3,042
Views
2
CrossRef citations to date
0
Altmetric
Neurology

Exploring the efficacy of virtual reality-based rehabilitation in stroke: a narrative review of current evidence

, , , , &
Article: 2285907 | Received 09 Aug 2023, Accepted 13 Nov 2023, Published online: 27 Nov 2023

References

  • Singh DK. Stroke management: an overview. IJN. 2023;8(4):1–18. doi: 10.18231/j.ijn.2022.046.
  • Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century. Stroke. 2013;44(7):2064–2089. doi: 10.1161/STR.0b013e318296aeca.
  • Donkor ES. Stroke in the 21st century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat. 2018;2018:3238165–3238110. doi: 10.1155/2018/3238165.
  • Matuja SS, Mlay G, Kalokola F, et al. Predictors of 30-day mortality among patients with stroke admitted at a tertiary teaching hospital in northwestern Tanzania: a prospective cohort study. Front Neurol. 2022;13:1100477. doi: 10.3389/fneur.2022.1100477.
  • Bamford J, Sandercock P, Dennis M, et al. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet. 1991;337(8756):1521–1526. http://www.thelancet.com/article/014067369193206O/fulltext doi: 10.1016/0140-6736(91)93206-O.
  • O’Donnell MJ, Xavier D, Liu L, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112–123. doi: 10.1016/S0140-6736(10)60834-3.
  • Lopez AD, Mathers CD, Ezzati M, et al. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367(9524):1747–1757. http://www.thelancet.com/article/S0140673606687709/fulltext doi: 10.1016/S0140-6736(06)68770-9.
  • O’Donnell MJ, Chin SL, Rangarajan S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388(10046):761–775. from http://www.thelancet.com/article/S0140673616305062/fulltext doi: 10.1016/S0140-6736(16)30506-2.
  • Herpich F, Rincon F. Management of acute ischemic stroke. Crit Care Med. 2020;48(11):1654–1663. doi: 10.1097/CCM.0000000000004597.
  • Gorelick PB, Whelton PK, Sorond F, et al. Blood pressure management in stroke. Hypertension. 2020;76(6):1688–1695. doi: 10.1161/HYPERTENSIONAHA.120.14653.
  • Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. HandbClin Neurol. 2013;110:93–103.
  • Chen X, Liu F, Yan Z, et al. Therapeutic effects of sensory input training on motor function rehabilitation after stroke. Medicine. 2018;97(48):e13387. doi: 10.1097/MD.0000000000013387.
  • Grau-Sánchez J, Segura E, Sanchez-Pinsach D, et al. Enriched music-supported therapy for chronic stroke patients: a study protocol of a randomised controlled trial. BMC Neurol. 2021;21(1):19. doi: 10.1186/s12883-020-02019-1.
  • Brauer SG, Hayward KS, Carson RG, et al. The efficacy of SMART arm training early after stroke for stroke survivors with severe upper limb disability: a protocol for a randomised controlled trial. BMC Neurol. 2013;13(1):71. https://bmcneurol.biomedcentral.com/articles/10.1186/1471-2377-13-71 doi: 10.1186/1471-2377-13-71.
  • Lawrence ES, Coshall C, Dundas R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32(6):1279–1284. doi: 10.1161/01.str.32.6.1279.
  • Rosso C, Lamy JC. Does resting motor threshold predict motor hand recovery after stroke? Front Neurol. 2018;9:1020. doi: 10.3389/fneur.2018.01020.
  • Yu Z, Prado R, Quinlan EB, et al. Understanding the impact of stroke on brain motor function: a hierarchical Bayesian approach. J Am Stat Assoc. 2016;111(514):549–563. doi: 10.1080/01621459.2015.1133425.
  • Naik SK, Patten C, Lodha N, et al. Force control deficits in chronic stroke: grip formation and release phases. Exp Brain Res. 2011;211(1):1–15. https://link.springer.com/article/10.1007/s00221-011-2637-8 doi: 10.1007/s00221-011-2637-8.
  • Belagaje SR. Stroke rehabilitation. Continuum. 2017;23(1):238–253. doi: 10.1212/CON.0000000000000423.
  • Coleman ER, Moudgal R, Lang K, et al. Early rehabilitation after stroke: a narrative review. Curr Atheroscler Rep. 2017;19(12):59. doi: 10.1007/s11883-017-0686-6.
  • Puderbaugh M, Emmady PD. 2023). Neuroplasticity. In: StatPearls. St. Petersburg (FL): StatPearls Publishing.
  • Cirstea MC, Levin MF. Compensatory strategies for reaching in stroke. Brain. 2000;123(5):940–953. doi: 10.1093/brain/123.5.940.
  • Saposnik G, Cohen LG. Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 2016;15(10):1019–1027. https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(16)30121-1/fulltext
  • Teasell R, Meyer MJ, McClure A, et al. Stroke rehabilitation: an international perspective. Top Stroke Rehabil. 2009;16(1):44–56. doi: 10.1310/tsr1601-44.
  • Huang Q, Wu W, Chen X, et al. Evaluating the effect and mechanism of upper limb motor function recovery induced by immersive virtual-reality-based rehabilitation for subacute stroke subjects: study protocol for a randomized controlled trial. Trials. 2019;20(1):104. doi: 10.1186/s13063-019-3177-y.
  • Ferrarello F, Baccini M, Rinaldi LA, et al. Efficacy of physiotherapy interventions late after stroke: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82(2):136–143. doi: 10.1136/jnnp.2009.196428.
  • Pollock A, Farmer SE, Brady MC, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014;2014(11):CD010820. 12doi: 10.1002/14651858.CD010820.pub2.
  • Bonnyaud C, Gallien P, Decavel P, et al. Effects of a 6-month self-rehabilitation programme in addition to botulinum toxin injections and conventional physiotherapy on limitations of patients with spastic hemiparesis following stroke (ADJU-TOX): protocol study for a randomised controlled, investigator blinded study. BMJ Open. 2018;8(8):e020915. Aug 1doi: 10.1136/bmjopen-2017-020915.
  • Nik Ramli NN, Asokan A, Mayakrishnan D, et al. Exploring stroke rehabilitation in Malaysia: are robots better than humans for stroke recuperation? Malays J Med Sci. 2021;28(4):14–23. doi: 10.21315/mjms2021.28.4.3.
  • Arcuri F, Porcaro C, Ciancarelli I, et al. Electrophysiological correlates of virtual-reality applications in the rehabilitation setting: new perspectives for stroke patients. Electronics. 2021;10(7):836. doi: 10.3390/electronics10070836.
  • Selzer M, Clarke S, Cohen L, et al. Textbook of neural repair and rehabilitation [Internet]. 2014 cited 2023 Aug 2]. Available from: https://books.google.com/books?hl=en&lr=&id=EjA4AwAAQBAJ&oi=fnd&pg=PR13&ots=19wpIzHPUS&sig=RTXwXC5jP_qObsefaIxOToBYqXI.
  • Rogers JM, Duckworth J, Middleton S, et al. Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: evidence from a randomized controlled pilot study. J Neuroeng Rehabil. 2019;16(1):56.
  • Sramka M, Lacko J, Ruzicky E, et al. Combined methods of rehabilitation of patients after stroke: virtual reality and traditional approach. Neuro Endocrinol Lett. 2020;41(3):123–133.
  • Proffitt R, Lange B. Considerations in the efficacy and effectiveness of virtual reality interventions for stroke rehabilitation: moving the field forward. Phys Ther. 2015; 95(3):441–448. doi: 10.2522/ptj.20130571.
  • Connelly L, Jia Y, Toro M, et al. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans Neural Syst Rehabil Eng. 2010;18(5):551–559.
  • Da M, Cameirão S, Bermúdez I, et al. Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke. PFMJ Verschure Restor Neurol Neurosci. 2011;29:287–298.
  • Cameirão MS, Badia SBI, Duarte E, et al. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 2012;43(10):2720–2728. Octdoi: 10.1161/STROKEAHA.112.653196.
  • Levin MF, Snir O, Liebermann DG, et al. Virtual reality versus conventional treatment of reaching ability in chronic stroke: clinical feasibility study. NeurolTher. 2012;1(1):1–15.
  • Skip A, Rizzo, Kim GJ. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence. 2005;14(2):119–146. https://ieeexplore.ieee.org/abstract/document/6788776/
  • Laver KE, Lange B, George S, et al. Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews. 2017;2018(1):CD008349. 20doi: 10.1002/14651858.CD008349.pub4.
  • Weiss PL, Kizony R, Feintuch U, et al. Virtual reality applications in neurorehabilitation. Textbook of neural repair and rehabilitation [Internet]. 2023. p. 198–218. [cited 2014 Jun 9]. Available from: https://www.cambridge.org/core/books/textbook-of-neural-repair-and-rehabilitation/virtual-reality-applications-in-neurorehabilitation/DFDDECA59C7113FAA09A87FA39A34E33
  • Yetisgin A. Clinical characteristics affecting motor recovery and ambulation in stroke patients. J Phys Ther Sci. 2017;29(2):216–220. doi: 10.1589/jpts.29.216.
  • Pervane Vural S, Nakipoglu Yuzer GF, Sezgin Ozcan D, et al. Effects of mirror therapy in stroke patients with complex regional pain syndrome type 1: a randomized controlled study. Arch Phys Med Rehabil. 2016;97(4):575–581. doi: 10.1016/j.apmr.2015.12.008.
  • Samuelkamaleshkumar S, Reethajanetsureka S, Pauljebaraj P, et al. Mirror therapy enhances motor performance in the paretic upper limb after stroke: a pilot randomized controlled trial. Arch Phys Med Rehabil. 2014;95(11):2000–2005. doi: 10.1016/j.apmr.2014.06.020.
  • LaPiana N, Duong A, Lee A, et al. Acceptability of a mobile phone-based augmented reality game for rehabilitation of patients with upper limb deficits from stroke: case study. JMIR Rehabil Assist Technol. 2020;7(2):e17822. doi: 10.2196/17822.
  • Høeg ER, Povlsen TM, Ram J, et al. System immersion in virtual reality-based rehabilitation of motor function in older adults: a systematic review and meta-analysis. Front Virtual Real. 2021;2:647993. doi: 10.3389/frvir.2021.647993.
  • Dong Y, Liu X, Tang M, et al. A haptic-feedback virtual reality system to improve the box and block test (BBT) for upper extremity motor function assessment. Virtual Reality. 2023;27(2):1199–1219. doi: 10.1007/s10055-022-00727-2.
  • Kleynen M, Beurskens A, Olijve H, et al. Application of motor learning in neurorehabilitation: a framework for health-care professionals. Physiother Theory Pract. 2020;36(1):1–20. doi: 10.1080/09593985.2018.1483987.
  • Mazza M, Kammler-Sücker K, Leménager T, et al. Virtual reality: a powerful technology to provide novel insight into treatment mechanisms of addiction. Transl Psychiatry. 2021;11(1):617. doi: 10.1038/s41398-021-01739-3.
  • Şahin S, Köse B, Aran OT, et al. The effects of virtual reality on motor functions and daily life activities in unilateral spastic cerebral palsy: a single-blind randomized controlled trial. Games Health J. 2020;9(1):45–52. doi: 10.1089/g4h.2019.0020.
  • Balkaya M, Cho S. Optimizing functional outcome endpoints for stroke recovery studies. J Cereb Blood Flow Metab. 2019;39(12):2323–2342. doi: 10.1177/0271678X19875212.
  • Hao J, Xie H, Harp K, et al. Effects of virtual reality intervention on neural plasticity in stroke rehabilitation: a systematic review. Arch Phys Med Rehabil. 2022;103(3):523–541. doi: 10.1016/j.apmr.2021.06.024.
  • Zhang B, Li D, Liu Y, et al. Virtual reality for limb motor function, balance, gait, cognition and daily function of stroke patients: a systematic review and meta-analysis. J Adv Nurs. 2021;77(8):3255–3273. doi: 10.1111/jan.14800.
  • Domínguez-Téllez P, Moral-Muñoz JA, Salazar A, et al. Game-based virtual reality interventions to improve upper limb motor function and quality of life after stroke: systematic review and meta-analysis. Games Health J. 2020;9(1):1–10. doi: 10.1089/g4h.2019.0043.
  • Huygelier H, Mattheus E, Abeele VV, et al. The use of the term virtual reality in post-stroke rehabilitation: a scoping review and commentary. Psychol Belg. 2021;61(1):145–162. doi: 10.5334/pb.1033.
  • Parsons TD. Ethical challenges of using virtual environments in the assessment and treatment of psychopathological disorders. J Clin Med. 2021;10(3):378. doi: 10.3390/jcm10030378.
  • Brassel S, Power E, Campbell A, et al. Recommendations for the design and implementation of virtual reality for acquired brain injury rehabilitation: systematic review. J Med Internet Res. 2021;23(7):e26344. doi: 10.2196/26344.
  • Aida J, Chau B, Dunn J. Immersive virtual reality in traumatic brain injury rehabilitation: a literature review. NeuroRehabilitation. 2018;42(4):441–448. doi: 10.3233/NRE-172361.
  • Szczepańska-Gieracha J, Cieślik B, Rutkowski S, et al. What can virtual reality offer to stroke patients? A narrative review of the literature. NeuroRehabilitation. 2020;47(2):109–120. doi: 10.3233/NRE-203209.
  • de Rooij IJM, van de Port IGL, Visser-Meily JMA, et al. Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial. Trials. 2019;20(1):89. doi: 10.1186/s13063-018-3165-7.
  • El Amki M, Baumgartner P, Bracko O, et al. Task-specific motor rehabilitation therapy after stroke improves performance in a different motor task: translational evidence. Transl Stroke Res. 2017;8(4):347–350. doi: 10.1007/s12975-016-0519-x.
  • Morrison-Smith S, Ruiz J. Challenges and barriers in virtual teams: a literature review. SN Appl Sci. 2020;2(6):1096. doi: 10.1007/s42452-020-2801-5.
  • Lokka IE, Çöltekin A, Wiener J, et al. Virtual environments as memory training devices in navigational tasks for older adults. Sci Rep. 2018;8(1):10809. doi: 10.1038/s41598-018-29029-x.
  • Kimura T, Nakano W. Repetition of a cognitive task promotes motor learning. Hum Mov Sci. 2019;66:109–116. doi: 10.1016/j.humov.2019.04.005.
  • Bui J, Luauté J, Farnè A. Enhancing upper limb rehabilitation of stroke patients with virtual reality: a mini review. Front Virtual Real. 2021;2:595771. doi: 10.3389/frvir.2021.595771.
  • Matamala-Gomez M, Slater M, Sanchez-Vives MV. Impact of virtual embodiment and exercises on functional ability and range of motion in orthopedic rehabilitation. Sci Rep. 2022;12(1):5046. doi: 10.1038/s41598-022-08917-3.
  • Khan A, Podlasek A, Somaa F. Virtual reality in post-stroke neurorehabilitation - a systematic review and meta-analysis. Top Stroke Rehabil. 2023;30(1):53–72. doi: 10.1080/10749357.2021.1990468.
  • Wang P, Wu P, Wang J, et al. A critical review of the use of virtual reality in construction engineering education and training. Int J Environ Res Public Health. 2018;15(6):1204. doi: 10.3390/ijerph15061204.
  • Fulvio JM, Rokers B. Use of cues in virtual reality depends on visual feedback. Sci Rep. 2017;7(1):16009. doi: 10.1038/s41598-017-16161-3.
  • Qian J, McDonough DJ, Gao Z. The effectiveness of virtual reality exercise on individual’s physiological, psychological and rehabilitative outcomes: a systematic review. Int J Environ Res Public Health. 2020;17(11):4133. doi: 10.3390/ijerph17114133.
  • Verrienti G, Raccagni C, Lombardozzi G, et al. Motivation as a measurable outcome in stroke rehabilitation: a systematic review of the literature. Int J Environ Res Public Health. 2023;20(5):4187. doi: 10.3390/ijerph20054187.
  • Fregna G, Schincaglia N, Baroni A, et al. A novel immersive virtual reality environment for the motor rehabilitation of stroke patients: a feasibility study. Front Robot AI. 2022;9:906424. doi: 10.3389/frobt.2022.906424.
  • Laver KE, Lange B, George S, et al. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11(11):CD008349. doi: 10.1002/14651858.CD008349.pub4.
  • Gustavsson M, Kjörk EK, Erhardsson M, et al. Virtual reality gaming in rehabilitation after stroke - user experiences and perceptions. Disabil Rehabil. 2022;44(22):6759–6765. doi: 10.1080/09638288.2021.1972351.
  • Rose T, Nam CS, Chen KB. Immersion of virtual reality for rehabilitation - review. Appl Ergon. 2018;69:153–161. doi: 10.1016/j.apergo.2018.01.009.
  • Norlander A, Iwarsson S, Jönsson AC, et al. Participation in social and leisure activities while re-constructing the self: understanding strategies used by stroke survivors from a long-term perspective. Disabil Rehabil. 2022;44(16):4284–4292. doi: 10.1080/09638288.2021.1900418.
  • Erhardsson M, Alt Murphy M, Sunnerhagen KS. Commercial head-mounted display virtual reality for upper extremity rehabilitation in chronic stroke: a single-case design study. J Neuroeng Rehabil. 2020;17(1):154. doi: 10.1186/s12984-020-00788-x.
  • Anwar N, Karimi H, Ahmad A, et al. A novel virtual reality training strategy for poststroke patients: a randomized clinical trial. J Healthc Eng. 2021;2021:6598726–6598726. doi: 10.1155/2021/6598726.
  • Abd El-Kafy EM, Alshehri MA, El-Fiky AA, et al. The effect of robot-mediated virtual reality gaming on upper limb spasticity poststroke: a randomized-controlled trial. Games Health J. 2022;11(2):93–103. doi: 10.1089/g4h.2021.0197.
  • Lee HS, Lim JH, Jeon BH, et al. Non-immersive virtual reality rehabilitation applied to a task-oriented approach for stroke patients: a randomized controlled trial. Restor Neurol Neurosci. 2020;38(2):165–172. doi: 10.3233/RNN-190975.
  • Long Y, Ouyang R, Zhang J. Effects of virtual reality training on occupational performance and self-efficacy of patients with stroke: a randomized controlled trial. J NeuroEngineeringRehabil. 2020;17:150. doi: 10.1186/s12984-020-00783-2.
  • Ögün MN, Kurul R, Yaşar MF, et al. Effect of leap motion-based 3D immersive virtual reality usage on upper extremity function in ischemic stroke patients. Arq Neuropsiquiatr. 2019;77(10):681–688. doi: 10.1590/0004-282X20190129.
  • Lee SH, Lee JY, Kim MY, et al. Virtual reality rehabilitation with functional electrical stimulation improves upper extremity function in patients with chronic stroke: a pilot randomized controlled study. Arch Phys Med Rehabil. 2018;99(8):1447–1453.e1. doi: 10.1016/j.apmr.2018.01.030.
  • Errante A, Saviola D, Cantoni M, et al. Effectiveness of action observation therapy based on virtual reality technology in the motor rehabilitation of paretic stroke patients: a randomized clinical trial. BMC Neurol. 2022;22(1):109. doi: 10.1186/s12883-022-02640-2.
  • Peláez-Vélez FJ, Eckert M, Gacto-Sánchez M, et al. Use of virtual reality and videogames in the physiotherapy treatment of stroke patients: a pilot randomized controlled trial. Int J Environ Res Public Health. 2023;20(6):4747. doi: 10.3390/ijerph20064747.
  • Yang ZQ, Du D, Wei XY, et al. Augmented reality for stroke rehabilitation during COVID-19. J NeuroEngineeringRehabil. 2022;19:136. doi: 10.1186/s12984-022-01100-9.
  • Kostenko EV, Petrova LV, Martynov MY, et al. Effektivnost’ reabilitatsii s virtual’noireal’nost’yuibiologicheskoiobratnoisvyaz’yu v vosstanovleniifunktsiikistiposleinsul’ta [Effectiveness of rehabilitation with virtual reality and biofeedback in recovery of hand function after stroke]. Zh Nevrol Psikhiatr Im S S Korsakova. 2023;123(3. Vyp. 2):68–75. doi: 10.17116/jnevro202312303268.
  • Akıncı M, Burak M, Yaşar E, et al. The effects of robot-assisted gait training and virtual reality on balance and gait in stroke survivors: a randomized controlled trial. Gait Posture. 2023;103:215–222. doi: 10.1016/j.gaitpost.2023.05.013.
  • Kuo FL, Lee HC, Kuo TY, et al. Effects of a wearable sensor-based virtual reality game on upper-extremity function in patients with stroke. Clin Biomech. 2023;104:105944. doi: 10.1016/j.clinbiomech.2023.105944.
  • Huang CY, Chiang WC, Yeh YC, et al. Effects of virtual reality-based motor control training on inflammation, oxidative stress, neuroplasticity and upper limb motor function in patients with chronic stroke: a randomized controlled trial. BMC Neurol. 2022;22(1):21. doi: 10.1186/s12883-021-02547-4.
  • Choi H, Paik J. Mobile game-based virtual reality program for upper extremity stroke rehabilitation. J Vis Exp. 2018;133:56241. doi: 10.3791/56241.
  • Kiper P, Szczudlik A, Agostini M, et al. Virtual reality for upper limb rehabilitation in subacute and chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2018;99(5):834–842.e4. doi: 10.1016/j.apmr.2018.01.023.
  • Gueye T, Dedkova M, Rogalewicz V, et al. Early post-stroke rehabilitation for upper limb motor function using virtual reality and exoskeleton: equally efficient in older patients. Neurol Neurochir Pol. 2021;55(1):91–96. doi: 10.5603/PJNNS.a2020.0096.
  • Ikbali Afsar S, Mirzayev I, Umit Yemisci O, et al. Virtual reality in upper extremity rehabilitation of stroke patients: a randomized controlled trial. J Stroke Cerebrovasc Dis. 2018;27(12):3473–3478. doi: 10.1016/j.jstrokecerebrovasdis.2018.08.007.
  • Norouzi-Gheidari N, Hernandez A, Archambault PS, et al. Feasibility, safety and efficacy of a virtual reality exergame system to supplement upper extremity rehabilitation post-stroke: a pilot randomized clinical trial and proof of principle. Int J Environ Res Public Health. 2019;17(1):113. doi: 10.3390/ijerph17010113.
  • de Rooij IJM, van de Port IGL, Punt M, et al. Effect of virtual reality gait training on participation in survivors of subacute stroke: a randomized controlled trial. Phys Ther. 2021;101(5):pzab051. doi: 10.1093/ptj/pzab051.
  • Ding WL, Zheng YZ, Su YP, et al. Kinect-based virtual rehabilitation and evaluation system for upper limb disorders: a case study. J Back Musculoskelet Rehabil. 2018;31(4):611–621. doi: 10.3233/BMR-140203.
  • Kayabinar B, Alemdaroğlu-Gürbüz İ, Yilmaz Ö. The effects of virtual reality augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: a randomized controlled single-blind trial. Eur J Phys Rehabil Med. 2021;57(2):227–237. doi: 10.23736/S1973-9087.21.06441-8.
  • San Martín Valenzuela C, Moscardó LD, López-Pascual J, et al. Effects of dual-task group training on gait, cognitive executive function, and quality of life in people with Parkinson disease: results of randomized controlled DUALGAIT trial. Arch Phys Med Rehabil. 2020;101(11):1849–1856.e1. doi: 10.1016/j.apmr.2020.07.008.
  • Schuster-Amft C, Eng K, Suica Z, et al. Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: a multicenter parallel group randomized trial. PLoS One. 2018;13(10):e0204455. doi: 10.1371/journal.pone.0204455.
  • Xiong J, Hsiang EL, He Z, et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light SciAppl. 2021;10:216. doi: 10.1038/s41377-021-00658-8.
  • Forgea MC, Lyons AG, Lorenz RA. Barriers and facilitators to engagement in rehabilitation among stroke survivors: an integrative review. Rehabil Nurs. 2021;46(6):340–347. doi: 10.1097/RNJ.0000000000000340.
  • Hamad A, Jia B. How virtual reality technology has changed our lives: an overview of the current and potential applications and limitations. Int J Environ Res Public Health. 2022;19(18):11278. doi: 10.3390/ijerph191811278.
  • Trombetta M, Bazzanello Henrique PP, Brum MR, et al. Motion rehab AVE 3D: a VR-based exergame for post-stroke rehabilitation. Comput Methods Programs Biomed. 2017;151:15–20. doi: 10.1016/j.cmpb.2017.08.008.S0169-2607(17)30113-X.
  • Langhorne P, Wagenaar R, Partridge C. Physiotherapy after stroke: more is better? Physiother Res Int. 1996;1(2):75–88. doi: 10.1002/pri.6120010204.
  • Hacmun I, Regev D, Salomon R. The principles of art therapy in virtual reality. Front Psychol. 2018;9:2082. doi: 10.3389/fpsyg.2018.02082.
  • Eisapour M, Cao S, Boger J. Participatory design and evaluation of virtual reality games to promote engagement in physical activity for people living with dementia. J Rehabil Assist Technol Eng. 2020;7:2055668320913770. doi: 10.1177/2055668320913770.
  • Agbangla NF, Séba MP, Bunlon F. SnacktivityTM, giant games and immersive virtual reality exercises: a rapid narrative review of these new physical activity practices among older people living in nursing homes and long-term care facilities. Healthcare. 2022;10(10):1897. doi: 10.3390/healthcare10101897.
  • Muñoz J, Mehrabi S, Li Y, et al. Immersive virtual reality exergames for persons living with dementia: user-Centered design study as a multistakeholder team during the COVID-19 pandemic. JMIR Serious Games. 2022;10(1):e29987. doi: 10.2196/29987.
  • Al-Jundi HA, Tanbour EY. A framework for fidelity evaluation of immersive virtual reality systems. Virtual Reality. 2022;26(3):1103–1122. doi: 10.1007/s10055-021-00618-y.
  • Charles D, Holmes D, Charles T, et al. 2020). Virtual reality design for stroke rehabilitation. In: Rea P, editor. Biomedical visualisation. Advances in experimental medicine and biology. Vol. 1235. Cham: Springer. doi: 10.1007/978-3-030-37639-0_4.
  • Thielbar K, Spencer N, Tsoupikova D, et al. Utilizing multi-user virtual reality to bring clinical therapy into stroke survivors’ homes. J Hand Ther. 2020;33(2):246–253. doi: 10.1016/j.jht.2020.01.006.
  • Triandafilou KM, Tsoupikova D, Barry AJ, et al. Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke. J Neuroeng Rehabil. 2018;15(1):88. doi: 10.1186/s12984-018-0429-0.
  • Baniasadi T, Ayyoubzadeh SM, Mohammadzadeh N. Challenges and practical considerations in applying virtual reality in medical education and treatment. Oman Med J. 2020;35(3):e125–e125. doi: 10.5001/omj.2020.43.
  • Rutkowski S, Kiper P, Cacciante L, et al. Use of virtual reality-based training in different fields of rehabilitation: a systematic review and meta-analysis. J Rehabil Med. 2020;52(11):jrm00121. doi: 10.2340/16501977-2755.
  • Iachini T, Maffei L, Masullo M, et al. The experience of virtual reality: are individual differences in mental imagery associated with sense of presence? Cogn Process. 2019;20(3):291–298. doi: 10.1007/s10339-018-0897-y.
  • Islam MK, Brunner I. Cost-analysis of virtual reality training based on the virtual reality for upper extremity in subacute stroke (VIRTUES) trial. Int J Technol Assess Health Care. 2019;35(5):373–378. doi: 10.1017/S026646231900059X.