1,843
Views
52
CrossRef citations to date
0
Altmetric
SPECIAL SECTION ON STEM CELLS: REVIEW ARTICLE

Stem cell‐based therapy for Parkinson's disease

, , &
Pages 487-498 | Published online: 08 Jul 2009

References

  • Braak H., Ghebremedhin E., Rub U., Bratzke H., Del Tredici K. Stages in the development of Parkinson's disease‐related pathology. Cell Tissue Res 2004; 318: 121–34
  • Samii A., Nutt J. G., Ransom B. R. Parkinson's disease. Lancet 2004; 363: 1783–93
  • Olanow C. W. The scientific basis for the current treatment of Parkinson's disease. Annu Rev Med 2004; 55: 41–60
  • Brotchie J. M., Lee J., Venderova K. Levodopa‐induced dyskinesia in Parkinson's disease. J Neural Transm 2005; 112: 359–91
  • Lang A. E., Obeso J. A. Challenges in Parkinson's disease: restoration of the nigrostriatal dopamine system is not enough. Lancet Neurol 2004; 3: 309–16
  • Lindvall O., Hagell P. Cell therapy and transplantation in Parkinson's disease. Clin Chem Lab Med 2001; 39: 356–61
  • Hagell P., Brundin P. Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 2001; 60: 741–52
  • Olanow C. W., Kordower J. H., Freeman T. B. Fetal nigral transplantation as a therapy for Parkinson's disease. Trends Neurosci 1996; 19: 102–9
  • Clarkson E. D., Freed C. R. Development of fetal neural transplantation as a treatment for Parkinson's disease. Life Sci 1999; 65: 2427–37
  • Itakura T., Uematsu Y., Nakao N., Nakai E., Nakai K. Transplantation of autologous sympathetic ganglion into the brain with Parkinson's disease. Long‐term follow‐up of 35 cases. Stereotact Funct Neurosurg 1997; 69((Pt 2))112–5
  • Nakao N., Shintani‐Mizushima A., Kakishita K., Itakura T. The ability of grafted human sympathetic neurons to synthesize and store dopamine: a potential mechanism for the clinical effect of sympathetic neuron autografts in patients with Parkinson's disease. Exp Neurol 2004; 188: 65–73
  • Arjona V., Minguez‐Castellanos A., Montoro R. J., Ortega A., Escamilla F., Toledo‐Aral J. J., et al. Autotransplantation of human carotid body cell aggregates for treatment of Parkinson's disease. Neurosurgery 2003; 53: 321–8; discussion 328–30
  • Deacon T., Schumacher J., Dinsmore J., Thomas C., Palmer P., Kott S., et al. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson's disease. Nat Med 1997; 3: 350–3
  • Schumacher J. M., Ellias S. A., Palmer E. P., Kott H. S., Dinsmore J., Dempsey P. K., et al. Transplantation of embryonic porcine mesencephalic tissue in patients with PD. Neurology 2000; 54: 1042–50
  • Weiss R. A. Xenografts and retroviruses. Science 1999; 285: 1221–2
  • Lindvall O., Kokaia Z., Martinez‐Serrano A. Stem cell therapy for human neurodegenerative disorders‐how to make it work. Nat Med 2004; 10(Suppl)S42–50
  • Bjorklund A., Dunnett S. B., Brundin P., Stoessl A. J., Freed C. R., Breeze R. E., et al. Neural transplantation for the treatment of Parkinson's disease. Lancet Neurol 2003; 2: 437–45
  • Arenas E. Stem cells in the treatment of Parkinson's disease. Brain Res Bull 2002; 57: 795–808
  • Mendez I., Sanchez‐Pernaute R., Cooper O., Vinuela A., Ferrari D., Bjorklund L., et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain 2005; 128((Pt 7))1498–510
  • Thompson L., Barraud P., Andersson E., Kirik D., Bjorklund A. Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci 2005; 25: 6467–77
  • Brundin P., Nilsson O. G., Strecker R. E., Lindvall O., Astedt B., Bjorklund A. Behavioural effects of human fetal dopamine neurons grafted in a rat model of Parkinson's disease. Exp Brain Res 1986; 65: 235–40
  • Elsworth J. D., Brittan M. S., Taylor J. R., Sladek J. R Jr., al‐Tikriti M. S., Zea‐Ponce Y., et al. Restoration of dopamine transporter density in the striatum of fetal ventral mesencephalon‐grafted, but not sham‐grafted, MPTP‐treated parkinsonian monkeys. Cell Transplant 1996; 5: 315–25
  • Polgar S., Morris M. E., Reilly S., Bilney B., Sanberg P. R. Reconstructive neurosurgery for Parkinson's disease: a systematic review and preliminary meta‐analysis. Brain Res Bull 2003; 60: 1–24
  • Lindvall O., Hagell P. Clinical observations after neural transplantation in Parkinson's disease. Prog Brain Res 2000; 127: 299–320
  • Piccini P., Brooks D. J., Bjorklund A., Gunn R. N., Grasby P. M., Rimoldi O., et al. Dopamine release from nigral transplants visualized in vivo in a Parkinson's patient. Nat Neurosci 1999; 2: 1137–40
  • Olanow C. W., Goetz C. G., Kordower J. H., Stoessl A. J., Sossi V., Brin M. F., et al. A double‐blind controlled trial of bilateral fetal nigral transplantation in Parkinson's disease. Ann Neurol 2003; 54: 403–14
  • Freed C. R., Greene P. E., Breeze R. E., Tsai W. Y., DuMouchel W., Kao R., et al. Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med 2001; 344: 710–9
  • Hagell P., Piccini P., Bjorklund A., Brundin P., Rehncrona S., Widner H., et al. Dyskinesias following neural transplantation in Parkinson's disease. Nat Neurosci 2002; 5: 627–8
  • Kordower J. H., Freeman T. B., Snow B. J., Vingerhoets F. J., Mufson E. J., Sanberg P. R., et al. Neuropathological evifdence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N Engl J Med 1995; 332: 1118–24
  • Lindvall O., Bjorklund A. Cell therapy in Parkinson's disease. NeuroRx 2004; 1: 382–93
  • Winkler C., Kirik D., Bjorklund A. Cell transplantation in Parkinson's disease: how can we make it work?. Trends Neurosci 2005; 28: 86–92
  • Olanow C. W., Fahn S. Fetal nigral transplantation as a therapy for Parkinson's disease. Restorative therapies in Parkinson's disease, C. W Olanow, P Brundin. Springer Science, Business Media B.V, New York, NYUSA 2005, In press
  • Ma Y., Feigin A., Dhawan V., Fukuda M., Shi Q., Greene P., et al. Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol 2002; 52: 628–34
  • Isacson O., Bjorklund L. M., Schumacher J. M. Toward full restoration of synaptic and terminal function of the dopaminergic system in Parkinson's disease by stem cells. Ann Neurol 2003; 53(Suppl 3)S135–46; discussion S146–8
  • Cenci M. A., Hagell P. Dyskinesias and neural grafting in Parkinson's disease. Restorative therapies in Parkinson's disease, C. W Olanow, P Brundin. Springer Science, Business Media B.V, New York, NYUSA 2005, In press
  • Boer G. J. Ethical issues in neurografting of human embryonic cells. Theor Med Bioeth 1999; 20: 461–75
  • Studer L., Tabar V., McKay R. D. Transplantation of expanded mesencephalic precursors leads to recovery in bparkinsonian rats. Nat Neurosci 1998; 1: 290–5
  • Martinez‐Serrano A., Rubio F. J., Navarro B., Bueno C., Villa A. Human neural stem and progenitor cells: in vitro and in vivo properties, and potential for gene therapy and cell replacement in the CNS. Curr Gene Ther 2001; 1: 279–99
  • Frisen J., Johansson C. B., Lothian C., Lendahl U. Central nervous system stem cells in the embryo and adult. Cell Mol Life Sci 1998; 54: 935–45
  • Westerlund U., Moe M. C., Varghese M., Berg‐Johnsen J., Ohlsson M., Langmoen I. A., et al. Stem cells from the adult human brain develop into functional neurons in culture. Exp Cell Res 2003; 289: 378–83
  • Lie D. C., Song H., Colamarino S. A., Ming G. L., Gage F. H. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 2004; 44: 399–421
  • Zhao M., Momma S., Delfani K., Carlen M., Cassidy R. M., Johansson V. B., et al. Evidence for neurogenesis in the adultmammalian substantia nigra. Proc Natl Acad Sci U S A 2003; 100: 7925–30
  • Lie D. C., Dziewczapolski G., Willhoite A. R., Kaspar B. K., Shults C. W., Gage F. H. The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 2002; 22: 6639–49
  • Cooper, Isacson O. Intrastriatal transforming growth factor alpha delivery to a model of Parkinson's disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J Neurosci 2004; 24: 8924–31
  • Frielingsdorf H., Schwarz K., Brundin P., Mohapel P. No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 2004; 101: 10177–82
  • Mohapel P., Brundin P. Harnessing endogenous stem cells to treat neurodegenerative disorders of the basal ganglia. Parkinsonism Relat Disord 2004; 10: 259–64
  • Roybon L., Christophersen N. S., Brundin P., Li J. Y. Stem cell therapy for Parkinson's disease: where do we stand?. Cell Tissue Res 2004; 318: 261–73
  • Toma J. G., Akhavan M., Fernandes K. J., Barnabe‐Heider F., Sadikot A., Kaplan D. R., et al. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 2001; 3: 778–84
  • Jiang Y., Jahagirdar B. N., Reinhardt R. L., Schwartz R. E., Keene C. D., Ortiz‐Gonzalez X. R., et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–9
  • Woodbury D., Schwarz E. J., Prockop D. J., Black I. B. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61: 364–70
  • Deng W., Obrocka M., Fischer I., Prockop D. J. In vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun 2001; 282: 148–52
  • Brazelton T. R., Rossi F. M., Keshet G. I., Blau H. M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000; 290: 1775–9
  • Mezey E., Chandross K. J., Harta G., Maki R. A., McKercher S. R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290: 1779–82
  • Vitry S., Bertrand J. Y., Cumano A., Dubois‐Dalcq M. Primordial hematopoietic stem cells generate microglia but not myelin‐forming cells in a neural environment. J Neurosci 2003; 23: 10724–31
  • Ying Q. L., Nichols J., Evans E. P., Smith A. G. Changing potency by spontaneous fusion. Nature 2002; 416: 545–8
  • Weimann J. M., Charlton C. A., Brazelton T. R., Hackman R. C., Blau H. M. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci U S A 2003; 100: 2088–93
  • Wang X., Willenbring H., Akkari Y., Torimaru Y., Foster M., Al‐Dhalimy M., et al. Cell fusion is the principal source of bone‐marrow‐derived hepatocytes. Nature 2003; 422: 897–901
  • Terada N., Hamazaki T., Oka M., Hoki M., Mastalerz D. M., Nakano Y., et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–5
  • Priller J., Persons D. A., Klett F. F., Kempermann G., Kreutzberg G. W., Dirnagl U. Neogenesis of cerebellar Purkinje neurons from gene‐marked bone marrow cells in vivo. J Cell Biol 2001; 155: 733–8
  • Alvarez‐Dolado M., Pardal R., Garcia‐Verdugo J. M., Fike J. R., Lee H. O., Pfeffer K., et al. Fusion of bone‐marrow‐derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968–73
  • Henningson C. T Jr., Stanislaus M. A., Gewirtz A. M. 28. Embryonic and adult stem cell therapy. J Allergy Clin Immunol 2003; 111((2 Suppl))S745–53
  • Henon P. R. Human embryonic or adult stem cells: an overview on ethics and perspectives for tissue engineering. Adv Exp Med Biol 2003; 534: 27–45
  • Zhang S. C., Wernig M., Duncan I. D., Brustle O., Thomson J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 2001; 19: 1129–33
  • Carpenter M. K., Inokuma M. S., Denham J., Mujtaba T., Chiu C. P., Rao M. S. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 2001; 172: 383–97
  • Schulz T. C., Palmarini G. M., Noggle S. A., Weiler D. A., Mitalipova M. M., Condie B. G. Directed neuronal differentiation of human embryonic stem cells. BMC Neurosci 2003; 4: 27
  • Park S., Lee K. S., Lee Y. J., Shin H. A., Cho H. Y., Wang K. C., et al. Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett 2004; 359: 99–103
  • Reubinoff B. E., Itsykson P., Turetsky T., Pera M. F., Reinhartz E., Itzik A., et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 2001; 19: 1134–40
  • Perrier A. L., Tabar V., Barberi T., Rubio M. E., Bruses J., Topf N., et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 2004; 101: 12543–8
  • Zeng X., Cai J., Chen J., Luo Y., You Z. B., Fotter E., et al. Dopaminergic differentiation of human embryonic stem cells. Stem Cells 2004; 22: 925–40
  • Kawasaki H., Suemori H., Mizuseki K., Watanabe K., Urano F., Ichinose H., et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell‐derived inducing activity. Proc Natl Acad Sci U S A 2002; 99: 1580–5
  • Takagi Y., Takahashi J., Saiki H., Morizane A., Hayashi T., Kishi Y., et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 2005; 115: 102–9
  • Park C. H., Minn Y. K., Lee J. Y., Choi D. H., Chang M. Y., Shim J. W., et al. In vitro and in vivo analyses of human embryonic stem cell‐derived dopamine neurons. J Neurochem 2005; 92: 1265–76
  • Farkas L. M., Dunker N., Roussa E., Unsicker K., Krieglstein K. Transforming growth factor‐beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 2003; 23: 5178–86
  • Schulz T. C., Noggle S. A., Palmarini G. M., Weiler D. A., Lyons I. G., Pensa K. A., et al. Differentiation of human embryonic stem cells to dopaminergic neurons in serum‐free suspension culture. Stem Cells 2004; 22: 1218–38
  • Kim J. H., Auerbach J. M., Rodriguez‐Gomez J. A., Velasco I., Gavin D., Lumelsky N., et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 2002; 418: 50–6
  • Barberi T., Klivenyi P., Calingasan N. Y., Lee H., Kawamata H., Loonam K., et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 2003; 21: 1200–7
  • Ben‐Hur T., Idelson M., Khaner H., Pera M., Reinhartz E., Itzik A., et al. Transplantation of human embryonic stem cell‐derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 2004; 22: 1246–55
  • Brundin P., Karlsson J., Emgard M., Schierle G. S., Hansson O., Petersen A., et al. Improving the survival of grafted dopaminergic neurons: a review over current approaches. Cell Transplant 2000; 9: 179–95
  • O'Shea K. S. Directed differentiation of embryonic stem cells: genetic and epigenetic methods. Wound Repair Regen 2001; 9: 443–59
  • Li M., Pevny L., Lovell‐Badge R., Smith A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr Biol 1998; 8: 971–4
  • Aubert J., Stavridis M. P., Tweedie S., O'Reilly M., Vierlinger K., Li M., et al. Screening for mammalian neural genes via fluorescence‐activated cell sorter purification of neural precursors from Sox1‐gfp knock‐in mice. Proc Natl Acad Sci U S A 2003; 100(Suppl 1)11836–41
  • Bjorklund L. M., Sanchez‐Pernaute R., Chung S., Andersson T., Chen I. Y., McNaught K. S., et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 2002; 99: 2344–9
  • Morizane A., Takahashi J., Takagi Y., Sasai Y., Hashimoto N. Optimal conditions for in vivo induction of dopaminergic neurons from embryonic stem cells through stromal cell‐derived inducing activity. J Neurosci Res 2002; 69: 934–9
  • Kawasaki H., Mizuseki K., Nishikawa S., Kaneko S., Kuwana Y., Nakanishi S., et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell‐derived inducing activity. Neuron 2000; 28: 31–40
  • Tabar V., Panagiotakos G., Greenberg E. D., Chan B. K., Sadelain M., Gutin P. H., et al. Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain. Nat Biotechnol 2005; 23: 601–6
  • Bieberich E., Silva J., Wang G., Krishnamurthy K., Condie B. G. Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell‐derived neural transplants. J Cell Biol 2004; 167: 723–34
  • Bieberich E., MacKinnon S., Silva J., Noggle S., Condie B. G. Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR‐4) and simultaneous elevation of endogenous ceramide. J Cell Biol 2003; 162: 469–79
  • Anisimov S. V., Tarasov K. V., Riordon D., Wobus A. M., Boheler K. R. SAGE identification of differentiation responsive genes in P19 embryonic cells induced to form cardiomyocytes in vitro. Mech Dev 2002; 117: 25–74
  • Parish C. L., Parisi S., Persico M. G., Arenas E., Minchiotti G. Cripto as a target for improving embryonic stem cell‐based therapy in Parkinson's disease. Stem Cells 2005; 23: 471–6
  • Brundin P., Strecker R. E., Widner H. E., Clarke D. J., Nilsson O. G., Astedt B., et al. Human fetal dopamine neurons grafted in a rat model of Parkinson's disease: immunological aspects, spontaneous and drug‐induced behaviour, and dopamine release. Exp Brain Res 1988; 70: 192–208
  • Spector D. H., Boss B. D., Strecker R. E. A model three‐dimensional culture system for mammalian dopaminergic precursor cells: application for functional intracerebral transplantation. Exp Neurol 1993; 124: 253–64
  • Freeman T. B., Brundin P. Important aspects of surgical methodology for transplantation in Parkinson's disease. Restorative therapies in Parkinson's disease, C. W Olanow, P Brundin. Springer Science, Business Media B.V, New York, NYUSA 2005, In press
  • Hwang W. S., Ryu Y. J., Park J. H., Park E. S., Lee E. G., Koo J. M., et al. Evidence of a Pluripotent Human Embryonic Stem Cell Line Derived from a Cloned Blastocyst. Science 2004; 303: 1669–74
  • Hochedlinger K., Rideout W. M., Kyba M., Daley G. Q., Blelloch R., Jaenisch R. Nuclear transplantation, embryonic stem cells and the potential for cell therapy. Hematol J 2004; 5(Suppl 3)S114–7
  • Hauser R. A., Freeman T. B., Snow B. J., Nauert M., Gauger L., Kordower J. H., et al. Long‐term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch Neurol 1999; 56: 179–87
  • Lindvall O., Rehncrona S., Brundin P., Gustavii B., Astedt B., Widner H., et al. Neural transplantation in Parkinson's disease: the Swedish experience. Prog Brain Res 1990; 82: 729–34
  • Draper J. S., Smith K., Gokhale P., Moore H. D., Maltby E., Johnson J., et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 2004; 22: 53–4
  • Inzunza J., Gertow K., Stromberg M. A., Matilainen E., Blennow E., Skottman H., et al. Derivation of human embryonic stem cell lines in serum replacement medium using postnatal human fibroblasts as feeder cells. Stem Cells 2005; 23: 544–9
  • Amit M., Shariki C., Margulets V., Itskovitz‐Eldor J. Feeder layer‐ and serum‐free culture of human embryonic stem cells. Biol Reprod 2004; 70: 837–45
  • Amit M., Margulets V., Segev H., Shariki K., Laevsky I., Coleman R., et al. Human feeder layers for human embryonic stem cells. Biol Reprod 2003; 68: 2150–6
  • Reubinoff B. E., Pera M. F., Fong C. Y., Trounson A., Bongso A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 2000; 18: 399–404
  • Thomson J. A., Itskovitz‐Eldor J., Shapiro S. S., Waknitz M. A., Swiergiel J. J., Marshall V. S., et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.