874
Views
0
CrossRef citations to date
0
Altmetric
Pharmacology

Network pharmacology combined with molecular docking and experimental validation to explore the potential mechanism of Cinnamomi ramulus against ankylosing spondylitis

ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all
Article: 2287193 | Received 05 Sep 2023, Accepted 20 Nov 2023, Published online: 29 Nov 2023

References

  • Mauro D, Thomas R, Guggino G, et al. Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol. 2021;17(7):1–14. doi: 10.1038/s41584-021-00625-y.
  • Taurog JD, Chhabra A, Colbert RA. Ankylosing spondylitis and axial spondyloarthritis. The New England J Med. 2016;374(26):2563–2574. doi: 10.1056/NEJMra1406182.
  • Danve A, Deodhar A. Treatment of axial spondyloarthritis: an update. Nat Rev Rheumatol. 2022;18(4):205–216. doi: 10.1038/s41584-022-00761-z.
  • Ortolan A, Webers C, Sepriano A, et al. Efficacy and safety of non-pharmacological and non-biological interventions: a systematic literature review informing the 2022 update of the ASAS/EULAR recommendations for the management of axial spondyloarthritis. Ann Rheum Dis. 2023;82(1):142–152. doi: 10.1136/ard-2022-223297.
  • Liu J, Zhang Q, Li RL, et al. The traditional uses, phytochemistry, pharmacology and toxicology of cinnamomi ramulus: a review. J Pharm Pharmacol. 2020;72(3):319–342. doi: 10.1111/jphp.13189.
  • Wu Lizheng CK, Jingyan XIN, Zhenliang WANG. Wang Zhen-liang’s experience of treating ankylosing spondylitis. Henan Tradit Chin Med. 2019;39(3):350–353. doi: 10.16367/j.issn.1003-5028.2019.03.0087.
  • Hou Kun ZQ, Peipei SHAO, Shi Y, et al. Effect of Yishen Tongdu mixture combined with Du meridian moxibustion on curative effect, lumbar function and immune function of patients with ankylosing spondylitis. Liaoning JTradit Chin Med. 2022;49(1):146–149. doi: 10.13192/j.issn.1000-1719.2022.01.042.
  • Noor F, Tahir Ul Qamar M, Ashfaq UA, et al. Network pharmacology approach for medicinal plants: review and assessment. Pharmaceuticals. 2022;15(5):572. doi: 10.3390/ph15050572.
  • Ma X, Zhang X, Kong Y, et al. Therapeutic effects of panax notoginseng saponins in rheumatoid arthritis: network pharmacology and experimental validation. Bioengineered. 2022;13(6):14438–14449. doi: 10.1080/21655979.2022.2086379.
  • Roskoski R.Jr. Rule of five violations among the FDA-approved small molecule protein kinase inhibitors. Pharmacol Res. 2023;191:106774. doi: 10.1016/j.phrs.2023.106774.
  • Xu HY, Zhang YQ, Liu ZM, et al. ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Res. 2019;47(D1):D976–d82. doi: 10.1093/nar/gky987.
  • Ji KY, Liu C, Liu ZQ, et al. Comprehensive assessment of nine target prediction web services: which should we choose for target fishing? Briefings Bioinf. 2023;24(2):bbad014. doi: 10.1093/bib/bbad014.
  • Huang X, Rehman HM, Szöllősi AG, et al. Network pharmacology-based approach combined with bioinformatic analytics to elucidate the potential of curcumol against hepatocellular carcinoma. Genes. 2022;13(4):653. doi: 10.3390/genes13040653.
  • Tarek A, Mohamed HT, El-Sharkawy AA, et al. Differential gene expression of fresh tissue and patient-derived explants’ matricellular proteins augment inflammatory breast cancer metastasis: the possible role of IL-6 and MCP-1. QJM: mon J Assoc Physicians. 2023;116(5):345–354. doi: 10.1093/qjmed/hcac284.
  • Di H, Liu H, Xu S, et al. Network pharmacology and experimental validation to explore the molecular mechanisms of compound Huangbai liquid for the treatment of acne. Drug Design, Development and Therapy. 2023;17:39–53. doi: 10.2147/dddt.S385208.
  • Eberhardt J, Santos-Martins D, Tillack AF, et al. AutoDock vina 1.2.0: new docking methods, expanded force field, and python bindings. J Chem Inf Model. 2021;61(8):3891–3898. doi: 10.1021/acs.jcim.1c00203.
  • O’Boyle NM, Banck M, James CA, et al. Open babel: an open chemical toolbox. J Cheminf. 2011;3:33. doi: 10.1186/1758-2946-3-33.
  • Adasme MF, Linnemann KL, Bolz SN, et al. PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021;49(W1):W530–w4. doi: 10.1093/nar/gkab294.
  • Zhou C, Liang T, Jiang J, et al. Immune cell infiltration-related clinical diagnostic model for ankylosing spondylitis. Front Genet. 2022;13:949882. doi: 10.3389/fgene.2022.949882.
  • Simon LS. Role and regulation of cyclooxygenase-2 during inflammation. Am J Med. 1999;106(5b):37s–42s. doi: 10.1016/s0002-9343(99)00115-1.
  • Jafarnezhad-Ansariha F, Yekaninejad MS, Jamshidi AR, et al. The effects of β-D-mannuronic acid (M2000), as a novel NSAID, on COX1 and COX2 activities and gene expression in ankylosing spondylitis patients and the murine monocyte/macrophage, J774 cell line. Inflammo­pharmacology. 2018;26(2):375–384. doi: 10.1007/s10787-017-0386-4.
  • An Y, Yao J, Niu X. The signaling pathway of PGE(2) and its regulatory role in T cell differentiation. Mediators Inflamm. 2021;2021:9087816–9087817. doi: 10.1155/2021/9087816.
  • Kroon FP, van der Burg LR, Ramiro S, et al. Non-steroidal anti-inflammatory drugs (NSAIDs) for axial spondyloarthritis (ankylosing spondylitis and non-radiographic axial spondyloarthritis). Cochrane Database Syst Rev. 2015;2015(7):Cd010952. doi: 10.1002/14651858.CD010952.pub2.
  • Van den Steen PE, Dubois B, Nelissen I, et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 2002;37(6):375–536. doi: 10.1080/10409230290771546.
  • Mattey DL, Packham JC, Nixon NB, et al. Association of cytokine and matrix metalloproteinase profiles with disease activity and function in ankylosing spondylitis. Arthritis Res Ther. 2012;14(3):R127. doi: 10.1186/ar3857.
  • Qin H, Wu T, Liu J, et al. MALT-1 inhibition attenuates the inflammatory response of ankylosing spondylitis by targeting NF-κB activation. Injury. 2021;52(6):1287–1293. doi: 10.1016/j.injury.2021.03.053.
  • Yu W, Chen K, Ye G, et al. SNP-adjacent super enhancer network mediates enhanced osteogenic differentiation of MSCs in ankylosing spondylitis. Hum Mol Genet. 2021;30(3-4):277–293. doi: 10.1093/hmg/ddaa272.
  • Gupta L, Bhattacharya S, Aggarwal A. Tenascin-C, a biomarker of disease activity in early ankylosing spondylitis. Clin Rheumatol. 2018;37(5):1401–1405. doi: 10.1007/s10067-017-3938-5.
  • Herzmann N, Salamon A, Fiedler T, et al. Lipopolysaccharide induces proliferation and osteogenic differentiation of adipose-derived mesenchymal stromal cells in vitro via TLR4 activation. Exp Cell Res. 2017;350(1):115–122. doi: 10.1016/j.yexcr.2016.11.012.
  • Chen P, Zhou J, Ruan A, et al. Cinnamic aldehyde, the main monomer component of cinnamon, exhibits anti-inflammatory property in OA synovial fibroblasts via TLR4/MyD88 pathway. J Cell Mol Med. 2022;26(3):913–924. doi: 10.1111/jcmm.17148.
  • Almoiliqy M, Wen J, Qaed E, et al. Protective effects of cinnamaldehyde against mesenteric ischemia-reperfusion-induced lung and liver injuries in rats. Oxid Med Cell Longevity. 2020;2020:4196548. doi: 10.1155/2020/4196548.
  • Golshahi H, Araghi A, Baghban F, et al. Protective effects of 2-methoxycinnamaldehyde an active ingredients of cinnamomum cassia on warm hepatic ischemia reperfusion injury in rat model. Iran J Basic Med Sci. 2019;22(12):1400–1407. doi: 10.22038/ijbms.2019.13987.
  • Jin YH, Kim SA. 2-Methoxycinnamaldehyde inhibits the TNF-α-induced proliferation and migration of human aortic smooth muscle cells. Int J Mol Med. 2017;39(1):191–198. doi: 10.3892/ijmm.2016.2818.
  • Diao M, Peng J, Wang D, et al. Peripheral vitamin D levels in ankylosing spondylitis: a systematic review and meta-analysis. Front Med. 2022;9:972586. doi: 10.3389/fmed.2022.972586.
  • Zhang GN, Xu YJ, Jin L. Peptidomics analysis of plasma in patients with ankylosing spondylitis. Front Immunol. 2023;14:1104351. doi: 10.3389/fimmu.2023.1104351.
  • Kiranatlioglu-Firat F, Demir H, Cuce I, et al. Increased oxidative and chromosomal DNA damage in patients with ankylosing spondylitis: its role in pathogenesis. Clin Exp Med. 2022;23(5):1721–1728. doi: 10.1007/s10238-022-00957-3.;
  • Xu H, Yu H, Liu L, et al. Integrative single-cell RNA-seq and ATAC-seq analysis of peripheral mononuclear cells in patients with ankylosing spondylitis. Front Immunol. 2021;12:760381. doi: 10.3389/fimmu.2021.760381.
  • Wendling D, Cedoz JP, Racadot E, et al. Serum IL-17, BMP-7, and bone turnover markers in patients with ankylosing spondylitis. Jt Bone Spine. 2007;74(3):304–305. doi: 10.1016/j.jbspin.2006.11.005.
  • Pinto LG, Cunha TM, Vieira SM, et al. IL-17 mediates articular hypernociception in antigen-induced arthritis in mice. Pain. 2010;148(2):247–256. doi: 10.1016/j.pain.2009.11.006.
  • Wendling D, Verhoeven F, Prati C. Anti-IL-17 monoclonal antibodies for the treatment of ankylosing spondylitis. Expert Opin Biol Ther. 2019;19(1):55–64. doi: 10.1080/14712598.2019.1554053.
  • Roozbehkia M, Mahmoudi M, Aletaha S, et al. The potent suppressive effect of β-d-mannuronic acid (M2000) on molecular expression of the TLR/NF-kB signaling pathway in ankylosing spondylitis patients. Int Immunopharmacol. 2017;52:191–196. doi: 10.1016/j.intimp.2017.08.018.
  • Lata M, Hettinghouse AS, Liu CJ. Targeting tumor necrosis factor receptors in ankylosing spondylitis. AnnN Y Acad Sci. 2019;1442(1):5–16. doi: 10.1111/nyas.13933.
  • Hess K, Ushmorov A, Fiedler J, et al. TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone. 2009;45(2):367–376. doi: 10.1016/j.bone.2009.04.252.
  • Leone GM, Mangano K, Petralia MC, et al. Past, present and (foreseeable) future of biological anti-TNF alpha therapy. J Clin Med. 2023;12(4):1630. doi: 10.3390/jcm12041630.
  • Zhang J, Xu R, Wu L, et al. Expression and function of toll‑like receptors in peripheral blood mononuclear cells in patients with ankylosing spondylitis. Mol Med Rep. 2019;20(4):3565–3572. doi: 10.3892/mmr.2019.10631.