838
Views
0
CrossRef citations to date
0
Altmetric
Pharmacology

The effect of sodium-glucose co-transporter-2 inhibitors on markers of subclinical atherosclerosis

, ORCID Icon, , , &
Article: 2304667 | Received 22 Aug 2023, Accepted 19 Dec 2023, Published online: 17 Jan 2024

References

  • Gatto L, Prati F. Subclinical atherosclerosis: how and when to treat it? Eur Heart J Suppl. 2020;22(Suppl. E):1–13. doi: 10.1093/eurheartj/suaa068.
  • Lefkou E, Fragakis N, Ioannidou E, et al. Increased levels of proinflammatory cytokines in children with family history of coronary artery disease. Clin Cardiol. 2010;33(4):E6–E10.
  • Libby P, Ridker PM, Hansson GK, et al. Inflammation in atherosclerosis. J Am Coll Cardiol. 2009;54(23):2129–2138. doi: 10.1016/j.jacc.2009.09.009.
  • Shoenfeld Y, Sherer Y, Harats D. Atherosclerosis as an infectious, inflammatory and autoimmune disease. Trends Immunol. 2001;22(6):293–295. doi: 10.1016/s1471-4906(01)01922-6.
  • Sampson UK, Fazio S, Linton MF. Residual cardiovascular risk despite optimal LDL cholesterol reduction with statins: the evidence, etiology, and therapeutic challenges. Curr Atheroscler Rep. 2012;14(1):1–10. doi: 10.1007/s11883-011-0219-7.
  • Patoulias D, Fragakis N, Rizzo M. The therapeutic role of SGLT-2 inhibitors in acute heart failure: from pathophysiologic mechanisms to clinical evidence with pooled analysis of relevant studies across safety and efficacy endpoints of interest. Life. 2022;12(12):2062. doi: 10.3390/life12122062.
  • Heerspink HJL, Perkins BA, Fitchett DH, et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus. Circulation. 2016;134(10):752–772. doi: 10.1161/CIRCULATIONAHA.116.021887.
  • Vlachopoulos C, Xaplanteris P, Aboyans V, et al. The role of vascular biomarkers for primary and secondary prevention. A position paper from the European Society of Cardiology Working Group on peripheral circulation. Atherosclerosis. 2015;241(2):507–532. doi: 10.1016/j.atherosclerosis.2015.05.007.
  • Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–3104. doi: 10.1093/eurheartj/ehy339.
  • Mitchell GF, Hwang S-J, Vasan RS, et al. Arterial stiffness and cardiovascular events. Circulation. 2010;121(4):505–511. doi: 10.1161/CIRCULATIONAHA.109.886655.
  • Laurent S, Boutouyrie P, Asmar R, et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37(5):1236–1241. doi: 10.1161/01.hyp.37.5.1236.
  • Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness. J Am Coll Cardiol. 2010;55(13):1318–1327. doi: 10.1016/j.jacc.2009.10.061.
  • Giglio RV, Patti AM, Rizvi AA, et al. Advances in the pharmacological management of diabetic nephropathy: a 2022 international update. Biomedicines. 2023;11(2):291. doi: 10.3390/biomedicines11020291.
  • Zaccardi F, Webb DR, Htike ZZ, et al. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18(8):783–794. doi: 10.1111/dom.12670.
  • Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2016;24(1);73–79.
  • Vardeny O, Vaduganathan M. Practical guide to prescribing sodium-glucose cotransporter 2 inhibitors for cardiologists. JACC Heart Fail. 2019;7(2):169–172. doi: 10.1016/j.jchf.2018.11.013.
  • Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323. doi: 10.1093/eurheartj/ehz486.
  • Davies MJ, Aroda VR, Collins BS, et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2022;45(11):2753–2786. doi: 10.2337/dci22-0034.
  • Buse JB, Wexler DJ, Tsapas A, et al. 2019 update to: management of hyperglycemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487–493. doi: 10.2337/dci19-0066.
  • Heidenreich PA, Bozkurt B, Aguilar D, et al. AHA/ACC/HFSA guideline for the management of heart failure: executive summary. J Am Coll Cardiol. 2022;79(17):1757–1780. doi: 10.1016/j.jacc.2021.12.011.
  • Vaduganathan M, Docherty KF, Claggett BL, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet. 2022;400(10354):757–767. doi: 10.1016/S0140-6736(22)01429-5.
  • Baigent C, Emberson JR, Haynes R, et al. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet. 2022;400(10365):1788–1801. doi: 10.1016/S0140-6736(22)02074-8.
  • Kang Y, Zhan F, He M, et al. Anti-inflammatory effects of sodium-glucose co-transporter 2 inhibitors on atherosclerosis. Vascul Pharmacol. 2020;133–134:106779. doi: 10.1016/j.vph.2020.106779.
  • Idzkowska E, Eljaszewicz A, Miklasz P, et al. The role of different monocyte subsets in the pathogenesis of atherosclerosis and acute coronary syndromes. Scand J Immunol. 2015;82(3):163–173. doi: 10.1111/sji.12314.
  • Baldrighi M, Mallat Z, Li X. NLRP3 inflammasome pathways in atherosclerosis. Atherosclerosis. 2017;267:127–138. doi: 10.1016/j.atherosclerosis.2017.10.027.
  • Han JH, Oh TJ, Lee G, et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE −/− mice fed a Western diet. Diabetologia. 2017;60(2):364–376. doi: 10.1007/s00125-016-4158-2.
  • Nakatsu Y, Kokubo H, Bumdelger B, et al. The SGLT2 inhibitor luseogliflozin rapidly normalizes aortic mRNA levels of inflammation-related but not lipid-metabolism-related genes and suppresses atherosclerosis in diabetic ApoE KO mice. Int J Mol Sci. 2017;18(8):1704. doi: 10.3390/ijms18081704.
  • Nasiri-Ansari Ν, Dimitriadis GK, Agrogiannis G, et al. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc Diabetol. 2018;17(1):106. doi: 10.1186/s12933-018-0749-1.
  • Kim SR, Lee S-G, Kim SH, et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 2020;11(1):2127. doi: 10.1038/s41467-020-15983-6.
  • Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109(23 Suppl. 1):III27–III32. doi: 10.1161/01.CIR.0000131515.03336.f8.
  • Zhang L, Gong D, Li S, et al. Meta-analysis of the effects of statin therapy on endothelial function in patients with diabetes mellitus. Atherosclerosis. 2012;223(1):78–85. doi: 10.1016/j.atherosclerosis.2012.01.031.
  • Barraclough JY, Patel S, Yu J, et al. The role of sodium glucose cotransporter-2 inhibitors in atherosclerotic cardiovascular disease: a narrative review of potential mechanisms. Cells. 2021;10(10):2699. doi: 10.3390/cells10102699.
  • Durante W, Behnammanesh G, Peyton KJ. Effects of sodium-glucose co-transporter 2 inhibitors on vascular cell function and arterial remodeling. Int J Mol Sci. 2021;22(16):8786. doi: 10.3390/ijms22168786.
  • Dhananjayan R, Koundinya KSS, Malati T, et al. Endothelial dysfunction in type 2 diabetes mellitus. Indian J Clin Biochem. 2016;31(4):372–379. doi: 10.1007/s12291-015-0516-y.
  • Gaspari T, Spizzo I, Liu H, et al. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: a potential mechanism for inhibition of atherogenesis. Diab Vasc Dis Res. 2018;15(1):64–73. doi: 10.1177/1479164117733626.
  • El-Daly M, Pulakazhi Venu VK, Saifeddine M, et al. Hyperglycaemic impairment of PAR2-mediated vasodilation: prevention by inhibition of aortic endothelial sodium-glucose-co-transporter-2 and minimizing oxidative stress. Vascul Pharmacol. 2018;109:56–71. doi: 10.1016/j.vph.2018.06.006.
  • Adingupu DD, Göpel SO, Grönros J, et al. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice. Cardiovasc Diabetol. 2019;18(1):16. doi: 10.1186/s12933-019-0820-6.
  • Sukhanov S, Higashi Y, Yoshida T, et al. The SGLT2 inhibitor empagliflozin attenuates interleukin-17A-induced human aortic smooth muscle cell proliferation and migration by targeting TRAF3IP2/ROS/NLRP3/caspase-1-dependent IL-1β and IL-18 secretion. Cell Signal. 2021;77:109825. doi: 10.1016/j.cellsig.2020.109825.
  • Li H, Shin SE, Seo MS, et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci. 2018;197:46–55. doi: 10.1016/j.lfs.2018.01.032.
  • Badacz R, Przewłocki T, Legutko J, et al. microRNAs associated with carotid plaque development and vulnerability: the clinician’s perspective. Int J Mol Sci. 2022;23(24):15645. doi: 10.3390/ijms232415645.
  • Kabłak-Ziembicka A, Badacz R, Przewłocki T. Clinical application of serum microRNAs in atherosclerotic coronary artery disease. J Clin Med. 2022;11(22):6849. doi: 10.3390/jcm11226849.
  • Pignatelli P, Baratta F, Buzzetti R, et al. The sodium-glucose co-transporter-2 (SGLT2) inhibitors reduce platelet activation and thrombus formation by lowering NOX2-Related oxidative stress: a pilot study. Antioxidants. 2022;11(10):1878. doi: 10.3390/antiox11101878.
  • Shen Y, Cheng L, Xu M, et al. SGLT2 inhibitor empagliflozin downregulates miRNA-34a-5p and targets GREM2 to inactivate hepatic stellate cells and ameliorate non-alcoholic fatty liver disease-associated fibrosis. Metabolism. 2023;146:155657. doi: 10.1016/j.metabol.2023.155657.
  • Mone P, Lombardi A, Kansakar U, et al. Empagliflozin improves the microRNA signature of endothelial dysfunction in patients with heart failure with preserved ejection fraction and diabetes. J Pharmacol Exp Ther. 2023;384(1):116–122. doi: 10.1124/jpet.121.001251.
  • Hattori S. Anti-inflammatory effects of empagliflozin in patients with type 2 diabetes and insulin resistance. Diabetol Metab Syndr. 2018;10(1):93. doi: 10.1186/s13098-018-0395-5.
  • Storgaard H, Gluud LL, Bennett C, et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLOS One. 2016;11(11):e0166125. doi: 10.1371/journal.pone.0166125.
  • Wang Y, Xu L, Yuan L, et al. Sodium-glucose co-transporter-2 inhibitors suppress atrial natriuretic peptide secretion in patients with newly diagnosed type 2 diabetes. Diabet Med. 2016;33(12):1732–1736. doi: 10.1111/dme.13107.
  • Pahud de Mortanges A, Salvador DJr., Laimer M, et al. The role of SGLT2 inhibitors in atherosclerosis: a narrative mini-review. Front Pharmacol. 2021;12:751214. doi: 10.3389/fphar.2021.751214.
  • Sheahan KH, Wahlberg EA, Gilbert MP. An overview of GLP-1 agonists and recent cardiovascular outcomes trials. Postgrad Med J. 2020;96(1133):156–161. doi: 10.1136/postgradmedj-2019-137186.
  • Idris I, Donnelly R. Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab. 2009;11(2):79–88. doi: 10.1111/j.1463-1326.2008.00982.x.
  • Low Wang CC, Hess CN, Hiatt WR, et al. Clinical update: cardiovascular disease in diabetes mellitus. Circulation. 2016;133(24):2459–2502. doi: 10.1161/CIRCULATIONAHA.116.022194.
  • Tanaka A, Sata M, Okada Y, et al. Effect of ipragliflozin on carotid intima-media thickness in patients with type 2 diabetes: a multicenter, randomized, controlled trial. Eur Heart J Cardiovasc Pharmacother. 2023;9(2):165–172. doi: 10.1093/ehjcvp/pvac059.
  • Katakami N, Mita T, Maeda N, et al. Evaluation of the effect of tofogliflozin on the tissue characteristics of the carotid wall—a sub-analysis of the UTOPIA trial. Cardiovasc Diabetol. 2022;21(1):19. doi: 10.1186/s12933-022-01451-6.
  • Katakami N, Mita T, Yoshii H, et al. Tofogliflozin does not delay progression of carotid atherosclerosis in patients with type 2 diabetes: a prospective, randomized, open-label, parallel-group comparative study. Cardiovasc Diabetol. 2020;22(1):143. doi: 10.1186/s12933-020-01079-4.
  • Ardahanli İ. Empagliflozin may regresses carotid intima-media thickness and epicardial adipose tissue volume in patients with type 2 diabetes mellitus. Lokman Hekim Health Sci. 2021;1(3):74–80. doi: 10.14744/lhhs.2021.80001.
  • Nomiyama T, Shimono D, Horikawa T, et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitor ipragliflozin on glycemic control and cardiovascular parameters in Japanese patients with type 2 diabetes mellitus; Fukuoka Study of Ipragliflozin (FUSION). Endocr J. 2018;65(8):859–867. doi: 10.1507/endocrj.EJ18-0022.
  • Irace C, Casciaro F, Scavelli FB, et al. Empagliflozin influences blood viscosity and wall shear stress in subjects with type 2 diabetes mellitus compared with incretin-based therapy. Cardiovasc Diabetol. 2018;17(1):52. doi: 10.1186/s12933-018-0695-y.
  • Shigiyama F, Kumashiro N, Miyagi M, et al. Effectiveness of dapagliflozin on vascular endothelial function and glycemic control in patients with early-stage type 2 diabetes mellitus: DEFENCE study. Cardiovasc Diabetol. 2017;16(1):84. doi: 10.1186/s12933-017-0564-0.
  • Kishimoto S, Higashi Y, Imai T, et al. Lack of impact of ipragliflozin on endothelial function in patients with type 2 diabetes: sub-analysis of the PROTECT study. Cardiovasc Diabetol. 2023;22(1):119. doi: 10.1186/s12933-023-01856-x.
  • Sposito AC, Breder I, Soares AAS, et al. Dapagliflozin effect on endothelial dysfunction in diabetic patients with atherosclerotic disease: a randomized active-controlled trial. Cardiovasc Diabetol. 2021;20(1):74. doi: 10.1186/s12933-021-01264-z.
  • Zainordin NA, Hatta SFWM, Mohamed Shah FZ, et al. Effects of dapagliflozin on endothelial dysfunction in type 2 diabetes with established ischemic heart disease (EDIFIED). J Endocr Soc. 2020;4(1):bvz017.
  • Sposito AC, Breder I, Barreto J, et al. Evolocumab on top of empagliflozin improves endothelial function of individuals with diabetes: randomized active-controlled trial. Cardiovasc Diabetol. 2022;21(1):147. doi: 10.1186/s12933-022-01584-8.
  • Tanaka A, Shimabukuro M, Machii N, et al. Effect of empagliflozin on endothelial function in patients with type 2 diabetes and cardiovascular disease: results from the multicenter, randomized, placebo-controlled, double-blind EMBLEM trial. Diabetes Care. 2019;42(10):e159–e161. doi: 10.2337/dc19-1177.
  • Wei R, Wang W, Pan Q, et al. Effects of SGLT-2 inhibitors on vascular endothelial function and arterial stiffness in subjects with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Front Endocrinol. 2022;13:826604. doi: 10.3389/fendo.2022.826604.
  • Wu Q-L, Zheng T, Li S-Z, et al. Effects of dapagliflozin in the progression of atherosclerosis in patients with type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetol Metab Syndr. 2022;14(1):41. doi: 10.1186/s13098-022-00810-3.
  • Patoulias D, Papadopoulos C, Zografou I, et al. Effect of empagliflozin and dapagliflozin on ambulatory arterial stiffness in patients with type 2 diabetes mellitus and cardiovascular co-morbidities: a prospective, observational study. Medicina. 2022;58(9):1167. doi: 10.3390/medicina58091167.
  • Katakami N, Mita T, Yoshii H, et al. Effect of tofogliflozin on arterial stiffness in patients with type 2 diabetes: prespecified sub-analysis of the prospective, randomized, open-label, parallel-group comparative UTOPIA trial. Cardiovasc Diabetol. 2021;20(1):4. doi: 10.1186/s12933-020-01206-1.
  • Kourtidou C, Rafailidis V, Varouktsi G, et al. Effects of sodium-glucose co-transporter-2 inhibitors on markers of vascular damage. J Pers Med. 2023;13(3):536. doi: 10.3390/jpm13030536.
  • Karalliedde J, Fountoulakis N, Stathi D, et al. Does dapagliflozin influence arterial stiffness and levels of circulating anti-aging hormone soluble Klotho in people with type 2 diabetes and kidney disease? Results of a randomized parallel group clinical trial. Front Cardiovasc Med. 2022;9:992327. doi: 10.3389/fcvm.2022.992327.
  • Bosch A, Ott C, Jung S, et al. How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol. 2019;18(1):44. doi: 10.1186/s12933-019-0839-8.
  • Papadopoulou E, Loutradis C, Tzatzagou G, et al. Dapagliflozin decreases ambulatory central blood pressure and pulse wave velocity in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. J Hypertens. 2021;39(4):749–758. doi: 10.1097/HJH.0000000000002690.
  • Hong J-Y, Park K-Y, Kim J-D, et al. Effects of 6 months of dapagliflozin treatment on metabolic profile and endothelial cell dysfunction for obese type 2 diabetes mellitus patients without atherosclerotic cardiovascular disease. J Obes Metab Syndr. 2020;29(3):215–221. doi: 10.7570/jomes20040.
  • Hidalgo Santiago JC, Maraver Delgado J, Cayón Blanco M, et al. Arterial en pacientes con diabetes mellitus tipo 2. Med Clin. 2020;154(5):171–174. doi: 10.1016/j.medcli.2019.05.028.
  • Solini A, Giannini L, Seghieri M, et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc Diabetol. 2017;16(1):138. doi: 10.1186/s12933-017-0621-8.
  • Striepe K, Jumar A, Ott C, et al. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation. 2017;136(12):1167–1169. doi: 10.1161/CIRCULATIONAHA.117.029529.
  • Bechlioulis A, Markozannes G, Chionidi I, et al. The effect of SGLT2 inhibitors, GLP1 agonists, and their sequential combination on cardiometabolic parameters: a randomized, prospective, intervention study. J Diabetes Complications. 2023;37(4):108436. doi: 10.1016/j.jdiacomp.2023.108436.
  • Patoulias D, Papadopoulos C, Kassimis G, et al. Effect of sodium-glucose co-transporter-2 inhibitors on arterial stiffness: a systematic review and meta-analysis of randomized controlled trials. Vasc Med. 2022;27(5):433–439. doi: 10.1177/1358863X221101653.
  • Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153(6):907–917. doi: 10.1016/j.ahj.2007.03.019.
  • Mahabadi AA, Lehmann N, Kälsch H, et al. Association of epicardial adipose tissue with progression of coronary artery calcification Is more pronounced in the early phase of atherosclerosis. JACC Cardiovasc Imaging. 2014;7(9):909–916. doi: 10.1016/j.jcmg.2014.07.002.
  • Rosito GA, Massaro JM, Hoffmann U, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample. Circulation. 2008;117(5):605–613. doi: 10.1161/CIRCULATIONAHA.107.743062.
  • Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, et al. Mechanistic insights of empagliflozin in nondiabetic patients with HFrEF. JACC Heart Fail. 2021;9(8):578–589. doi: 10.1016/j.jchf.2021.04.014.
  • Hiruma S, Shigiyama F, Hisatake S, et al. A prospective randomized study comparing effects of empagliflozin to sitagliptin on cardiac fat accumulation, cardiac function, and cardiac metabolism in patients with early-stage type 2 diabetes: the ASSET study. Cardiovasc Diabetol. 2021;20(1):32. doi: 10.1186/s12933-021-01228-3.
  • Sato T, Aizawa Y, Yuasa S, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018;17(1):6. doi: 10.1186/s12933-017-0658-8.
  • Yagi S, Hirata Y, Ise T, et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2017;9(1):78. doi: 10.1186/s13098-017-0275-4.
  • Bouchi R, Terashima M, Sasahara Y, et al. Luseogliflozin reduces epicardial fat accumulation in patients with type 2 diabetes: a pilot study. Cardiovasc Diabetol. 2017;16(1):32. doi: 10.1186/s12933-017-0516-8.
  • Fukuda T, Bouchi R, Terashima M, et al. Ipragliflozin reduces epicardial fat accumulation in non-obese type 2 diabetic patients with visceral obesity: a pilot study. Diabetes Ther. 2017;8(4):851–861. doi: 10.1007/s13300-017-0279-y.
  • Myasoedova VA, Parisi V, Moschetta D, et al. Efficacy of cardiometabolic drugs in reduction of epicardial adipose tissue: a systematic review and meta-analysis. Cardiovasc Diabetol. 2023;22(1):23. doi: 10.1186/s12933-023-01738-2.