5,496
Views
0
CrossRef citations to date
0
Altmetric
Infectious Diseases

Brucellosis: epidemiology, pathogenesis, diagnosis and treatment–a comprehensive review

ORCID Icon, , , , , , , , , & ORCID Icon show all
Article: 2295398 | Received 19 Oct 2023, Accepted 12 Dec 2023, Published online: 02 Jan 2024

References

  • Pappas G, Papadimitriou P, Akritidis N, et al. The new global map of human brucellosis. Lancet Infect Dis. 2006;6(2):1–24. doi: 10.1016/S1473-3099(06)70382-6.
  • Atluri VL, Xavier MN, De Jong MF, et al. Interactions of the human pathogenic Brucella species with their hosts. Annu Rev Microbiol. 2011;65(1):523–541. doi: 10.1146/annurev-micro-090110-102905.
  • Franco MP, Mulder M, Gilman RH, et al. Human brucellosis. Lancet Infect Dis. 2007;7(12):775–786. doi: 10.1016/S1473-3099(07)70286-4.
  • Ariza J, Bosilkovski M, Cascio A, et al. Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Med. 2007;4(12):e317. doi: 10.1371/journal.pmed.0040317.
  • Schurig GG, Sriranganathan N, Corbel MJ. Brucellosis vaccines: past, present and future. Vet Microbiol. 2002;90(1–4):479–496. doi: 10.1016/S0378-1135(02)00255-9.
  • Goonaratna C. Brucellosis in humans and animals. Ceylon Med J. 2009;52(2):66. doi: 10.4038/cmj.v52i2.1028.
  • Bennett NJ. Brucellosis. Medscape; 2023. Available from: https://emedicine.medscape.com/article/213430-overview?form=fpf
  • Brucellosis; 2023 [cited 2023 Dec 8]. Available from: https://www.who.int/news-room/fact-sheets/detail/brucellosis
  • Centers for Disease Control and Prevention. Estimates human Brucella infections could be four times higher than previously thought. Food Safety; 2023. Available from: https://www.food-safety.com/articles/8817-cdc-estimates-human-brucella-infections-could-be-four-times-higher-than-previously-thought.
  • Laine CG, Johnson VE, Scott HM, et al. Global estimate of human brucellosis incidence. Emerg Infect Dis. 2023;29(9):1789–1797. doi: 10.3201/eid2909.230052.
  • Khurana SK, Sehrawat A, Tiwari R, et al. Bovine brucellosis–a comprehensive review. Vet Q. 2021;41(1):61–88. doi: 10.1080/01652176.2020.1868616.
  • Pal M, Gizaw F, Fekadu G, et al. Public health and economic importance of bovine brucellosis: an overview. Am J Epid Inf Dis. 2017;5(2):27–34. doi: 10.12691/ajeid-5-2-2.
  • Bano Y, Ahmad Lone S. Brucellosis: an economically important infection. J Med Microb Diagn. 2015;4(4):208. doi: 10.4172/2161-0703.1000208.
  • Fritz CL, Nguyen A, Vugia DJ. Epidemiology of brucellosis in California, 1993–2017: a continuing foodborne disease risk for older Latinos. Clin Infect Dis. 2021;73(11):2023–2030. doi: 10.1093/cid/ciab551.
  • Uzunović S, Skomorac M, Bašić F, et al. Human brucellosis as an epidemic zoonosis in Zenica-Doboj canton (Bosnia and Herzegovina) during 2008–2018. Open Infect Dis J. 2020;12(1):1–6. doi: 10.2174/1874279302012010001.
  • Djokic V, Freddi L, de Massis F, et al. The emergence of Brucella canis as a public health threat in Europe: what we know and what we need to learn. Emerg Microb Infect. 2023;12(2):2249126. doi: 10.1080/22221751.2023.2249126.
  • Ali S, Nawaz Z, Akhtar A, et al. Epidemiological investigation of human brucellosis in Pakistan. Jundishapur J Microbiol. 2018;11(7):e61764. doi: 10.5812/jjm.61764.
  • Kalin R, Karahan M, Acik MN, et al. Mastitisli inek sütlerinde önemli patojenlerin direkt tespiti için bir multipleks PCR yönteminin geliştirilmesi. Kafkas Univ Vet Fak Derg. 2017;23(6):925–931. doi: 10.9775/kvfd.2017.17995.
  • Yumuk Z, O’Callaghan D. Brucellosis in Turkey—an overview. Int J Infect Dis. 2012;16(4):e228–e235. doi: 10.1016/j.ijid.2011.12.011.
  • Alavi SM, Motlagh ME. A review of epidemiology, diagnosis and management of brucellosis for general physicians working in the Iranian Health Network. Jundishapur J Microbiol. 2012;5(2):384–387. doi: 10.5812/jjm.3248.
  • Bagheri H, Tapak L, Karami M, et al. Epidemiological features of human brucellosis in Iran (2011–2018) and prediction of brucellosis with data-mining models. J Res Health Sci. 2019;19(4):e00462. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183567/
  • Etemadi A, Moniri R, Saffari M, et al. Epidemiological, molecular characterization and risk factors of human brucellosis in Iran. Asian Pac J Trop Med. 2020;13(4):169. doi: 10.4103/1995-7645.280224.
  • Nematollahi S, Ayubi E, Karami M, et al. Epidemiological characteristics of human brucellosis in Hamadan province during 2009–2015: results from the national notifiable diseases surveillance system. Int J Infect Dis. 2017;61:56–61. doi: 10.1016/j.ijid.2017.06.002.
  • Norouzinezhad F, Erfani H, Norouzinejad A, et al. Epidemiological characteristics and trend in the incidence of human brucellosis in Iran from 2009 to 2017. J Res Health Sci. 2021;21(4):e00535. doi: 10.34172/jrhs.2021.70.
  • Al-Amr M, Abasi L, Khasawneh R, et al. Epidemiology of human brucellosis in military hospitals in Jordan: a five-year study. J Infect Dev Ctries. 2022;16(12):1870–1876. doi: 10.3855/jidc.16861.
  • Holt HR, Bedi JS, Kaur P, et al. Epidemiology of brucellosis in cattle and dairy farmers of rural Ludhiana, Punjab. PLoS Negl Trop Dis. 2021;15(3):e0009102. doi: 10.1371/journal.pntd.0009102.
  • Nawaz Z, Shafique M, Zahoor MA, et al. Sero-epidemiology and risk factor analysis of human brucellosis in Punjab, Pakistan: a cross sectional study. Trop Biomed. 2021;38(3):413–419. doi: 10.47665/tb.38.3.084.
  • Shi Y, Gao H, Pappas G, et al. Clinical features of 2041 human brucellosis cases in China. PLOS One. 2018;13(11):e0205500. doi: 10.1371/journal.pone.0205500.
  • Tao Z, Chen Q, Chen Y, et al. Epidemiological characteristics of human brucellosis—China. China CDC Wkly. 2021;3(6):114–119. doi: 10.46234/ccdcw2021.030.
  • Liu Z G, Wang M, Ta N, et al. Seroprevalence of human brucellosis and molecular characteristics of Brucella strains in Inner Mongolia autonomous region of China, from 2012 to 2016. Emerg Microbes Infect. 2020;9(1):263–274. doi: 10.1080/22221751.2020.1720528.
  • Djangwani J, Ooko Abong’ G, Gicuku Njue L, et al. Brucellosis: prevalence with reference to East African community countries–a rapid review. Vet Med Sci. 2021;7(3):851–867. doi: 10.1002/vms3.425.
  • Vigeant P, Mendelson J, Miller MA. Human to human transmission of Brucella melitensis. Can J Infect Dis. 1995;6(3):153–155. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3327908/ doi: 10.1155/1995/909404.
  • Shakir R. Brucellosis. J Neurol Sci. 2021;420:117280. doi: 10.1016/j.jns.2020.117280.
  • Delam H, Keshtkaran Z, Rezaei B, et al. Changing patterns in epidemiology of brucellosis in the South of Iran (2015–2020): based on Cochran–Armitage trend test. Ann Glob Health. 2022;88(1):11. doi: 10.5334/aogh.3474.
  • Centers for Disease Control and Prevention. Treatment. Brucellosis. CDC; 2012. Available from: https://www.cdc.gov/brucellosis/treatment/index.html
  • De Figueiredo P, Ficht TA, Rice-Ficht A, et al. Pathogenesis and immunobiology of brucellosis: review of Brucella–host interactions. Am J Pathol. 2015;185(6):1505–1517. doi: 10.1016/j.ajpath.2015.03.003.
  • Barbuddhe SB, Vergis J, Rawool DB. Immunodetection of bacteria causing brucellosis. In: Gurtler V, Patrauchan M, editors. Methods in microbiology. Vol. 47. Academic Press; 2020. p. 75–115. doi: 10.1016/bs.mim.2019.11.003.
  • Matle I, Ledwaba B, Madiba K, et al. Characterisation of Brucella species and biovars in South Africa between 2008 and 2018 using laboratory diagnostic data. Vet Med Sci. 2021;7(4):1245–1253. doi: 10.1002/vms3.483.
  • Byndloss MX, Tsolis RM. Brucella spp. virulence factors and immunity. Annu Rev Anim Biosci. 2016;4(1):111–127. doi: 10.1146/annurev-animal-021815-111326.
  • Elrashedy A, Gaafar M, Mousa W, et al. Immune response and recent advances in diagnosis and control of brucellosis. Ger J Vet Res. 2022;2(1):10–24. doi: 10.51585/gjvr.2022.1.0033.
  • Głowacka P, Żakowska D, Naylor K, et al. Brucella–virulence factors, pathogenesis and treatment. Pol J Microbiol. 2018;67(2):151–161. doi: 10.21307/pjm-2018-029.
  • Wareth G, Melzer F, Neubauer H. In Brucella: selective pressure may turn some genes on instead of default off position. Med Hypotheses. 2017;103:29–31. doi: 10.1016/j.mehy.2017.04.006.
  • Ulu Kilic A, Metan G, Alp E. Clinical presentations and diagnosis of brucellosis. Recent Pat Antiinfect Drug Discov. 2013;8(1):34–41. doi: 10.2174/1574891X11308010007.
  • Centers for Disease Control and Prevention (CDC). Brucellosis reference guide: exposures, testing, and prevention. Atlanta (GA): The Center for Food Security and Public Health; 2018. p. 1–40.
  • Young EJ. An overview of human brucellosis. Clin Infect Dis. 1995;21(2):283–289; quiz 290. doi: 10.1093/clinids/21.2.283.
  • Rubach MP, Halliday JEB, Cleaveland S, et al. Brucellosis in low-income and middle-income countries. Curr Opin Infect Dis. 2013;26(5):404–412. doi: 10.1097/QCO.0b013e3283638104.
  • Heavey E. Brucellosis: a global concern. Nursing. 2019;49(5):14–16. doi: 10.1097/01.NURSE.0000554623.05347.a0.
  • Çavuş B, Çaydaşı Ö, Aktan A, et al. Brucellosis as the cause of non-viral bacterial hepatitis: a case report. Open Access Maced J Med Sci. 2018;6(7):1260–1262. doi: 10.3889/oamjms.2018.198.
  • Güçlü M, Yakar T, Habeoğlu MA. Spontaneous bacterial peritonitis and chylothorax related to Brucella infection in a cirrhotic patient. Electron J Gen Med. 2007;4(4):201–204. doi: 10.29333/ejgm/82530.
  • Makaritsis KP, Liaskos C, Papadamou G, et al. Spontaneous bacterial peritonitis: an unusual manifestation of brucellosis in a previous healthy male patient. BMJ Case Rep. 2015;2015(1):bcr2015209387. doi: 10.1136/bcr-2015-209387.
  • Qiu Z, Yang F, Zhang S. Immune thrombocytopenic purpura and its rare association with a Brucella infection: a case report. Cureus. 2022;14(10):e30049. doi: 10.7759/cureus.30049.
  • Yamashita H, Takahashi Y, Kaneko H, et al. Thrombotic thrombocytopenic purpura with an autoantibody to ADAMTS13 complicating Sjögren’s syndrome: two cases and a literature review. Mod Rheumatol. 2013;23(2):365–373. doi: 10.3109/s10165-012-0644-7.
  • Lambourne JR, Brooks T. Brucella and Coxiella; if you don’t look, you don’t find. Clin Med. 2015;15(2):212. doi: 10.7861/clinmedicine.15-2-212.
  • Li Q, Liu J, Jiang W, et al. A case of brucellosis-induced Guillain–Barre syndrome. BMC Infect Dis. 2022;22(1):72. doi: 10.1186/s12879-021-07025-3.
  • Essrani R, Shnitser A. Brucella melitensis-induced transaminitis. Cureus. 2021;13(3):e13656. doi: 10.7759/cureus.13656.
  • Young EJ. Clinical manifestations of human brucellosis. In: Young EJ and Corbel MJ, editors. Brucellosis: clinical and laboratory aspects. CRC Press; 2020. p. 97–126. doi: 10.1201/9781003068518-10.
  • Kaya F, Kocyigit A, Kaya C, et al. Brucellar testicular abscess presenting as a testicular mass: can color Doppler sonography be used in differentiation? Turk J Emerg Med. 2015;15(1):43–46. doi: 10.5505/1304.7361.2014.82698.
  • Raju IT, Solanki R, Patnaik AN, et al. Brucella endocarditis—a series of five case reports. Indian Heart J. 2013;65(1):72–77. doi: 10.1016/j.ihj.2012.12.017.
  • Bazzazi N, Yavarikia A, Keramat F. Ocular involvement of brucellosis. Middle East Afr J Ophthalmol. 2013;20(1):95–97. doi: 10.4103/0974-9233.106407.
  • Karaali Z, Baysal B, Poturoglu S, et al. Cutaneous manifestations in brucellosis. Indian J Dermatol. 2011;56(3):339–340. doi: 10.4103/0019-5154.82505.
  • Korkmaz P, Doyuk Kartal E. Skin manifestations associated with brucellosis. EMJ Dermatol. 2016;4:119–125. doi: 10.33590/emjdermatol/10312753.
  • Wang W, Lu X, Li C, et al. A man with recurrent fever, arthritis, and rashes—brucellosis? A case report. BMC Infect Dis. 2020;20(1):18. doi: 10.1186/s12879-019-4746-0.
  • Spink WW. What is chronic brucellosis? Ann Intern Med. 1951;35(2):358–374. doi: 10.7326/0003-4819-35-2-358.
  • Ariza J, Corredoira J, Pallares R, et al. Characteristics of and risk factors for relapse of brucellosis in humans. Clin Infect Dis. 1995;20(5):1241–1249. doi: 10.1093/clinids/20.5.1241.
  • Solera J. Update on brucellosis: therapeutic challenges. Int J Antimicrob Agents. 2010;36(Suppl. 1):S18–S20. doi: 10.1016/j.ijantimicag.2010.06.015.
  • Akkoc G, Tekerek S. Osteoarticular involvement in childhood brucellosis: evaluation of clinical, laboratory and radiologic features of 185 cases. Pediatr Infect Dis J. 2023;42(5):381–388. doi: 10.1097/INF.0000000000003844.
  • Whatmore AM, Koylass MS, Muchowski J, et al. Extended multilocus sequence analysis to describe the global population structure of the genus Brucella: phylogeography and relationship to biovars. Front Microbiol. 2016;7:2049. doi: 10.3389/fmicb.2016.02049.
  • Pappas G, Akritidis N, Bosilkovski M, et al. Medical progress brucellosis. N Engl J Med. 2005;352(22):2325–2336. doi: 10.1056/NEJMra050570.
  • Yagupsky P, Morat P, Colmenero JD. Laboratory diagnosis of human brucellosis. Clin Microbiol Rev. 2020;33(1):e00073-19. doi: 10.1128/CMR.00073-19.
  • Pappas G, Papadimitriou P. Challenges in Brucella bacteraemia. Int J Antimicrob Agents. 2007;30(Suppl. 1):29–31. doi: 10.1016/j.ijantimicag.2007.06.011.
  • Olitzky AL. Laboratory techniques in brucellosis. Harefuah. 1976;91(11):408–409.
  • Castaneda MR. A practical method for routine blood cultures in brucellosis. Proc Soc Exp Biol Med. 1947;64(1):114–115. doi: 10.3181/00379727-64-15717.
  • Al-Attas RA, Al-Khalifa M, Al-Qurashi AR, et al. Evaluation of PCR, culture and serology for the diagnosis of acute human brucellosis. Ann Saudi Med. 2000;20(3–4):224–228. doi: 10.5144/0256-4947.2000.224.
  • OIE-WOAH. Terrestrial code online access - WOAH - World organisation for animal health. 2023. https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/.
  • Wareth G, Pletz MW, Neubauer H, et al. Proteomics of Brucella: technologies and their applications for basic research and medical microbiology. Microorganisms. 2020;8(5):766. doi: 10.3390/microorganisms8050766.
  • Di Bonaventura G, Angeletti S, Ianni A, et al. Microbiological laboratory diagnosis of human brucellosis: an overview. Pathogens. 2021;10(12):1623. doi: 10.3390/pathogens10121623.
  • El-Diasty M, El-Said R, Abdelkhalek A. Seroprevalence and molecular diagnosis of sheep brucellosis in Dakahlia Governorate, Egypt. Ger J Vet Res. 2021;1(1):34–39. doi: 10.51585/gjvr.2021.0006.
  • Baddour MM, Alkhalifa DH. Evaluation of three polymerase chain reaction techniques for detection of Brucella DNA in peripheral human blood. Can J Microbiol. 2008;54(5):352–357. doi: 10.1139/W08-017.
  • Bounaadja L, Albert D, Chénais B, et al. Real-time PCR for identification of Brucella spp.: a comparative study of IS711, bcsp31 and per target genes. Vet Microbiol. 2009;137(1–2):156–164. doi: 10.1016/j.vetmic.2008.12.023.
  • Romero C, Gamazo C, Pardo M, et al. Specific detection of Brucella DNA by PCR. J Clin Microbiol. 1995;33(3):615–617. doi: 10.1128/jcm.33.3.615-617.1995.
  • Leal-Klevezas DS, Martinez-Vazquez IO, Lopez-Merino A, et al. Single-step PCR for detection of Brucella spp. from blood and milk of infected animals. J Clin Microbiol. 1995;33(12):3087–3090. doi: 10.1128/jcm.33.12.3087-3090.1995.
  • Kattar MM, Zalloua PA, Araj GF, et al. Development and evaluation of real-time polymerase chain reaction assays on whole blood and paraffin-embedded tissues for rapid diagnosis of human brucellosis. Diagn Microbiol Infect Dis. 2007;59(1):23–32. doi: 10.1016/j.diagmicrobio.2007.04.002.
  • Mitka S, Anetakis C, Souliou E, et al. Evaluation of different PCR assays for early detection of acute and relapsing brucellosis in humans in comparison with conventional methods. J Clin Microbiol. 2007;45(4):1211–1218. doi: 10.1128/JCM.00010-06.
  • Al Nakkas AF, Wright SG, Mustafa AS, et al. Single-tube, nested PCR for the diagnosis of human brucellosis in Kuwait. Ann Trop Med Parasitol. 2002;96(4):397–403. doi: 10.1179/000349802125001203.
  • Baily GG, Krahn JB, Drasar BS, et al. Detection of Brucella melitensis and Brucella abortus by DNA amplification. J Trop Med Hyg. 1992;95(4):271–275.
  • Navarro E, Escribano J, Fernández J, et al. Comparison of three different PCR methods for detection of Brucella spp. in human blood samples. FEMS Immunol Med Microbiol. 2002;34(2):147–151. doi: 10.1111/j.1574-695x.2002.tb00616.x.
  • Zerva L, Bourantas K, Mitka S, et al. Serum is the preferred clinical specimen for diagnosis of human brucellosis by PCR. J Clin Microbiol. 2001;39(4):1661–1664. doi: 10.1128/JCM.39.4.1661-1664.2001.
  • Li M, Zhou X, Li J, et al. Real-time PCR assays for diagnosing brucellar spondylitis using formalin-fixed paraffin-embedded tissues. Medicine. 2018;97(9):e0062. doi: 10.1097/MD.0000000000010062.
  • Gopaul KK, Sells J, Lee R, et al. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species. BMC Res Notes. 2014;7(1):903. doi: 10.1186/1756-0500-7-903.
  • Rajni Joshi NS. Clinical, serological and molecular diagnosis of brucellosis in domestic animals. Int J Curr Microbiol Appl Sci. 2021;10(4):368–385. doi: 10.20546/ijcmas.2021.1004.040.
  • Bosilkovski M, Keramat F, Arapović J. The current therapeutical strategies in human brucellosis. Infection. 2021;49(5):823–832. doi: 10.1007/s15010-021-01586-w.
  • Patra S, Kalwaje Eshwara V, Pai AR, et al. Evaluation of clinical, diagnostic features and therapeutic outcome of neurobrucellosis: a case series and review of literature. Int J Neurosci. 2022;132(11):1080–1090. doi: 10.1080/00207454.2020.1860969.
  • Johansen TB, Scheffer L, Jensen VK, et al. Whole-genome sequencing and antimicrobial resistance in Brucella melitensis from a Norwegian perspective. Sci Rep. 2018;8(1):8538. doi: 10.1038/s41598-018-26906-3.
  • Reza Irajian G, Masjedian Jazi F, Mirnejad R, et al. Species-specific PCR for the diagnosis and determination of antibiotic susceptibilities of Brucella strains isolated from Tehran, Iran. Iran J Pathol. 2016;11(3):238–247.
  • Shevtsov A, Syzdykov M, Kuznetsov A, et al. Antimicrobial susceptibility of Brucella melitensis in Kazakhstan. Antimicrob Resist Infect Control. 2017;6(1):130. doi: 10.1186/s13756-017-0293-x.
  • Doimari S, Singh V, Kumari R, et al. In vitro antimicrobial susceptibility of Brucella species isolated from human and animals in India. J Antibiot Res. 2019;3:1–6.
  • Maves RC, Castillo R, Guillen A, et al. Antimicrobial susceptibility of Brucella melitensis isolates in Peru. Antimicrob Agents Chemother. 2011;55(3):1279–1281. doi: 10.1128/AAC.00979-10.
  • Cooke RPD, Perrett L. Antimicrobial susceptibility data for Brucella melitensis isolates cultured from UK patients. J Infect. 2014;68(4):401. doi: 10.1016/j.jinf.2014.01.002.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181. doi: 10.1038/nrd2467.
  • Aspatwar A, Kairys V, Rala S, et al. Mycobacterium tuberculosis β-carbonic anhydrases: novel targets for developing antituberculosis drugs. Int J Mol Sci. 2019;20(20):5153. doi: 10.3390/ijms20205153.
  • Köhler S, Ouahrani-Bettache S, Winum JY. Brucella suis carbonic anhydrases and their inhibitors: towards alternative antibiotics? J Enzym Inhib Med Chem. 2017;32(1):683–687. doi: 10.1080/14756366.2017.1295451.
  • Aspatwar A, Tolvanen MEE, Barker H, et al. Carbonic anhydrases in metazoan model organisms: molecules, mechanisms, and physiology. Physiol Rev. 2022;102(3):1327–1383. doi: 10.1152/physrev.00018.2021.
  • Aspatwar A, Parvathaneni NK, Barker H, et al. Design, synthesis, in vitro inhibition and toxicological evaluation of human carbonic anhydrases I, II and IX inhibitors in 5-nitroimidazole series. J Enzyme Inhib Med Chem. 2020;35(1):109–117. doi: 10.1080/14756366.2019.1685510.
  • Aspatwar A, Supuran CT, Waheed A, et al. Mitochondrial carbonic anhydrase VA and VB: properties and roles in health and disease. J Physiol. 2023;601(2):257–274. doi: 10.1113/JP283579.
  • Abdoli M, Bonardi A, Paoletti N, et al. Inhibition studies on human and mycobacterial carbonic anhydrases with N-((4-sulfamoylphenyl)carbamothioyl) amides. Molecules. 2023;28(10):4020. doi: 10.3390/molecules28104020.
  • Aspatwar A, Barker H, Aisala H, et al. Cloning, purification, kinetic and anion inhibition studies of a recombinant β-carbonic anhydrase from the Atlantic salmon parasite platyhelminth Gyrodactylus salaris. J Enzyme Inhib Med Chem. 2022;37(1):1577–1586. doi: 10.1080/14756366.2022.2080818.
  • Aspatwar A, Bonardi A, Aisala H, et al. Sulphonamide inhibition studies of the β-carbonic anhydrase GsaCAβ present in the salmon platyhelminth parasite Gyrodactylus salaris. J Enzyme Inhib Med Chem. 2023;38(1):2167988. doi: 10.1080/14756366.2023.2167988.
  • Aspatwar A, Hammaren M, Parikka M, et al. In vitro inhibition of Mycobacterium tuberculosis β-carbonic anhydrase 3 with mono- and dithiocarbamates and evaluation of their toxicity using zebrafish developing embryos. J Enzyme Inhib Med Chem. 2020;35(1):65–71. doi: 10.1080/14756366.2019.1683007.
  • Aspatwar A, Winum JY, Carta F, et al. Carbonic anhydrase inhibitors as novel drugs against mycobacterial β-carbonic anhydrases: an update on in vitro and in vivo studies. Molecules. 2018;23(11):2911. doi: 10.3390/molecules23112911.
  • Supuran CT. Bacterial carbonic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol. 2011;2:34. doi: 10.3389/fphar.2011.00034.
  • Aspatwar A, Hammarén M, Koskinen S, et al. β-CA-specific inhibitor dithiocarbamate Fc14–584B: a novel antimycobacterial agent with potential to treat drug-resistant tuberculosis. J Enzyme Inhib Med Chem. 2017;32(1):832–840. doi: 10.1080/14756366.2017.1332056.
  • Maresca A, Scozzafava A, Köhler S, et al. Inhibition of beta-carbonic anhydrases from the bacterial pathogen Brucella suis with inorganic anions. J Inorg Biochem. 2012;110:36–39. doi: 10.1016/j.jinorgbio.2012.02.009.
  • Vullo D, Nishimori I, Scozzafava A, et al. Inhibition studies of a β-carbonic anhydrase from Brucella suis with a series of water soluble glycosyl sulfanilamides. Bioorg Med Chem Lett. 2010;20(7):2178–2182. doi: 10.1016/j.bmcl.2010.02.042.
  • Heidary M, Dashtbin S, Ghanavati R, et al. Evaluation of brucellosis vaccines: a comprehensive review. Front Vet Sci. 2022;9:925773. doi: 10.3389/fvets.2022.925773.
  • Montaraz JA, Winter AJ. Comparison of living and nonliving vaccines for Brucella abortus in BALB/c mice. Infect Immun. 1986;53(2):245–251. doi: 10.1128/iai.53.2.245-251.1986.
  • Yang X, Skyberg JA, Cao L, et al. Progress in Brucella vaccine development. Front Biol. 2013;8(1):60–77. doi: 10.1007/s11515-012-1196-0.
  • Mansoori N, Pourmand MR. Vaccines and vaccine candidates against brucellosis. Infect Epidemiol Microbiol. 2016;2(4):32–36. doi: 10.18869/modares.iem.2.4.32.
  • Li ZQ, Shi JX, Fu WD, et al. A Brucella melitensis M5-90 wboA deletion strain is attenuated and enhances vaccine efficacy. Mol Immunol. 2015a;66(2):276–283. doi: 10.1016/j.molimm.2015.04.004.
  • Truong QL, Cho Y, Kim K, et al. Booster vaccination with safe, modified, live-attenuated mutants of Brucella abortus strain RB51 vaccine confers protective immunity against virulent strains of B. abortus and Brucella canis in BALB/c mice. Microbiology. 2015;161(11):2137–2148. doi: 10.1099/mic.0.000170.
  • Zhu L, Feng Y, Zhang G, et al. Brucella suis strain 2 vaccine is safe and protective against heterologous Brucella spp. infections. Vaccine. 2016;34(3):395–400. doi: 10.1016/j.vaccine.2015.09.116.
  • Verger JM, Grayon M, Zundel E, et al. Comparison of the efficacy of Brucella suis strain 2 and Brucella melitensis rev. 1 live vaccines against a Brucella melitensis experimental infection in pregnant ewes. Vaccine. 1995;13(2):191–196. doi: 10.1016/0264-410X(95)93135-V.
  • Gheibi A, Khanahmad H, Kashfi K, et al. Development of new generation of vaccines for Brucella abortus. Heliyon. 2018;4(12):e01079. doi: 10.1016/j.heliyon.2018.e01079.
  • Zhang J, Guo F, Chen C, et al. Brucella melitensis 16MΔhfq attenuation confers protection against wild-type challenge in BALB/c mice. Microbiol Immunol. 2013;57(7):502–510. doi: 10.1111/1348-0421.12065.
  • Li Z, Zhang J, Zhang K, et al. Brucella melitensis 16MΔTcfSR as a potential live vaccine allows for the differentiation between natural and vaccinated infection. Exp Ther Med. 2015b;10(3):1182–1188. doi: 10.3892/etm.2015.2619.
  • Wang Z, Niu JR, Ui Wang XLe, et al. Evaluation of a Brucella melitensis mutant deficient in O-polysaccharide export system ATP-binding protein as a rough vaccine candidate. Microbes Infect. 2014;16(8):633–639. doi: 10.1016/j.micinf.2014.06.013.
  • Costa LF, Cabello AL, Batista DFA, et al. The candidate vaccine strain Brucella ovis ΔabcBA is protective against Brucella melitensis infection in mice. Microbiol Immunol. 2020;64(11):730–736. doi: 10.1111/1348-0421.12850.
  • Bao Y, Tian M, Li P, et al. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate. Vet Res. 2017;48(1):17. doi: 10.1186/s13567-017-0422-9.
  • Czibener C, Del Giudice MG, Spera JM, et al. Delta-pgm, a new live-attenuated vaccine against Brucella suis. Vaccine. 2016;34(13):1524–1530. doi: 10.1016/j.vaccine.2016.02.025.
  • Jain-Gupta N, Waldrop SG, Tenpenny NM, et al. Rough Brucella neotomae provides protection against Brucella suis challenge in mice. Vet Microbiol. 2019;239:108447. doi: 10.1016/j.vetmic.2019.108447.
  • Ficht TA, Kahl-McDonagh MM, Arenas-Gamboa AM, et al. Brucellosis: the case for live, attenuated vaccines. Vaccine. 2009;27(Suppl. 4):D40–D43. doi: 10.1016/j.vaccine.2009.08.058.
  • Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans. FEMS Microbiol Rev. 2010;34(3):379–394. doi: 10.1111/j.1574-6976.2010.00211.x.
  • Zimmermann P, Curtis N. Factors that influence the immune response to vaccination. Clin Microbiol Rev. 2019;32(2):e00084. doi: 10.1128/CMR.00084-18.
  • Abdollahi A, Mansouri S, Amani J, et al. A recombinant chimera protein as a novel Brucella subunit vaccine: protective efficacy and induced immune response in BALB/c mice. Jundishapur J Microbiol. 2018;11(1):1–9. doi: 10.5812/jjm.12776.
  • Ghasemi A, Jeddi-Tehrani M, Mautner J, et al. Immunization of mice with a novel recombinant molecular chaperon confers protection against Brucella melitensis infection. Vaccine. 2014;32(49):6659–6666. doi: 10.1016/j.vaccine.2014.09.013.
  • Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Evaluation of immunogenicity of novel multi-epitope subunit vaccines in combination with poly I: c against Brucella melitensis and Brucella abortus infection. Int Immunopharmacol. 2019;75:105829. doi: 10.1016/j.intimp.2019.105829.
  • Delpino MV, Estein SM, Fossati CA, et al. Vaccination with Brucella recombinant DnaK and SurA proteins induces protection against Brucella abortus infection in BALB/c mice. Vaccine. 2007;25(37–38):6721–6729. doi: 10.1016/j.vaccine.2007.07.002.
  • Abkar M, Fasihi-Ramandi M, Kooshki H, et al. Oral immunization of mice with Omp31-loaded N-trimethyl chitosan nanoparticles induces high protection against Brucella melitensis infection. Int J Nanomedicine. 2017;12:8769–8778. doi: 10.2147/IJN.S149774.
  • Maleki M, Salouti M, Shafiee Ardestani M, et al. Preparation of a nanovaccine against Brucella melitensis M16 based on PLGA nanoparticles and oligopolysaccharide antigen. Artif Cells Nanomed Biotechnol. 2019;47(1):4248–4256. doi: 10.1080/21691401.2019.1687490.
  • Al-Halifa S, Gauthier L, Arpin D, et al. Nanoparticle-based vaccines against respiratory viruses. Front Immunol. 2019;10:22. doi: 10.3389/fimmu.2019.00022.
  • Leclerq S, Harms JS, Rosinha GMS, et al. Induction of a Th1-type of immune response but not protective immunity by intramuscular DNA immunisation with Brucella abortus GroEL heat-shock gene. J Med Microbiol. 2002;51(1):20–26. doi: 10.1099/0022-1317-51-1-20.
  • Afshari H, Maleki M, Salouti M. Immunological effects of two new nanovaccines against Brucella based on OPS and LPS antigens conjugated with PLGA nanoparticles. Eur Polym J. 2020;139:110021. doi: 10.1016/j.eurpolymj.2020.110021.
  • Hu XD, Yu DH, Chen ST, et al. A combined DNA vaccine provides protective immunity against Mycobacterium bovis and Brucella abortus in cattle. DNA Cell Biol. 2009;28(4):191–199. doi: 10.1089/dna.2008.0790.
  • Chen B, Liu B, Zhao Z, et al. Evaluation of a DNA vaccine encoding Brucella BvrR in BALB/c mice. Mol Med Rep. 2019;19(2):1302–1308. doi: 10.3892/mmr.2018.9735.
  • Jain S, Afley P, Dohre SK, et al. Evaluation of immunogenicity and protective efficacy of a plasmid DNA vaccine encoding ribosomal protein L9 of Brucella abortus in BALB/c mice. Vaccine. 2014;32(35):4537–4542. doi: 10.1016/j.vaccine.2014.06.012.
  • Velikovsky CA, Cassataro J, Sanchez M, et al. Single-shot plasmid DNA intrasplenic immunization for the production of monoclonal antibodies. Persistent expression of DNA. J Immunol Methods. 2000;244(1–2):1–7. doi: 10.1016/S0022-1759(00)00244-1.
  • Al-Mariri A, Tibor A, Lestrate P, et al. Yersinia enterocolitica as a vehicle for a naked DNA vaccine encoding Brucella abortus bacterioferritin or P39 antigen. Infect Immun. 2002;70(4):1915–1923. doi: 10.1128/IAI.70.4.1915-1923.2002.
  • Senevirathne A, Hewawaduge C, Lee JH. Attenuated Salmonella secreting Brucella protective antigens confer dual-faceted protection against brucellosis and salmonellosis in a mouse model. Vet Immunol Immunopathol. 2019;209:31–36. doi: 10.1016/j.vetimm.2019.02.001.
  • Bugybayeva D, Ryskeldinova S, Zinina N, et al. Development of human vectored brucellosis vaccine formulation: assessment of safety and protectiveness of influenza viral vectors expressing Brucella immunodominant proteins in mice and Guinea pigs. Biomed Res Int. 2020;2020:1438928. doi: 10.1155/2020/1438928.
  • Mohammadi E, Golchin M. High protection of mice against Brucella abortus by oral immunization with recombinant probiotic Lactobacillus casei vector vaccine, expressing the outer membrane protein OMP19 of Brucella species. Comp Immunol Microbiol Infect Dis. 2020;70:101470. doi: 10.1016/j.cimid.2020.101470.
  • Lin GZ, Liu YZ, Cai KZ, et al. Brucella abortus L7/L12 ve BCSP31 Proteinlerini Birlikte Eksprese Eden Rekombinant Adenovirusların immunojenitesi. Kafkas Univ Vet Fak Derg. 2018;24(2):211–217. doi: 10.9775/kvfd.2017.18644.
  • Bugybayeva D, Kydyrbayev Z, Zinina N, et al. A new candidate vaccine for human brucellosis based on influenza viral vectors: a preliminary investigation for the development of an immunization schedule in a Guinea pig model. Infect Dis Poverty. 2021;10(1):13. doi: 10.1186/s40249-021-00801-y.
  • Tabynov K, Sansyzbay A, Kydyrbayev Z, et al. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection. Virol J. 2014;11(1):69. doi: 10.1186/1743-422X-11-69.
  • Sáez D, Fernández P, Rivera A, et al. Oral immunization of mice with recombinant Lactococcus lactis expressing Cu, Zn superoxide dismutase of Brucella abortus triggers protective immunity. Vaccine. 2012;30(7):1283–1290. doi: 10.1016/j.vaccine.2011.12.088.
  • Cassataro J, Estein SM, Pasquevich KA, et al. Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect Immun. 2005;73(12):8079–8088. doi: 10.1128/IAI.73.12.8079-8088.2005.
  • De la Rosa-Ramos MA, Arellano-Reynoso B, Hernández-Badillo E, et al. Evaluation of the goat cellular immune response to rBtuB-Hia-FlgK peptides from Brucella melitensis. Comp Immunol Microbiol Infect Dis. 2023;94:101944. doi: 10.1016/j.cimid.2023.101944.
  • Nejad RB, Krecek RC, Khalaf OH, et al. Brucellosis in the Middle East: current situation and a pathway forward. PLoS Negl Trop Dis. 2020;14(5):e0008071. doi: 10.1371/journal.pntd.0008071.
  • Addis M. Public health and economic importance of brucellosis: a review. Public Policy Admin Res. 2015;5(7):2225–2972.
  • Islam MA, Khatun MM, Werre SR, et al. A review of Brucella seroprevalence among humans and animals in Bangladesh with special emphasis on epidemiology, risk factors and control opportunities. Vet Microbiol. 2013;166(3–4):317–326. doi: 10.1016/j.vetmic.2013.06.014.
  • Alewy Almashhadany D, Zefenkey ZF, Hassannejad S, et al. Milk borne brucellosis. In: Ibrahim SA, editor. Current issues and advances in the dairy industry. IntechOpen; 2023. doi: 10.5772/intechopen.109124.
  • Di Bari C, Venkateswaran N, Bruce M, et al. Methodological choices in brucellosis burden of disease assessments: a systematic review. PLoS Negl Trop Dis. 2022;16(12):e0010468. doi: 10.1371/journal.pntd.0010468.
  • Herrera JAR, Thomsen ST, Jakobsen LS, et al. The burden of disease of three food-associated heavy metals in clusters in the Danish population–towards targeted public health strategies. Food Chem Toxicol. 2021;150:112072. doi: 10.1016/j.fct.2021.112072.
  • Golshani M, Buozari S. A review of brucellosis in Iran: epidemiology, risk factors, diagnosis, control, and prevention. Iran Biomed J. 2017;21(6):349–359. doi: 10.18869/acadpub.ibj.21.6.349.
  • Franc KA, Krecek RC, Häsler BN, et al. Brucellosis remains a neglected disease in the developing world: a call for interdisciplinary action. BMC Public Health. 2018;18(1):125. doi: 10.1186/s12889-017-5016-y.
  • Dowdle WR. The principles of disease elimination and eradication. Bull World Health Org. 1998;76(Suppl. 2):22–25.
  • Murray J, Cohen AL. Infectious disease surveillance. Int Encycloped Public Health. 2016;2016:222–229. doi: 10.1016/B978-0-12-803678-5.00517-8.
  • Roth F, Zinsstag J, Orkhon D, et al. Human health benefits from livestock vaccination for brucellosis: case study. Bull World Health Organ. 2003;81(12):867–876.
  • Dalrymple-Champneys W. Undulant fever a neglected problem. The Lancet. 1950;255(6602):429–435. doi: 10.1016/S0140-6736(50)90361-8.
  • Wyatt HV. Brucellosis and Maltese goats in the Mediterranean. J Malt Hist. 2009;1(2):4.
  • Riedel S. Biological warfare and bioterrorism: a historical review. Proc (Bayl Univ Med Cent). 2004;17(4):400–406. doi: 10.1080/08998280.2004.11928002.
  • Centers for Disease Control and Prevention. Risks from unpasteurized dairy products. Risk of exposure. Brucellosis. CDC; 2019. Available from: https://www.cdc.gov/brucellosis/exposure/unpasteurized-dairy-products.html
  • Yuan W, Zhang M, Zou H, et al. Emergency response to occupational brucellosis in a pharmaceutical manufacturing enterprise. J Occup Health. 2018;60(5):404–409. doi: 10.1539/joh.2018-0089-CS.
  • Elbehiry A, Aldubaib M, Marzouk E, et al. The development of diagnostic and vaccine strategies for early detection and control of human brucellosis, particularly in endemic areas. Vaccines. 2023;11(3):654. doi: 10.3390/vaccines11030654.
  • Micoli F, Bagnoli F, Rappuoli R, et al. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 2021;19(5):287–302. doi: 10.1038/s41579-020-00506-3.
  • Behl T, Kaur I, Sehgal A, et al. Bioinformatics accelerates the major tetrad: a real boost for the pharmaceutical industry. Int J Mol Sci. 2021;22(12):6184. doi: 10.3390/ijms22126184.
  • Zhao C, Yang Y, Wu S, et al. Search trends and prediction of human brucellosis using Baidu index data from 2011 to 2018 in China. Sci Rep. 2020;10(1):5896. doi: 10.1038/s41598-020-62517-7.
  • World Bank. World Bank approves $82 million for prevention of zoonotic, endemic diseases in India. World Bank; 2023 [cited 2023 Aug 23]. Available from: https://www.worldbank.org/en/news/press-release/2023/05/10/world-bank-approves-82-million-for-prevention-of-zoonotic-endemic-diseases-in-india