2,234
Views
0
CrossRef citations to date
0
Altmetric
Gastroenterology

Medicine for chronic atrophic gastritis: a systematic review, meta- and network pharmacology analysis

, , , &
Article: 2299352 | Received 01 Sep 2023, Accepted 21 Dec 2023, Published online: 03 Jan 2024

References

  • Rugge M, Correa P, Dixon MF, et al. Gastric mucosal atrophy: interobserver consistency using new criteria for classification and grading. Aliment Pharmacol Ther. 2002;16(7):1–22. doi: 10.1046/j.1365-2036.2002.01301.x.
  • Yang H, Yang W-J, Hu B. Gastric epithelial histology and precancerous conditions. World J Gastrointest Oncol. 2022;14(2):396–412. doi: 10.4251/wjgo.v14.i2.396.
  • Yin Y, Liang H, Wei N, et al. Prevalence of chronic atrophic gastritis worldwide from 2010 to 2020: an updated systematic review and meta-analysis. Ann Palliat Med. 2022;11(12):3697–3703. doi: 10.21037/apm-21-1464.
  • Ma X, Zhang Z, Qin X, et al. Therapeutic effect of curcumol on chronic atrophic gastritis (CAG) and gastric cancer is achieved by downregulating SDF-1α/CXCR4/VEGF expression. J Oncol. 2022;2022:3919053.
  • Wang L, Ding X, Li P, et al. Efficacy and safety of Weifuchun tablet for chronic atrophic gastritis: a systematic review and meta-analysis. PLOS One. 2023;18(4):e0284411. doi: 10.1371/journal.pone.0284411.
  • Chen X, Shen K, Deng Y, et al. A randomized double-blind clinical trial of Weierkang pills for the treatment of chronic atrophic gastritis. J Clin Gastroenterol. 2023;57(2):165–171. doi: 10.1097/MCG.0000000000001663.
  • Zhou W, Zhang H, Wang X, et al. Network pharmacology to unveil the mechanism of moluodan in the treatment of chronic atrophic gastritis. Phytomedicine. 2022;95:153837. doi: 10.1016/j.phymed.2021.153837.
  • Zhang T, Zhang B, Xu J, et al. Chinese herbal compound prescriptions combined with Chinese medicine powder based on traditional Chinese medicine syndrome differentiation for treatment of chronic atrophic gastritis with erosion: a multi-center, randomized, positive-controlled clinical trial. Chin Med. 2022;17(1):142. doi: 10.1186/s13020-022-00692-7.
  • Reichardt W, Schüler E, Sieber L, et al. Quantitative determination of the protein content of milk by ultraviolet spectrophotometry. 3. Determination of proteins in preserved milk samples. Nahrung. 1987;31(8):801–807. doi: 10.1002/food.19870310810.
  • Wang X-M, Zhang X-R, Li Z-H, et al. A brief introduction of meta-analyses in clinical practice and research. J Gene Med. 2021;23(5):e3312. doi: 10.1002/jgm.3312.
  • Nordmann AJ, Kasenda B, Briel M. Meta-analyses: what they can and cannot do. Swiss Med Wkly. 2012;142:w13518. doi: 10.4414/smw.2012.13518.
  • Dawson DV, Pihlstrom BL, Blanchette DR. Understanding and evaluating meta-analysis. J Am Dent Assoc. 2016;147(4):264–270. doi: 10.1016/j.adaj.2015.10.023.
  • Ahn E, Kang H. Concepts and emerging issues of network meta-analysis. Korean J Anesthesiol. 2021;74(5):371–382. doi: 10.4097/kja.21358.
  • Noor F, Asif M, Ashfaq UA, et al. Machine learning for synergistic network pharmacology: a comprehensive overview. Brief Bioinform. 2023;24(3):bbad120. doi: 10.1093/bib/bbad120.
  • Boezio B, Audouze K, Ducrot P, et al. Network-based approaches in pharmacology. Mol Inform. 2017;36(10):1700048. doi: 10.1002/minf.201700048.
  • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682–690. doi: 10.1038/nchembio.118.
  • Li X, Liu Z, Liao J, et al. Network pharmacology approaches for research of traditional Chinese medicines. Chin J Nat Med. 2023;21(5):323–332. doi: 10.1016/S1875-5364(23)60429-7.
  • Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol. 2023;309:116306. doi: 10.1016/j.jep.2023.116306.
  • Yuan H, Ma Q, Cui H, et al. How can synergism of traditional medicines benefit from network pharmacology? Molecules. 2017;22(7):1135. doi: 10.3390/molecules22071135.
  • Noor F, Tahir Ul Qamar M, Ashfaq UA, et al. Network pharmacology approach for medicinal plants: review and assessment. Pharmaceuticals. 2022;15(5):572. doi: 10.3390/ph15050572.
  • Sayers EW, Beck J, Bolton EE, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2021;49(D1):D10–D17. doi: 10.1093/nar/gkaa892.
  • Frandsen TF, Eriksen MB, Hammer DMG, et al. Using Embase as a supplement to PubMed in Cochrane reviews differed across fields. J Clin Epidemiol. 2021;133:24–31. doi: 10.1016/j.jclinepi.2020.12.022.
  • MacLehose H, Hilton J. Changes to the Cochrane library during the Cochrane Collaboration’s first 20 years. Cochrane Database Syst Rev. 2013;2013(2):ED000050.
  • Huang R, Chen Y, Sun Y. An enhancer of autonomous innovation capability – "CNKI" (China National Knowledge Infrastructure) and its application in the Chinese Knowledge Resource Repository. Library World. 2006;2006(1):63–67.
  • Li Z. China biomedical literature analysis and retrieval system. Med Intell Work. 1993;1993(1):49–51.
  • Introduction to Wanfang database. China Inform Herald. 1995;1995(3):33–34.
  • Wu S. A successful attempt to modernize searching with Chinese characteristics - an interview with "Chinese Science and Technology Journal Database”. Intell Work. 1995;1995(2):44–46.
  • Moher D, Jadad AR, Nichol G, et al. Assessing the quality of randomized controlled trials: an annotated bibliography of scales and checklists. Control Clin Trials. 1995;16(1):62–73. doi: 10.1016/0197-2456(94)00031-w.
  • Armijo-Olivo S, Stiles CR, Hagen NA, et al. Assessment of study quality for systematic reviews: a comparison of the Cochrane collaboration risk of bias tool and the effective public health practice project quality assessment tool: methodological research. J Eval Clin Pract. 2012;18(1):12–18. doi: 10.1111/j.1365-2753.2010.01516.x.
  • Cuijpers P, Weitz E, Cristea IA, et al. Pre-post effect sizes should be avoided in meta-analyses. Epidemiol Psychiatr Sci. 2017;26(4):364–368. doi: 10.1017/S2045796016000809.
  • Kelley K, Preacher KJ. On effect size. Psychol Methods. 2012;17(2):137–152. doi: 10.1037/a0028086.
  • Bencao CMMZ. An editorial committee of the administration bureau of traditional Chinese medicine. Shanghai: Shanghai Science and Technology Press; 2000.
  • Chinese Pharmacopoeia. Pharmacopoeia of the People’s Republic. 2020. Beijing: China Medical Science and Technology Press; 2022. p. 54–55.
  • Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform. 2014;6(1):13. doi: 10.1186/1758-2946-6-13.
  • UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47(D1):D506–D515.
  • Safran M, Dalah I, Alexander J, et al. GeneCards version 3: the human gene integrator. Database. 2010;2010:baq020.
  • Amberger JS, Bocchini CA, Schiettecatte F, et al. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015;43:D789–D798. doi: 10.1093/nar/gku1205.
  • Barbarino JM, Whirl-Carrillo M, Altman RB, et al. PharmGKB: a worldwide resource for pharmacogenomic information. Wiley Interdiscip Rev Syst Biol Med. 2018;10(4):e1417.
  • Zhou Y, Zhang Y, Lian X, et al. Therapeutic Target Database Update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022;50(D1):D1398–D1407. doi: 10.1093/nar/gkab953.
  • Svensson F, Westerman B, Würdinger T, et al. GBM Drug Bank—a new resource for glioblastoma drug discovery and informatics research. Neuro Oncol. 2018;20(12):1680–1681. doi: 10.1093/neuonc/noy122.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303.
  • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. doi: 10.1038/nprot.2008.211.
  • Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43:D1049–D1056.
  • Du J, Yuan Z, Ma Z, et al. KEGG-PATH: Kyoto Encyclopedia of Genes and Genomes-Based Pathway Analysis using a path analysis model. Mol Biosyst. 2014;10(9):2441–2447. doi: 10.1039/c4mb00287c.
  • Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometr Syst Pharmacol. 2013;2(10):e79. doi: 10.1038/psp.2013.56.
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–D612. doi: 10.1093/nar/gkaa1074.
  • Gao X, Wang X, Zhang S. Bioinformatics identification of crucial genes and pathways associated with hepatocellular carcinoma. Biosci Rep. 2018;38(6):BSR20181441. doi: 10.1042/BSR20181441.
  • Shin J-M, Cho D-H. PDB-Ligand: a ligand database based on PDB for the automated and customized classification of ligand-binding structures. Nucleic Acids Res. 2005;33:D238–D241. doi: 10.1093/nar/gki059.
  • Wang Y, Xiao J, Suzek TO, et al. PubChem’s BioAssay database. Nucleic Acids Res. 2012;40:D400–D412. doi: 10.1093/nar/gkr1132.
  • Goodsell DS, Sanner MF, Olson AJ, et al. The AutoDock suite at 30. Protein Sci. 2021;30(1):31–43. doi: 10.1002/pro.3934.
  • Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and AutoDock/Vina. J Comput Aided Mol Des. 2010;24(5):417–422. doi: 10.1007/s10822-010-9352-6.
  • Chen J. Observation of treatment efficacy for chronic atrophic gastritis using an integrated approach combining traditional Chinese medicine and Western medicine. J Pract Tradit Chin Med. 2018;34(2):214–215.
  • Dai W. Clinical efficacy observation of modified Xiang Sha Liu Jun Zi Tang in the treatment of chronic atrophic gastritis. Res Tradit Chin Med. 2021;2021(48):81–83.
  • Fu H. Observation of treatment efficacy for chronic atrophic gastritis using an integrated approach combining traditional Chinese medicine and Western medicine. Chin Manipul Rehabil Med. 2014;5(3):138–139.
  • Gao Y. Clinical observation of the therapeutic efficacy of integrating traditional Chinese medicine and Western medicine in treating chronic atrophic gastritis. World Latest Med Inform. 2016;16(65):150–150.
  • Lü J, Jia X. Clinical observation of integrative medicine approach in treating chronic atrophic gastritis. Chin Pract Med. 2013;8(13):188–189.
  • Liu F. Analysis of the therapeutic effect of Yiwei decoction in the treatment of chronic atrophic gastritis. China Contin Med Educ. 2020;12(21):148–150.
  • Liu W, Jiang Y, Long F, et al. Effect of spleen strengthening and gastric formula on the pathomorphology and EGF expression of gastric mucosa in 30 cases of chronic atrophic gastritis. Chin J Ethnomed Ethnopharm. 2015,24(09):95–96.
  • Wang F, Wang Z, Zhang B, et al. Effect of Huazhuo Jiedu prescription on TCM syndrome scores, gastroscopic mucosal signs, and cytokines in patients with chronic atrophic gastritis. Hainan Med. 2021;32(23):3046–3049.
  • Wang L. Effect of Yi Wei Huo Luo Jing Fang’s combined triple therapy on gastric mucosal glands and serum inflammatory factors in patients with chronic atrophic gastritis due to blood stasis in the stomach complex. Shaanxi Tradit Chin Med. 2016;37(01):48–50.
  • Wang Q, Song Q, Chen Q. Hui Chun Jian Wei decoction in the treatment of chronic atrophic gastritis with deficiency of both Qi and Yin. Pract Clin J Integr Tradit Chin West Med. 2022;22(19):26–28,32.
  • Yan Y. Effects of Banxia Xiexin decoction combined with triple therapy in treatment of patients with chronic atrophic gastritis. China Natl Health Med. 2022;34(13):96–99.
  • Lu Y, Zhou Y, Xiao M, et al. Clinical effect of Wenzhong Fuxing Cuyu decoction on chronic atrophic gastritis and its effect on gastrointestinal hormones. Liaoning J Tradit Chin Med. 2022;49(11):98–101.
  • Wang Y, Chu F, Lin J, et al. Erianin, the main active ingredient of Dendrobium chrysotoxum Lindl, inhibits precancerous lesions of gastric cancer (PLGC) through suppression of the HRAS-PI3K-AKT signaling pathway as revealed by network pharmacology and in vitro experimental verification. J Ethnopharmacol. 2021;279:114399. doi: 10.1016/j.jep.2021.114399.
  • Wang B, Wang J, Zhao X-H. Bioactivity of two polyphenols quercetin and fisetin against human gastric adenocarcinoma AGS cells as affected by two coexisting proteins. Molecules. 2022;27(9):2877. doi: 10.3390/molecules27092877.
  • Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–210. doi: 10.1093/nar/30.1.207.
  • Nookaew I, Thorell K, Worah K, et al. Transcriptome signatures in Helicobacter pylori-infected mucosa identifies acidic mammalian chitinase loss as a corpus atrophy marker. BMC Med Genomics. 2013;6(1):41. doi: 10.1186/1755-8794-6-41.
  • Dowling L, Duseja A, Vilaca T, et al. MicroRNAs in obesity, sarcopenia, and commonalities for sarcopenic obesity: a systematic review. J Cachexia Sarcopenia Muscle. 2022;13(1):68–85. doi: 10.1002/jcsm.12878.
  • Wang Y, Li M, Zeng J, et al. MiR-585-5p impedes gastric cancer proliferation and metastasis by orchestrating the interactions among CREB1, MAPK1 and MITF. Front Immunol. 2022;13:1008195. doi: 10.3389/fimmu.2022.1008195.
  • Kim JG, Lee SJ, Chae YS, et al. Association between phosphorylated AMP-activated protein kinase and MAPK3/1 expression and prognosis for patients with gastric cancer. Oncology. 2013;85(2):78–85. doi: 10.1159/000351234.
  • Jiang T, Xia Y, Lv J, et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 2021;20(1):66. doi: 10.1186/s12943-021-01358-y.
  • Shen Y, Zhang N, Chai J, et al. CircPDIA4 induces gastric cancer progression by promoting ERK1/2 activation and enhancing biogenesis of oncogenic circRNAs. Cancer Res. 2023;83(4):538–552. doi: 10.1158/0008-5472.CAN-22-1923.
  • Hsieh H-L, Yu M-C, Cheng L-C, et al. Quercetin exerts anti-inflammatory effects via inhibiting tumor necrosis factor-α-induced matrix metalloproteinase-9 expression in normal human gastric epithelial cells. World J Gastroenterol. 2022;28(11):1139–1158. doi: 10.3748/wjg.v28.i11.1139.
  • Pu Y, Zhang T, Wang J, et al. Luteolin exerts an anticancer effect on gastric cancer cells through multiple signaling pathways and regulating miRNAs. J Cancer. 2018;9(20):3669–3675. doi: 10.7150/jca.27183.
  • Wu B, Zhang Q, Shen W, et al. Anti-proliferative and chemosensitizing effects of luteolin on human gastric cancer AGS cell line. Mol Cell Biochem. 2008;313(1–2):125–132. doi: 10.1007/s11010-008-9749-x.
  • Motallebi M, Bhia M, Rajani HF, et al. Naringenin: a potential flavonoid phytochemical for cancer therapy. Life Sci. 2022;305:120752. doi: 10.1016/j.lfs.2022.120752.