186
Views
61
CrossRef citations to date
0
Altmetric
Review Article

A novel pleiotropic effect of statins: prevention of cardiac hypertrophy by cholesterol-independent mechanisms

, &
Pages 398-403 | Published online: 08 Jul 2009

References

  • Shepherd J, Cobbe SM, Ford I, Isles CG, Lorimer AR, MacFarlane PW, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 1995; 333: 1301–7.
  • Massy ZA, Keane WF, Kasiske BL. Inhibition of the mevalonate pathway: benefits beyond cholesterol reduction? Lancet 1996; 347: 102–3.
  • Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996; 335: 1001–9.
  • Anderson TJ, Meredith IT, Yeung AC, Frei B, Selwyn AP, Ganz P. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. N Engl J Med 1995; 332: 488–93.
  • O'Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial func-tion within 1 month. Circulation 1997; 95: 1126–31.
  • Laufs U, Fata VL, Liao JK. Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem 1997; 272: 31725–9.
  • Fukumoto Y, Libby P, Rablcin E, Hill CC, Enomoto M, Hirouchi Y, et al. Statins alter smooth muscle cell accumula-tion and collagen content in established atheroma of watanabe heritable hyperlipidemic rabbits. Circulation 2001; 103: 993–9.
  • Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, et al. Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 2001; 344: 1959–65.
  • Yamazalci T, Komuro I, Kudoh S, Zou Y, Shiojima I, Mizuno T, et al. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res 1995; 77: 258–65.
  • Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, et al. Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 1996; 271: 3221–8.
  • Gillespie-Brown J, Fuller SJ, Bogoyevitch MA, Cowley S, Sugden PH. The mitogen-activated protein kinase kinase MEK1 stimulates a pattern of gene expression typical of the hypertrophic phenotype in rat ventricular cardiomyocytes. J Biol Chem 1995; 270: 28092–6.
  • Zou Y, Hiroi Y, Uozumi H, Talcimoto E, Toko H, Zhu W, et al. Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy. Circulation 2001; 104: 97–101.
  • Tapon N, Hall A. Rho, Rac and Cdc42 GTPases regulate the organization of the actin cytoskeleton. Curr Opin Cell Biol 1997; 9: 86–92.
  • Ridley AJ, Paterson FIF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70: 401–10.
  • Pracyk JB, Tanaka K, Hegland DD, Kim KS, Sethi R, Rovira II, et al. A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J Clin Invest 1998; 102: 929–37.
  • Hoshijima M, Sah VP, Wang Y, Chien KR, Brown JH. The low molecular weight GTPase Rho regulates myofibril forma-tion and organization in neonatal rat ventricular myocytes. Involvement of Rho kinase. J Biol Chem 1998; 273: 7725–30.
  • Wang SM, Tsai YJ, Jiang MJ, Tseng YZ. Studies on the function of rho A protein in cardiac myofibrillogenesis. J Cell Biochem 1997; 66: 43–53.
  • Thorburn J, Xu S, Thorburn A. MAP kinase- and Rho-dependent signals interact to regulate gene expression but not actin morphology in cardiac muscle cells. EMBO J 1997; 16: 1888–900.
  • Fuller SJ, Gillespie-Brown J, Sugden PH. Oncogenic src, raf, and ras stimulate a hypertrophic pattern of gene expression and increase cell size in neonatal rat ventricular myocytes. J Biol Chem 1998; 273: 18146–52.
  • Hunter JJ, Tanaka N, Rocicman HA, Ross J, Jr.„ Chien KR. Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem 1995; 270: 23173–8.
  • Sah VP, Minamisawa S, Tam SP, Wu TH, Dorn GW, Ross J, Jr., et al. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 1999; 103: 1627–34.
  • Sah VP, Hoshijima M, Chien KR, Brown JH. Rho is required for Galphaq and alpha1-adrenergic receptor signal-ing in cardiomyocytes. Dissociation of Ras and Rho path-ways. J Biol Chem 1996; 271: 31185–90.
  • Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, et al. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 2000; 105: 875–86.
  • Van Aelst L, D'Souza-Schorey C. Rho GTPases and signal-ing networks. Genes Dev 1997; 11: 2295–322.
  • Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279: 509–14.
  • Laufs U, La Fata V, Plutzky J, Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 1998; 97: 1129–35.
  • Laufs U, Liao JK. Post-transcriptional regulation of endo-thelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 1998; 273: 24266–71.
  • Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, et al. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 2001; 108: 1429–37.
  • Dechend R, Fiebeler A, Park JK, Muller DN, Theuer J, Mervaala E, et al. Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Circulation 2001; 104: 576–81.
  • Bell JP, Mosfer SI, Lang D, Donaldson F, Lewis MJ, Vitamin C. quinapril abrogate LVH and endothelial dysfunc-tion in aortic-banded guinea pigs. Am J Physiol Heart Circ Physiol 2001; 281: H1704–10.
  • Date MO, Morita T, Yamashita N, Nishida K, Yamaguchi 0, Higuchi Y, et al. The antioxidant N-2-mercaptopropionyl glycine attenuates left ventricular hypertrophy in in vivo murine pressure-overload model. J Am Coll Cardiol 2002; 39: 907–12.
  • Griendling ICK, Minieri CA, 011erenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141–8.
  • Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, et al. Role of NADH/NADPH oxidase-derived H202 in angiotensin II-induced vascular hypertrophy. Hyper-tension 1998; 32: 488–95.
  • Patterson C, Ruef J, Madamanchi NR, Barry-Lane P, Hu Z, Horaist C, et al. Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. Evidence that p47(phox) may participate in forming this oxidase in vitro and in vivo. J Biol Chem 1999; 274: 19814–22.
  • De Keulenaer GW, Alexander RW, Ushio-Fukai M, Ishizaka N, Griendling KK. Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. Biochem J 1998; 329: 653–7.
  • Marumo T, Schini-Kerth VB, Fisslthaler B, Busse R. Platelet-derived growth factor-stimulated superoxide anion production modulates activation of transcription factor NF-kappaB and expression of monocyte chemoattractant protein 1 in human aortic smooth muscle cells. Circulation 1997; 96: 2361–7.
  • Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91Ph0-containing NADPH oxidase in Angiotensin II-induced cardiac hypertrophy in mice. Circulation 2002; 105: 293–6.
  • Patel R, Nagueh SF, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen HA, et al. Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2001; 104: 317–24.
  • Indolfi C, Lorenzo ED, Perrino C, Stingone AM, Curcio A, Torella D, et al. Hydroxymethylglutaryl Coenzyme A reductase inhibitor simvastatin prevents cardiac hypertrophy induced by pressure overload and inhibits p21ras activation. Circulation 2002; 106: 2118–2124.
  • Wassmann S, Laufs U, Baumer AT, Muller K, Konkol C, Sauer H, et al. Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and Rac1 GTPase. Mol Pharmacol 2001; 59: 646–54.
  • Luo JD, Zhang WW, Zhang GP, Guan JX, Chen X. Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol 1999; 26: 903–8.
  • Wollert KC, Fiedler B, Gambaryan S, Smolenslci A, Heineke J, Butt E, et al. Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension 2002; 39: 87–92.
  • Ting HH, Timimi FTC, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1996; 97: 22–8.
  • Weyer RM, Luscher TF, Cosentino F, Rabelink TJ. Athero-sclerosis and the two faces of endothelial nitric oxide synthase. Circulation 1998; 97: 108–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.