181
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Novel actions of leptin in the hippocampus

Pages 197-206 | Published online: 08 Jul 2009

References

  • Banks WA, Kastin AJ, Huang W, Jaspan JP, Maness LM. Leptin enters the brain by a saturable transport system inde-pendent of insulin. Peptides 1996; 17: 305–11.
  • Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D. Cerebrospinal fluid leptin concentrations: relationship to plasma leptin and to adiposity in humans. Nat Med 1996; 2: 589–93.
  • Morash B, Li A, Murphy P, Wilkinson M, Ur E. Leptin gene expression in the brain and pituitary gland. Endocrinology 1999; 140: 5995–7.
  • Ur E, Wilkinson DA, Morash BA, Wilkinson M. Leptin immunoreactivity is localised to neurons in the rat brain. Neuroendocrinology 2002; 75: 264–72.
  • Tartaglia LA, Dempslci M, Weng X, Deng N, Culpepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, Ob-R. Cell 1995; 83: 1263–71.
  • Lee GH, Proenca R, Montez JM, Carroll K, Darvishzadeh JG. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996; 379: 632–5.
  • Wang M-Y, Zhou YT, Newgard CB, Unger RH. A novel leptin receptor isoform in rat. FEBS Lett 1998; 392: 87–90.
  • Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996; 84: 491–5.
  • Ihle JN. Cytokine receptor signaling. Nature 1995; 377: 591–4.
  • Myers MG, White MF. Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol 1996; 36: 615–58.
  • Kile BT, Alexander WS. The suppressors of cytokine signaling (SOCS). Cell Mol Life Sci 2001; 58: 1627–35.
  • Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS. Identification of SOCS-3 as a potential mediator of leptin resisitance. Mol Cell 1998; 1: 619–25.
  • Yamashita T, Murakami T, Otani S, Kuwajima M, Shima K. Leptin receptor signal transduction: ObRa and ObRb of a fa type. Biochem Biophys Res Commun 1998; 246: 752–9.
  • Zhao AZ, Shinohara MM, Huang D, Shimizu M, Eldar-Finkeleman H, et al. Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagons in hepatocytes. J Biol Chem 2000; 275: 11348–54.
  • Hileman SM, Pieroz DD, Masuzaki H, Bjorbaek C, El-Haschimi K, Banks WA, et al. Characterisation of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity. Endocrinology 2002; 143: 775–83.
  • Baumann H, Morella ICK, White DW, Dembski M, Bailon PS, Kim H, et al. The full length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc Natl Acad Sci USA 1996; 93: 8374–8.
  • Bjorbaek C, Uotani S, da Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem 1997; 272: 32686–95.
  • Ghilardi N, Skoda RC. The leptin receptor activates janus tyrosine kinase 2 and signals for proliferation in a factor-dependent cell line. Mol Endocrinol 1997; 11: 393–9.
  • Carpenter LR, Farruggella TJ, Symes A, Karow ML, Yancopoulos GD, Stahl N. Enhancing leptin response by preventing 5H2-containing phosphatase 2 interaction with Ob receptor. Proc Natl Acad Sci USA 1998; 95: 6061–6.
  • Li C, Friedman JM. Leptin receptor activation of 5H2 domain-containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Proc Natl Acad Sci USA 1999; 96: 9677–82.
  • Morton NM, Emilsson V, Liu YL, Cawthorne MA. Leptin action in intestinal cells. J Biol Chem 1999; 273: 26194–201.
  • Vaisse C, Halaas JL, Horvath CM, Darnell JE, Stoffel M, Friedman JM. Leptin activation of STAT3 in the hypotha-lamus of wild type and ob/ob mice but not db/db mice. Nat Genet 1996; 14: 95–7.
  • Hubschle T, Thom E, Watson A, Roth J, Klaus S, Meyerhof W. Leptin-induced translocation of STAT3 immunoreactivity in hypothalamic nuclei involved in body weight regulation. J Neurosci 2001; 21: 2413–24.
  • Bjorbaek C, El-Haschitni K, Frantz JD, Flier JS. The role of 50053 in leptin signaling and resistance. J Biol Chem 1999; 274: 30059–65.
  • Bjorbaek C, Lavery HJ, Bates SH, Olson RK, Davies SM, Flier JS, et al. 50053 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem 2000; 275: 40649–57.
  • Harvey J, McKay NG, Walker KS, Van der Kaay J, Downes CP, Ashford MU. Essential role of phosphoinositide 3-kinase in leptin-induced KATp channel activation in the rat CRI-G1 insulinoma cell line. J Biol Chem 2000; 275: 4660–4669.
  • Berti L, Kellerer M, Capp E, Haring HU. Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: evidence for a PI 3-kinase mediated effect. Diabetologia. 1997; 40: 606–9.
  • Shanley LJ, Irving AJ, Harvey J. Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J Neurosci 2001; RC186: 1–6.
  • 'Malley D, Irving AJ, Ashford MU, Harvey J. Leptin inhibits epileptiform-like activity in rat hippocampal neurons via PI 3-kinase driven activation of BK channels. J Physiol 2002a; 545: 933–44.
  • Shanley q, Irving AJ, Rae MG, Ashford MU, Harvey J. Leptin inhibits rat hippocampal neurons via activation of large conductance Ca2± -activated K± channels. Nat Neurosci 2002b; 5: 299–300.
  • Mirshamsi S, Ashford ML. PI 3-kinase mediates leptin activation of KATp channels in rat acutely dispersed hypotha-lamic neurons. J Physiol 2001; 536: 18P.
  • Tanabe K, Okuya S, Tanizawa Y, Matsutani A, Oka Y. Leptin induces proliferation of pancreatic beta cell line, MIN6 through activation of mitogen-activated protein kinase. Biochem Biophys Res Commun 1997; 241: 765–8.
  • Takahashi Y, Okimura Y, Mizuno I, fida K, Takahashi T, Kaji H, et al. Leptin induces mitogen-activated protein kinase-dependent proliferation of C1H10T1/2 cells. J Biol Chem 1997; 272: 12897–900.
  • Banks AS, Davies SM, Bates SH, Myers MG. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 2000; 275: 14653–72.
  • Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science 1996; 274: 1185–8.
  • Spanswick D, Smith MA, Mirshamsi S, Routh VH, Ashford MU. Insulin activates ATP-sensitive ICE channels in hypothalamic neurons of lean, but not obese rats. Nat Neurosci. 2000; 3: 757–8.
  • Harvey J, Ashford MLJ. Insulin occludes leptin activation of ATP-sensitive K± channels in rat CRI-G1 insulin-secreting cells. J Physiol 1998; 511: 695–706.
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.
  • Pellymounter MA, Culen MJ, Baker MB, Hecht R, Winters D, Boone T, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995; 269: 540–3.
  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269: 543–6.
  • Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 1995; 269: 546–9.
  • Da Silva BA, Bjorbaek C, Uotani S, Flier JS. Functional properties of leptin receptor isoforms containing the gln > pro extracellular domain mutation of the fatty rat. Endocrinology 1998; 139: 3681–90.
  • Clement K, Vaisse C, Lahlous N, Cabroll S, Pelloux V. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392: 398–401.
  • Hakansson M-L, Hulting AL, Meister B. Expression of leptin receptor mRNA in the hypothalamic arcuate nucleus-relationship with NPY neurons. Neuroreport 1996; 7: 3087–3092.
  • Hakansson M-L, Brown H, Ghilardi N, Skoda RC, Meister BJ. Leptin receptor immunoreactivity in chemically-defined target neurons of the hypothalamus. J Neurosci 1998; 18: 559–572.
  • Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 1998; 395: 535–47.
  • Dawson R, Pellymounter M, Millard W, Liu S, Eppler B. Attenuation of leptin-mediated effects by monosodium glutamate-induced arcuate nucleus damage. Am J Physiol 1996; 273: E202–6.
  • Tang-Christensen M, Holst J, Hartmann B, Vrang N. The arcuate nucleus is pivotal in mediating the anorectic effects of centrally administered leptin. Neuroreport 1999; 10: 1183–7.
  • Savioz A, Charnay Y, Huguenin C, Graviou C, Greggio B, Bouras C. Expression of leptin receptor mRNA (long form slice variant) in the human cerebellum. Neuroreport 1997; 8: 3123–6.
  • Burguera B, Counc ME, Long J, Lamsam J, Laakso K, Jensen MD, et al. The long form of the leptin receptor (0b-Rb) is widely expressed in the human brain. Neuroendocrin-ology 2000; 71: 187–95.
  • Baskin DG, Seeley RJ, Kuijper JL, Lok S, Weigle DS, Erickson JC, et al. Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting. Diabetes 1998; 47: 538–43.
  • Lin S, Storlien LH, Huang XF. Leptin receptor, NPY, POMC mRNA expression in the diet-induced obese mouse brain. Brain Res 2000; 875: 89–95.
  • Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P. Localisation of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridiza-tion. FEBS Lett 1996; 387: 113–66.
  • Baskin DG, Schwartz MW, Seeley RJ, Woods SC, Porte D, Breininger JF, et al. Leptin receptor long-form slice variant protein expression in neuron cell bodies of the brain and colocalisation with neuropeptide Y mRNA in the arcuate nucleus. J Histochem Cytochem 1999; 47: 353–62.
  • Hating XF, Koutcherov I, Lin S, Wang HQ, Storlien L. Localisation of leptin receptor mRNA expression in mouse brain. Neuroreport 1996; 7: 2635–8.
  • Lin S, Huang XF. Fasting increases leptin receptor mRNA expression in lean but not obese (ob/ob) mouse brain. Neuroreport 1997; 8: 3625–9.
  • Banks WA, Clever CM, Farrell CL. Partial saturation and regional variation in the blood-to-brain transport of leptin in normal weight mice. Am J Physiol 2000; 278: E1158–65.
  • Proulx K, Clavel S, Nault G, Richard D, Walker CD. High neonatal leptin exposure enhances brain GR expression and feedback efficacy on the adrenocortical axis of developing rats. Endocrinology 2001; 142: 4607–16.
  • Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993; 361: 31–9.
  • Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin-receptor deficient rodents. Neurosci 2002; 113: 607–15.
  • Lau LF, Huganir RL. Differential tyrosine phosphorylation of N-methyl-D-aspartate receptor subunits. J Biol Chem 1995; 270: 20036–41.
  • Moon IS, Apperson ML, Kennedy MB. The major tyrosine phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. Proc Natl Acad Sci USA 1994; 91: 3954–8.
  • Salter MW. Src, N-methyl-D-aspartate (NMDA) receptors and synaptic plasticity. Biochem Pharmacol 1998; 56: 789–98.
  • Herron CE, Lester RA, Coati EJ, Collingridge GL. Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism. Nature 1986; 322: 265–8.
  • Gispen WH, Biessels GJ. Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci 2000; 23: 542–9.
  • Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, et al. Place learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats. Diabetes 1996; 43: 500–6.
  • Kamal A, Biessels GJ, Urban IJ, Gispen WH. Hippocampal synaptic plasticity in streptozotocin-diabetic rats: impairment of long-term potentiation and facilitation of long-term depression. Neuroscience 1999; 90: 737–45.
  • Sinha MK, Opentanova I, Ohannesian JP, Kolaczynski JW, Heiman ML, Hale J, et al. Evidence of free and bound leptin in human circulation: studies in lean and obese subjects and during short term fasting. J Clin Invest 1996; 98: 1277–82.
  • Wu M, Zhang Z, Leranth C, Xu C, van den Pol AN, Alreja M. Hypocretin increases impulse flow in the septohippocam-pal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition. J Neurosci 2002; 22: 7754–65.
  • Keiffer TJ, Heller RS, Leech CA, Holz GG, Habener J. Leptin suppression of insulin secretion by activation of ATP-sensitive K± channels in pancreatic beta cells. Diabetes 1997; 46: 1087–93.
  • Harvey J, McKenna F, Herson PS, Spanswick D, Ashford Leptin activates ATP-sensitive potassium channels in the rat insulin-secreting cell line, CRI-G1. J Physiol 1997; 504: 527–35.
  • Spanswick D, Smith MA, Groppi V, Logan SD, Ashford Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature 1997; 390: 521–5.
  • Latorre R. Ion channel modulation by divalent cations. Acta Physiol Scand Suppl 1989; 582: 13.
  • Alger BE, Williamson AA. A transient calcium-dependent potassium component of the epileptiform burst after-hyper-polarisation in rat hippocampus. J Physiol 1988; 399: 191–205.
  • Shao LR, Halvorsrud R, Borg-Graham L, Storm JF. The role of BK-type Ca2±-dependent K± channels in spike broad-ening during repetitive firing in rat hippocampal pyramidal cells. J Physiol 1999; 521: 135–46.
  • Abele AE, Scholz KP, Scholz NM, Miller RJ. Excitotoxicity induced by enhanced neurotransmission in cultured hippo-campal pyramidal neurons. Neuron 1990; 4: 413–9.
  • McLeod JR, Shen M, Kim DJ, Thayer SA. Neurotoxicity mediated by aberrant patterns of synaptic activity between rat hippocampal neurons in culture. J Neurophysiol 1998; 80: 2688–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.