418
Views
56
CrossRef citations to date
0
Altmetric
Research Article

Macrophage cholesterol transport: a critical player in foam cell formation

&
Pages 146-155 | Published online: 08 Jul 2009

References

  • Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell 2001; 104: 503–16.
  • Kruth HS. Macrophage foam cells and atherosclerosis. Front Biosci 2001; 6: D429–55.
  • Tabas I. Consequences of cellular cholesterol accumulation: basic concepts and physiological implications. J Clin Invest 2002; 110: 905–11.
  • Tall AR, Costet P, Wang N. Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest 2002; 110: 899–904.
  • Born GV. New determinants of the uptake of atherogenic plasma proteins by arteries. Basic Res Cardiol 1994; 89(Suppl 1): 103–6.
  • Proctor SD, Vine DF, Mamo JC. Arterial retention of apolipoprotein B48- and B100-containing lipoproteins in atherogenesis. Curr Opin Lipidol 2002; 13: 461–70.
  • Gaut JP, Heinecke JW. Mechanisms for oxidizing low-density lipoprotein. Insights from patterns of oxidation products in the artery wall and from mouse models of atherosclerosis. Trends Cardiovasc Med 2001; 11: 103–12.
  • Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, et al. Role of macrophage colony-stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am J Pathol 1997; 150: 1687–99.
  • Dansky HM, Charlton SA, Harper MM, Smith JD. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 1997; 94: 4642–6.
  • Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipopro-tein E. Proc Natl Acad Sci USA 1995; 92: 8264–8.
  • Goldstein JL, Brown MS. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 1977; 46: 897–930.
  • Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 1997; 89: 331–40.
  • Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive choles-terol deposition. Proc Natl Acad Sci USA 1979; 76: 333–7.
  • Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 1997; 8: 275–80.
  • de Winther MP, van Dijk KW, Havekes LM, Hofker MH. Macrophage scavenger receptor class A: A multifunctional receptor in atherosclerosis. Arterioscler Thromb V asc Biol 2000; 20: 290–7.
  • Moore KJ, Fitzgerald ML, Freeman MW. Peroxisome proliferator-activated receptors in macrophage biology: friend or foe? Curr Opin Lipidol 2001; 12: 519–27.
  • de Wmther MP, Gijbels MJ, van Dijk KW, van Gorp PJ, Suzuki H, Kodama T, et al. Scavenger receptor deficiency leads to more complex atherosclerotic lesions in APOE3/ Leiden transgenic mice. Atherosclerosis 1999; 144: 315–21.
  • Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, et al. The multiple roles of macrophage scavenger receptors (MSR) in vivo: resistance to atherosclerosis and susceptibility to infection in MSR knockout mice. J Ather-oscler Thromb 1997; 4: 1–11.
  • Devaraj S, Hugou I, Jialal I. Alpha-tocopherol decreases CD36 expression in human monocyte-derived macrophages. J Lipid Res 2001; 42: 521–7.
  • Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93: 229–40.
  • Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Anders-son LP, Mtshuler D, et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med 2001; 7: 41–7.
  • Nicholson AC, Han J, Febbraio M, Silversterin RL, Haj jar DP. Role of CD36, the macrophage class B scavenger receptor, in atherosclerosis. Ann N Y Acad Sci 2001; 947: 224–8.
  • Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs RH, Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271: 518–20.
  • Ji Y, Pan B, Wang N, Sun Y, Moya ML, Phillips MC, et al. Scavenger receptor BI promotes high density lipoprotein- mediated cellular cholesterol efflux. J Biol Chem 1997; 272: 20982–5.
  • Braun A, Trigatti BL, Post MJ, Sato K, Simons M, Edelberg JM, et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and pre-mature death in apolipoprotein E-deficient mice. Circ Res 2002; 90: 270–6.
  • Zha X, Tabas I, Leopold PL, Jones NL, Maxfield FR. Evidence for prolonged cell-surface contact of acetyl-LDL before entry into macrophages. Arterioscler Thromb V asc Biol 1997; 17: 1421–31.
  • Buton X, Mamdouh Z, Ghosh R, Du H, Kuriakose G, Beatini N, et al. Unique cellular events occurring during the initial interaction of macrophages with matrix-retained or methylated aggregated low density lipoprotein (LDL). Pro-longed cell-surface contact during which ldl-cholesteryl ester hydrolysis exceeds ldl protein degradation. J Biol Chem 1999; 274: 32112–21.
  • Tabas I. Cholesterol and phospholipid metabolism in macro-phages. Biochim Biophys Acta 2000; 1529: 164–74.
  • Blanchette-Mackie EJ. Intracellular cholesterol trafficking: role of the NPC1 protein. Biochim Biophys Acta 2000; 1486: 171–83.
  • Paterson MC, Vanier MT, Suzuki K, Morris JA, Carstea ED, Neufeld EB, et al. Niemann-Pick disease C: a lipid trafficking disorder. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. Metabolic and molecular bases of inherited disease, 7th edn./i> New York: McGraw-Hill; 2001: 2625–39.
  • Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, et al. Niemann-Pick Cl disease gene: homol-ogy to mediators of cholesterol homeostasis. Science 1997; 277: 228–31.
  • Naureciciene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, et al. Identification of FIE1 as the second gene of Niemann-Pick C disease. Science 2000; 290: 2298–301.
  • Chen W, Sun Y, Welch C, Gorelik A, Leventhal AR, Tabas I, et al. Preferential ATP-binding cassette transporter Al-mediated cholesterol efflux from late endosomes/lysosomes. J Biol Chem 2001; 276: 43564–9.
  • Lusa S, Blom TS, Eskelinen EL, Kuismanen E, Mansson JE, Simons K, et al. Depletion of rafts in late endocytic membranes is controlled by NPC1- dependent recycling of cholesterol to the plasma membrane. J Cell Sci 2001; 114(Pt 10): 1893–900.
  • Maxfield FR, Wustner D. Intracellular cholesterol transport. J Clin Invest 2002; 110: 891–8.
  • Hao M, Lin SX, Karylowski 0J, Wustner D, McGraw TE, Maxfield FR. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem 2002; 277: 609–17.
  • Hölttä-Vuori M, Tanhuanpää K, Mobius W, Somerharju P, Ikonen E. Modulation of cellular cholesterol transport and homeostasis by rabll. Mol Biol Cell 2002; 13: 3107–22.
  • van Meer G. Caveolin, cholesterol, and lipid droplets? J Cell Biol 2001; 152: F29–34.
  • Chang TY, Chang CC, Cheng D. Acyl-coenzyme A: choles-terol acyltransferase. Annu Rev Biochem 1997; 66: 613–38.
  • Cheng D, Chang CC, Qu X, Chang TY. Activation of acyl-coenzyme A: cholesterol acyltransferase by cholesterol or by oxysterol in a cell-free system. J Biol Chem 1995; 270: 685–95.
  • Xu XX, Tabas I. Lipoproteins activate acyl-coenzyme A: cholesterol acyltransferase in macrophages only after cellular cholesterol pools are expanded to a critical threshold level. J Biol Chem 1991; 266: 17040–8.
  • Rothblat GH, de la Llera-Moya M, Atger V, Kellner-Weibel G, Williams DL, Phillips MC. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res 1999; 40: 781–96.
  • Brown MS, Ho YK, Goldstein JL. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem 1980; 255: 9344–52.
  • Tabas I. Free cholesterol-induced cytotoxity. A possible contributing factor to macrophage foam cell necrosis in advanced atheroscelerotic lesions. Trends Cardiovasc Med 1997; 7: 256–63.
  • Yao PM, Tabas I. Free cholesterol loading of macrophages induces apoptosis involving the fas pathway. J Biol Chem 2000; 275: 23807–13.
  • Yao PM, Tabas I. Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem 2001; 276: 42468–76.
  • Zhang D, Tang W, Yao PM, Yang C, Xie B, Jackowslci S, et al. Macrophages deficient in CTP:Phosphocholine cytidylyl-transferase-alpha are viable under normal culture conditions but are highly susceptible to free cholesterol-induced death. Molecular genetic evidence that the induction of phosphati-dylcholine biosynthesis in free cholesterol-loaded macro-phages is an adaptive response. J Biol Chem 2000; 275: 35368–76.
  • Shio H, Haley NJ, Fowler S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. II. Morphometric analysis of lipid-filled lysosomes and lipid droplets in aortic cell populations. Lab Invest 1978; 39: 390–7.
  • Blom TS, Koivusalo M, Kuismanen E, Kostiainen R, Somerharju P, lkonen E. Mass spectrometric analysis reveals an increase in plasma membrane polyunsaturated phospho-lipid species upon cellular cholesterol loading. Biochemistry 2001; 40: 14635–44.
  • Feng B, Tabas I. ABCAl-mediated cholesterol efflux is defective in free cholesterol-loaded macrophagesmechanism involves enhanced ABCA1 degradation in a process requiring full NPC1 activity. J Biol Chem 2002; 4: 4.
  • Bjorkhem I. Do oxysterols control cholesterol homeostasis? J Clin Invest 2002; 110: 725–30.
  • Yokoyama S. Release of cellular cholesterol: molecular mechanism for cholesterol homeostasis in cells and in the body. Biochim Biophys Acta 2000; 1529: 231–44.
  • Han J, Haj jar DP, Zhou X, Gotto AM Jr, Nicholson AC. Regulation of peroxisome proliferator-activated receptor-gamma-mediated gene expression. A new mechanism of action for high density lipoprotein. J Biol Chem 2002; 277: 23582–6.
  • Schmitz G, Buechler C. ABCAl: regulation, trafficking and association with heteromeric proteins. Ann Med 2002; 34: 334–47.
  • Oram JF. ATP-binding cassette transporter Al and choles-terol trafficking. Curr Opin Lipidol 2002; 13: 373–81.
  • Bodzioch M, Orso E, Klucken J, Langmann T, Bottcher A, Diederich W, et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999; 22: 347–51.
  • Brooks-Wilson A, Marcil M, Clee SM, Zhang LH, Roomp K, van Dam M, et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nat Genet 1999; 22: 336–45.
  • Rust S, Rosier M, Funke H, Real J, Amoura Z, Piette JC, et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nat Genet 1999; 22: 352–5.
  • Schaefer EJ, Zech LA, Schwartz DE, Brewer HB Jr. Coronary heart disease prevalence and other clinical features in familial high-density lipoprotein deficiency (Tangier dis-ease). Ann Intern Med 1980; 93: 261–6.
  • Klucken J, Buchler C, Orso E, Kaminski WE, Porsch-Ozcurumez M, Liebisch G, et al. ABCG1 (ABC8), the human homolog of the Drosophila white gene, is a regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci USA 2000; 97: 817–22.
  • Rye KA, Duong M, Psaltis MK, Curtiss LK, Bonnet DJ, Stocker R, et al. Evidence that phospholipids play a key role in pre-beta ApoA-I formation and high-density lipoprotein remodeling. Biochemistry 2002; 41: 12538–45.
  • Attie AD, Kastelein JP, Hayden MR. Pivotal role of ABCA1 in reverse cholesterol transport influencing HDL levels and susceptibility to atherosclerosis. J Lipid Res 2001; 42: 1717–26.
  • Aiello RJ, Brees D, Bourassa PA, Royer L, Lindsey S, Coslcran T, et al. Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages. Arterio-sder Thromb V asc Biol 2002; 22: 630–7.
  • van Eck M, Bos IS, Kaminski WE, Orso E, Rothe G, Twisk J, et al. Leukocyte ABCA1 controls susceptibility to athero-sclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci USA 2002; 99: 6298–303.
  • Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988; 240: 622–30.
  • Larkin L, Khachigian LM, Jessup W. Regulation of apolipoprotein E production in macrophages. Int J Mol Med 2000; 6: 253–8.
  • Bellosta S, Mahley RW, Sanan DA, Murata J, Newland DL, Taylor JM, et al. Macrophage-specific expression of human apolipoprotein F. reduces atherosclerosis in hypercholes-terolemic apolipoprotein E-null mice. J Clin Invest 1995; 96: 2170–9.
  • Langer C, Huang Y, Cullen P, Wiesenhutter B, Mahley RW, Assmann G, et al. Endogenous apolipoprotein F. modulates cholesterol efflux and cholesteryl ester hydrolysis mediated by high-density lipoprotein-3 and lipid-free apolipoproteins in mouse peritoneal macrophages. J Mol Med 2000; 78: 217–27.
  • Deng J, Rudick V, Dory L. Lysosomal degradation and sorting of apolipoprotein F. in macrophages. J Lipid Res 1995; 36: 2129–40.
  • Ikemoto M, Furuchi T, Arai H, Inoue K. Dual pathways for the secretion of lysosomal cholesterol into a medium from cultured macrophages. J Biochem (Tokyo) 2000; 128: 251–9.
  • Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science 2001; 294: 1866–70.
  • Vu-Dac N, Schoonjans K, Laine B, Fruchart JC, Auwerx J, Staels B. Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome proliferator-activated receptor with its re-sponse element. J Biol Chem 1994; 269: 31012–8.
  • Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241–52.
  • Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, et al. A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogen-esis. Mol Cell 2001; 7: 161–71.
  • Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc Natl Acad Sci USA 2000; 97: 12097–102.
  • Laffitte BA, Repa JJ, Joseph SB, Wilpitz DC, Kast HR, Mangelsdorf DJ, et al. LXRs control lipid-inducible expres-sion of the apolipoprotein F. gene in macrophages and adipocytes. Proc Natl Acad Sci USA 2001; 98: 507–12.
  • Yokoyama C, Wang X, Briggs MR, Admon A, Wu J, Hua X, et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 1993; 75: 187–97.
  • Vosper H, Khoudoli G, Graham T, Palmer C. Peroxisome proliferator-activated receptor agonists, hyperlipidaemia, and atherosclerosis. Pharmacol Ther 2002; 95: 47.
  • Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98: 2088–93.
  • Fruchart JC. Peroxisome proliferator-activated receptor-alpha activation and high-density lipoprotein metabolism. Am J Cardiol 2001; 88: 24N–29.
  • Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998; 47: 507–14.
  • Delerive P, De Bosscher K, Besnard S, Vanden Berghe W, Peters JM, Gonzalez FJ, et al. Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J Biol Chem 1999; 274: 32048–54.
  • Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a nega-tive regulator of macrophage activation. Nature 1998; 391: 79–82.
  • Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, et al. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci USA 1999; 96: 266–71.
  • Lehmann JM, Kliewer SA, Moore LB, Smith-Oliver TA, Oliver BB, Su JL, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 1997; 272: 3137–40.
  • Berge ICE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000; 290: 1771–5.
  • Costet P, Luo Y, Wang N, Tall AR. Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor. J Biol Chem 2000; 275: 28240–5.
  • Repa JJ, Berge ICE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem 2002; 277: 18793–800.
  • Peet DJ, Turley SD, Ma W, Janowski BA, Lobaccaro JM, Hammer RE, et al. Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 1998; 93: 693–704.
  • Schultz JR, Tu H, Lulc A, Repa JJ, Medina JC, Li L, et al. Role of LXRs in control of lipogenesis. Genes Dev 2000; 14: 2831–8.
  • Brown AJ, Sun L, Feramisco JD, Brown MS, Goldstein JL. Cholesterol addition to ER membranes alters conformation of SCAP, the SREBP escort protein that regulates cholesterol metabolism. Mol Cell 2002; 10: 237–45.
  • Yang T, Espenshade PJ, Wright ME, Yabe D, Gong Y, Aebersold R, et al. Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER. Cell 2002; 110: 489–500.
  • Janowski BA. The hypocholesterolemic agent LY295427 up-regulates INSIG-1, identifying the INSIG-1 protein as a mediator of cholesterol homeostasis through SREBP. Proc Natl Acad Sci USA 2002; 99: 12675–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.