278–3181215. doi:10.1155/2018/3181278.
  • Yao X, Carlson D, Sun Y, et al. Mitochondrial ROS induces cardiac inflammation via a pathway through mtDNA damage in a pneumonia-related sepsis model. PLOS One. 2015;10(10):e0139416. doi:10.1371/journal.pone.0139416.
  • Tsushima M, Liu J, Hirao W, et al. Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease. Arch Pharm Res. 2020; 43(3):286–296. doi:10.1007/s12272-019-01188-z.
  • Khan AUH, Allende-Vega N, Gitenay D, et al. Mitochondrial complex I activity signals antioxidant response through ERK5. Sci Rep. 2018; 8(1):7420. doi:10.1038/s41598-018-23884-4.
  • Itoh K, Ye P, Matsumiya T, et al. Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr. 2015;56(2):91–97. doi:10.3164/jcbn.14-134.
  • Murata H, Takamatsu H, Liu S, et al. NRF2 regulates PINK1 expression under oxidative stress conditions. PLOS One. 2015;10(11):e0142438. doi:10.1371/journal.pone.0142438.
  • Morais VA, Haddad D, Craessaerts K, et al. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science. 2014;344(6180):203–207. doi:10.1126/science.1249161.
  • Wu Z, Sawada T, Shiba K, et al. Tricornered/NDR kinase signaling mediates PINK1-directed mitochondrial quality control and tissue maintenance. Genes Dev. 2013;27(2):157–162. doi:10.1101/gad.203406.112.
  • Tomlin FM, Gerling-Driessen UIM, Liu YC, et al. Inhibition of NGLY1 inactivates the transcription factor Nrf1 and potentiates proteasome inhibitor cytotoxicity. ACS Cent Sci. 2017;3(11):1143–1155. doi:10.1021/acscentsci.7b00224.
  • Berthiaume JM, Kurdys JG, Muntean DM, et al. Mitochondrial NAD(+)/NADH redox state and diabetic cardiomyopathy. Antioxid Redox Signal. 2019; 30(3):375–398. doi:10.1089/ars.2017.7415.
  • Strom J, Xu B, Tian X, et al. Nrf2 protects mitochondrial decay by oxidative stress. Faseb J. 2016;30(1):66–80. doi:10.1096/fj.14-268904.
  • Lee SC, Zhang J, Strom J, et al. G-Quadruplex in the NRF2 mRNA 5’ untranslated region regulates De novo NRF2 protein translation under oxidative stress. Mol Cell Biol. 2017;37(1)e00122-16. doi:10.1128/MCB.00122-16.
  • Ago T, Kuroda J, Pain J, et al. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res. 2010; 106(7):1253–1264. doi:10.1161/CIRCRESAHA.109.213116.
  • Block K, Gorin Y, Abboud HE. Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A. 2009106(34):14385–14390. doi:10.1073/pnas.0906805106.
  • Kasai S, Yamazaki H, Tanji K, et al. Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J Clin Biochem Nutr. 2019; 64(1):1–12. doi:10.3164/jcbn.18-37.
  • O’Mealey GB, Plafker KS, Berry WL, et al. A PGA. M5KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J Cell Sci. 2017; 130(20):3467–3480.
  • Taha H, Skrzypek K, Guevara I, et al. Role of heme oxygenase-1 in human endothelial cells: lesson from the promoter allelic variants. Arterioscler Thromb Vasc Biol. 201030(8):1634–1641. doi:10.1161/ATVBAHA.110.207316.
  • Mimura J, Itoh K. Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radic Biol Med. 2015;88(Pt B):221–232. doi:10.1016/j.freeradbiomed.2015.06.019.
  • Orozco LD, Kapturczak MH, Barajas B, et al. Heme oxygenase-1 expression in macrophages plays a beneficial role in atherosclerosis. Circ Res. 2007; 100(12):1703–1711. doi:10.1161/CIRCRESAHA.107.151720.
  • Ziberna L, Martelanc M, Franko M, et al. Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Sci Rep. 2016; 6(1):29240. doi:10.1038/srep29240.
  • Kwon YJ, Lee HS, Lee JW. Direct bilirubin is associated with low-density lipoprotein subfractions and particle size in overweight and centrally obese women. Nutr Metab Cardiovasc Dis. 2018;28(10):1021–1028. doi:10.1016/j.numecd.2018.05.013.
  • Loboda A, Jozkowicz A, Dulak J. HO-1/CO system in tumor growth, angiogenesis and metabolism - Targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol. 2015;74:11–22. doi:10.1016/j.vph.2015.09.004.
  • Dragoni S, Turowski P. Polarised VEGFA signalling at vascular blood-neural barriers. Int J Mol Sci. 2018;19(5):1378. doi:10.3390/ijms19051378.
  • Kang IS, Kim RI, Kim C. Carbon monoxide regulates macrophage differentiation and polarization toward the M2 phenotype through upregulation of heme oxygenase 1. Cells. 2021; 10(12):3444. doi:10.3390/cells10123444.
  • Leake A, Salem K, Madigan MC, et al. Systemic vasoprotection by inhaled carbon monoxide is mediated through prolonged alterations in monocyte/macrophage function. Nitric Oxide. 2020;94:36–47. doi:10.1016/j.niox.2019.10.003.
  • Bilban M, Haschemi A, Wegiel B, et al. Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med . 2008;86(3):267–279. doi:10.1007/s00109-007-0276-0.
  • Magierowski M, Magierowska K, Hubalewska-Mazgaj M, et al. Cross-talk between hydrogen sulfide and carbon monoxide in the mechanism of experimental gastric ulcers healing, regulation of gastric blood flow and accompanying inflammation. Biochem Pharmacol. 2018; 149:131–142. doi:10.1016/j.bcp.2017.11.020.
  • Hartsfield CL. Cross talk between carbon monoxide and nitric oxide. Antioxid Redox Signal. 2002;4(2):301–307. doi:10.1089/152308602753666352.
  • Otterbein LE, Zuckerbraun BS, Haga M, et al. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med. 2003; 9(2):183–190. doi:10.1038/nm817.
  • Huang J, Tabbi-Anneni I, Gunda V, et al. Transcription factor Nrf2 regulates SHP and lipogenic gene expression in hepatic lipid metabolism. Am J Physiol Gastrointest Liver Physiol. 2010;299(6):G1211–21. doi:10.1152/ajpgi.00322.2010.
  • Barajas B, Che N, Yin F, et al. NF-E2-related factor 2 promotes atherosclerosis by effects on plasma lipoproteins and cholesterol transport that overshadow antioxidant protection. Arterioscler Thromb Vasc Biol. 2011;31(1):58–66. doi:10.1161/ATVBAHA.110.210906.
  • Freigang S, Ampenberger F, Spohn G, et al. Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur J Immunol. 2011;41(7):2040–2051. doi:10.1002/eji.201041316.
  • Ishii T, Itoh K, Ruiz E, et al. Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res. 2004;94(5):609–616. doi:10.1161/01.RES.0000119171.44657.45.
  • Kadl A, Meher AK, Sharma PR, et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res. 2010; 107(6):737–746. doi:10.1161/CIRCRESAHA.109.215715.
  • Boyle JJ, Johns M, Kampfer T, et al. Activating transcription factor 1 directs mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res. 2012; 110(1):20–33. doi:10.1161/CIRCRESAHA.111.247577.
  • Boyle JJ, Johns M, Lo J, et al. Heme induces heme oxygenase 1 via Nrf2: role in the homeostatic macrophage response to intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2011; 31(11):2685–2691. doi:10.1161/ATVBAHA.111.225813.
  • Small HY, Migliarino S, Czesnikiewicz-Guzik M, et al. Hypertension: focus on autoimmunity and oxidative stress. Free Radic Biol Med. 2018; 125:104–115. doi:10.1016/j.freeradbiomed.2018.05.085.
  • Chen Q, Wang Q, Zhu J, et al. Reactive oxygen species: key regulators in vascular health and diseases. Br J Pharmacol. 2018; 175(8):1279–1292. doi:10.1111/bph.13828.
  • Li H, Horke S, Forstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014; 237(1):208–219. doi:10.1016/j.atherosclerosis.2014.09.001.
  • Luo Z, Aslam S, Welch WJ, et al. Activation of nuclear factor erythroid 2-related factor 2 coordinates dimethylarginine dimethylaminohydrolase/PPAR-gamma/endothelial nitric oxide synthase pathways that enhance nitric oxide generation in human glomerular endothelial cells. Hypertension. 2015;65(4):896–902. doi:10.1161/HYPERTENSIONAHA.114.04760.
  • Lopes RA, Neves KB, Tostes RC, et al. Downregulation of nuclear factor erythroid 2-related factor and associated antioxidant genes contributes to redox-sensitive vascular dysfunction in hypertension. Hypertension. 2015; 66(6):1240–1250. doi:10.1161/HYPERTENSIONAHA.115.06163.
  • Neves KB, Rios FJ, van der Mey L, et al. VEGFR (vascular endothelial growth factor receptor) inhibition induces cardiovascular damage via redox-sensitive processes. Hypertension. 2018;71(4):638–647. doi:10.1161/HYPERTENSIONAHA.117.10490.
  • Cuevas S, Yang Y, Konkalmatt P, et al. Role of nuclear factor erythroid 2-related factor 2 in the oxidative stress-dependent hypertension associated with the depletion of DJ-1. Hypertension. 2015;65(6):1251–1257. doi:10.1161/HYPERTENSIONAHA.114.04525.
  • Shirakawa, H, Giriwono, P. E, Oguchi, K, et al. Fermented barley extract supplementation ameliorates metabolic state in stroke-prone spontaneously hypertensive rats. Biosci Biotechnol Biochem. 2015;79(11):1876–1883. doi:10.1080/09168451.2015.1052772.
  • Manzanero S, Santro T, Arumugam TV. Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int. 2013; 62(5):712–718. doi:10.1016/j.neuint.2012.11.009.
  • Taylor JM, Crack PJ. Impact of oxidative stress on neuronal survival. Clin Exp Pharmacol Physiol. 2004; 31(7):397–406. doi:10.1111/j.1440-1681.2004.04017.x.
  • de Groot H, Rauen U. Ischemia-reperfusion injury: processes in pathogenetic networks: a review. Transplant Proc. 2007; 39(2):481–484. doi:10.1016/j.transproceed.2006.12.012.
  • Marzocca C, Vannacci A, Cuzzocrea S, et al. Effects of the SOD mimetic, M40403, on prostaglandin production in an in vivo model of ischemia and reperfusion in rat heart. Inflamm Res. 2003;52 Suppl 1:S23–S4. doi:10.1007/s000110300037.
  • Cadenas E, Boveris A, Ragan CI, et al. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys. 1977; 180(2):248–257. doi:10.1016/0003-9861(77)90035-2.
  • Galang N, Sasaki H, Maulik N. Apoptotic cell death during ischemia/reperfusion and its attenuation by antioxidant therapy. Toxicology. 2000; 148(2–3):111–118. doi:10.1016/s0300-483x(00)00201-8.
  • Cominacini L, Mozzini C, Garbin U, et al. Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic Biol Med. 2015;88(Pt B):233–242. doi:10.1016/j.freeradbiomed.2015.05.027.
  • Gurusamy N, Malik G, Gorbunov NV, et al. Redox activation of ref-1 potentiates cell survival following myocardial ischemia reperfusion injury. Free Radic Biol Med. 2007;43(3):397–407. doi:10.1016/j.freeradbiomed.2007.04.025.
  • Yang J, Yin HS, Cao YJ, et al. Arctigenin attenuates ischemia/reperfusion induced ventricular arrhythmias by decreasing oxidative stress in rats. Cell Physiol Biochem. 2018;49(2):728–742. doi:10.1159/000493038.
  • Li H, Yao W, Irwin MG, et al. Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1. Free Radic Biol Med. 2015; 84:311–321. doi:10.1016/j.freeradbiomed.2015.03.007.
  • Gao X, Xu Y, Xu B, et al. Allopurinol attenuates left ventricular dysfunction in rats with early stages of streptozotocin-induced diabetes. Diabetes Metab Res Rev. 2012;28(5):409–417. doi:10.1002/dmrr.2295.
  • Tan Y, Ichikawa T, Li J, et al. Diabetic downregulation of Nrf2 activity via ERK contributes to oxidative stress-induced insulin resistance in cardiac cells in vitro and in vivo. Diabetes. 2011;60(2):625–633. doi:10.2337/db10-1164.
  • Li B, Liu S, Miao L, et al. Prevention of diabetic complications by activation of Nrf2: diabetic cardiomyopathy and nephropathy. Exp Diabetes Res. 2012;2012:216512–216517. doi:10.1155/2012/216512.
  • Hu CM, Chen YH, Chiang MT, et al. Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation. 2004; 110(3):309–316. doi:10.1161/01.CIR.0000135475.35758.23.
  • Chen XJ, Ren SM, Dong JZ, et al. Ginkgo biloba extract-761 protects myocardium by regulating akt/Nrf2 signal pathway. Drug Des Devel Ther. 2019;13:647–655. doi:10.2147/DDDT.S191537.
  • Lian Y, Xia X, Zhao H, et al. The potential of chrysophanol in protecting against high fat-induced cardiac injury through Nrf2-regulated anti-inflammation, anti-oxidant and anti-fibrosis in Nrf2 knockout mice. Biomed Pharmacother. 2017;Sep93:1175–1189. doi:10.1016/j.biopha.2017.05.148.
  • Li S, Wang W, Niu T, et al. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxid Med Cell Longev. 2014;2014:748524–748515. doi:10.1155/2014/748524.
  • Lee SJ, Lee IK, Jeon JH. Vascular calcification-new insights into its mechanism. Int J Mol Sci. 2020;21(8):2685. doi:10.3390/ijms21082685.
  • Yuan C, Ni L, Zhang C, et al. Vascular calcification: new insights into endothelial cells. Microvasc Res. 2021;134:104105. doi:10.1016/j.mvr.2020.104105.
  • Wei R, Enaka M, Muragaki Y. Activation of KEAP1/NRF2/P6 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Sci Rep. 2019; 79(1):10366. doi:10.1038/s41598-019-46824-2.
  • Ji R, Sun H, Peng J, et al. Rosmarinic acid exerts an antagonistic effect on vascular calcification by regulating the Nrf2 signalling pathway. Free Radic Res. 2019; 53(2):187–197. doi:10.1080/10715762.2018.1558447.
  • Bletsa E, Paschou SA, Tsigkou V, et al. The effect of allopurinol on cardiovascular outcomes in patients with type 2 diabetes: a systematic review. Hormones. 2022;21(4):599–610. doi:10.1007/s42000-022-00403-9.
  • Mori H, Torii S, Kutyna M, et al. Coronary artery calcification and its progression: what does it really mean? JACC Cardiovasc Imaging. 2018; 11(1):127–142. doi:10.1016/j.jcmg.2017.10.012.
  • Mitchell JD, Fergestrom N, Gage BF, et al. Impact of statins on cardiovascular outcomes following coronary artery calcium scoring. J Am Coll Cardiol. 2018; 72(25):3233–3242. doi:10.1016/j.jacc.2018.09.051.