611
Views
59
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Human mesenchymal stem cells do not differentiate into cardiomyocytes in a cardiac ischemic xenomodel

, , , , , , , & show all
Pages 144-153 | Received 30 Aug 2005, Accepted 17 Oct 2005, Published online: 26 Aug 2009

References

  • Braunwald E., Pfeffer M. A. Ventricular enlargement and remodeling following acute myocardial infarction: mechanisms and management. Am J Cardiol 1991; 68: 1D–6
  • Beltrami A. P., Urbanek K., Kajstura J., Yan S. M., Finato N., Bussani R., et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Eng J Med 2001; 344: 1750–7
  • Sakai T., Li R‐K., Weisel R. D., Mickle D. A., Jia Z. Q., Tomita S., et al. Fetal cell transplantation: a comparison of three cell types. J Thorac Cardiovasc Surg 1999; 118: 715–25
  • Taylor D. A., Atkins B. Z., Hungspreugs P., Jones T. R., Reedy M. C., Hutcheson K. A., et al. Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat Med 1998; 4: 929–33
  • Menasche P., Hagege A. A., Scorsin M., Pouzet B., Desnos M., Duboc D., et al. Myoblast transplantation for heart failure. Lancet 2001; 357: 279–80
  • Scorsin M., Hagege A., Vilquin J. T., Fiszman M., Marotte F., Samuel J. L., et al. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg 2000; 119: 1169–75
  • Li R. K., Weisel R. D., Mickle D. A., Jia Z. Q., Kim E. J., Sakai T., et al. Autologous porcine heart cell transplantation improved heart function after a myocardial infarction. J Thorac Cardiovasc Surg 2000; 119: 62–8
  • Tomita S., Li R. K., Weisel R. D., Mickle D. A., Kim E. J., Sakai T., et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999; 100((suppl II))II247–56
  • Toma C., Pittenger M. F., Cahill K. S., Byrne B. J., Kessler P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002; 105: 93–8
  • Min J. Y., Yang Y., Sullivan M. F., Ke Q., Converso K. L., Chen Y., et al. Long‐term improvement of cardiac function by transplantation of embryonic stem cell in post‐infarcted rats. J Thorac Cardiovasc Surg 2003; 125: 361–9
  • Pittenger M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Douglas R., Mosca J. D., et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–7
  • Grinnemo K. H., Månsson A., Dellgren G., Klingberg D., Wardell E., Drvota V., et al. Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J Thorac Cardiovasc Surg 2004; 127: 1293–300
  • Guide for the care and use of laboratory animals. National Academy Press, Washington [DC] 1996, 140 pages
  • Le Blanc K., Tammik L., Sundberg B., Haynesworth S. E., Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11–20
  • El Oakley R. M., Ooi O. C., Bongso A., Yacoub M. H. Myocyte transplantation for myocardial repair: a few good cells can mend a broken heart. Ann Thorac Surg 2001; 71: 1724–33
  • Rohwedel J., Guan K., Hegert C., Wobus A. M. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryo toxicity studies: present state and future prospects. Toxicol In Vitro 2001; 15: 741–53
  • Pittenger M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Douglas R., Mosca J. D., et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–7
  • Mangi A. A., Noiseux N., Kong D., He H., Rezvani M., Ingwall J. S., et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003; 9: 1195–201
  • Le Blanc K., Tammik C., Rosendahl K., Zetterberg E., Ringden O. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31: 890–6
  • Klyushnenkova E., Mosca J. D., Zernetkina V., Majumdar M. K., Beggs K. J., Simonetti D. W., et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 2005; 12: 47–57
  • Le Blanc K., Gotherstrom C., Ringden O., Hassan M., McMahon R., Horwitz E., et al. Fetal mesenchymal stem‐cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 2005; 79: 1607–14
  • Liechty K. W., MacKenzie T. C., Shaaban A. F., Radu A., Moseley A. M., Deans R., et al. Human mesenchymal stem cells engraft and demonstrate site‐specific differentiation after in utero transplantation in sheep. Nat Med 2000; 6: 1282–6
  • Saito T., Kuang J. Q., Bi ttira B., Al‐Khaldi A., Chiu R. C. Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 2002; 74: 19–24
  • Le Blanc K., Rasmusson I., Gotherstrom C., Seidel C., Sundberg B., Sundin M., et al. Mesenchymal stem cells inhibit the expression of IL‐2 receptor (CD25) and CD38 on phytohemagglutinin activated lymphocytes. Scand J Immunol 2004; 60: 307–15
  • Rasmusson I., Ringdén O., Sundberg B., Le Blanc K. Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Exp Cell Res 2005; 305: 33–41
  • Le Blanc K., Rasmusson I., Sundberg B., Gotherstrom C., Hassan M., Uzunel M., et al. Treatment of severe acute graft‐versus‐host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–41
  • Zhang Z., Bédard E., Luo Y., Wang H., Deng S., Kelvin D., et al. Animals models in xenotransplantation (review). Expert Opin Investig Drug 2000; 9: 2051–68
  • Aggarwal S., Pittenger M. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815–22
  • Murry C. E., Soonpaa M. H., Reinecke H., Nakajima H., Nakajima H. O., Tubart M., et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 2004; 428: 664–8
  • Nygren J. M., Jovinge S., Breitbach M., Sawen P., Roll W., Hescheler J., et al. Bone marrow‐derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 2004; 10: 494–501

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.