849
Views
0
CrossRef citations to date
0
Altmetric
Public Health

Transforming malaria prevention and control: the prospects and challenges of gene drive technology for mosquito management

ORCID Icon, ORCID Icon, ORCID Icon, , , , ORCID Icon & show all
Article: 2302504 | Received 25 Oct 2023, Accepted 02 Jan 2024, Published online: 17 Jan 2024

References

  • Oladipo HJ, Tajudeen YA, Oladunjoye IO, et al. Increasing challenges of malaria control in Sub-saharan africa: priorities for public health research and policymakers. Ann Med Surg. 2022;81:1. doi:10.1016/j.amsu.2022.104366.
  • World Health Organization (WHO). World malaria report 2022. https://who.int/publications-details-redirect/9789240064898
  • World Health Organization (WHO). Fact sheet about malaria. https://www.who.int/news-room/fact-sheets/detail/malaria
  • Battle KE, Baird JK. The global burden of Plasmodium vivax malaria is obscure and insidious. PLoS Med. 18(10):e1003799. doi:10.1371/journal.pmed.1003799.
  • Wise IJ, Borry P. An ethical overview of the CRISPR-based elimination of Anopheles gambiae to combat malaria. J Bioeth Inq. 2022;19(3):371–5. doi:10.1007/s11673022-10172-0.
  • Nolan T. Control of malaria-transmitting mosquitoes using gene drives. Phil Trans R Soc. B. 2019;36:2019080.
  • Hammond AM, Kyrou K, Bruttini M, et al. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genet. 2017;13(10):e1007039. doi:10.1371/journal.pgen.1007039.
  • National Academies of Sciences, Engineering, and Medicine. 2016. Gene drives on the horizon: advancing science, navigating uncertainty, and aligning research with public values. Washington, DC: the National Academies Press. doi:10.17226/23405.
  • Tajudeen YA, Oladunjoye IO, Atta HI, et al. CRISPR-Cas systems: a potential tool to reduce the global burden of antimicrobial resistance. BE. 2021;4(2):e273. https://office.scicell.org/index.php/BE/article/view/273 doi:10.36547/be.273.
  • World Health Organization. Guidance framework for testing of genetically modified mosquitoes. 2nd ed. Global Malaria Programme; 2021.
  • Kyrou K, Hammond AM, Galizi R, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat Biotechnol. 2018;36(11):1062–1066. doi:10.1038/nbt.4245.
  • Hammond A, Galizi R, Kyrou K, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol. 2016;34(1):78–83. doi:10.1038/nbt.3439.
  • Bier E. Gene drives gaining speed. Nat Rev Genet. 2022;23(1):5–22. doi:10.1038/s41576-021-00386-0.
  • Nolan T. Control of malaria-transmitting mosquitoes using gene drives. Philos Trans R Soc Lond B Biol Sci. 2021;376(1818):20190803. doi:10.1098/rstb.2019.0803.
  • Hammond A, Pollegioni P, Persampieri T, et al. Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field. Nat Commun. 2021;12(1):4589. doi:10.1038/s41467021-24790-6.
  • North AR, Burt A, Godfray HCJ. Modelling the potential of genetic control of malaria mosquitoes at national scale. BMC Biol. 2019;17(1):26. doi:10.1186/s12915-019-0645-5.
  • Pham TB, Phong CH, Bennett JB, et al. Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genet. 2019;15(12):e1008440. doi:10.1371/journal.pgen.1008440.
  • Iyer HS, DeVille NV, Stoddard O, et al. Sustaining planetary health through systems thinking: public health’s critical role. SSM Popul Health. 2021; Sep 115:100844. doi:10.1016/j.ssmph.2021.100844.