245
Views
20
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Metabolic syndrome aggravates the increased endothelial activation and low‐grade inflammation in subjects with familial low HDL

, , &
Pages 229-238 | Received 30 Sep 2005, Accepted 12 Dec 2005, Published online: 26 Aug 2009

References

  • Genest J. J., Martin‐Munley S. S., McNamara J. R., Ordovas J. M., Jenner J., Myers R. H., et al. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 1992; 85: 2025–33
  • Rashid S., Uffelman K. D., Lewis G. F. The mechanism of HDL lowering in hypertriglyceridemic, insulin‐resistant states. J Diabetes Complications 2002; 16: 24–8
  • Yudkin J. S., Stehouwer C. D., Emeis J. J., Coppack S. W. C‐reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue?. Arterioscler Thromb Vasc Biol 1999; 19: 972–8
  • Festa A., D'Agostino R., Jr., Howard G., Mykkanen L., Tracy R. P., Haffner S. M. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102: 42–7
  • Leinonen E., Hurt‐Camejo E., Wiklund O., Hulten L. M., Hiukka A., Taskinen M. R. Insulin resistance and adiposity correlate with acute‐phase reaction and soluble cell adhesion molecules in type 2 diabetes. Atherosclerosis 2003; 166: 387–94
  • Lee W. Y., Park J. S., Noh S. Y., Rhee E. J., Sung K. C., Kim B. S., et al. C‐reactive protein concentrations are related to insulin resistance and metabolic syndrome as defined by the ATP III report. Int J Cardiol 2004; 97: 101–6
  • Van Lenten B. J., Navab M., Shih D., Fogelman A. M., Lusis A. J. The role of high‐density lipoproteins in oxidation and inflammation. Trends Cardiovasc Med 2001; 11: 155–61
  • Tietge U. J., Maugeais C., Lund‐Katz S., Grass D., deBeer F. C., Rader D. J. Human secretory phospholipase A2 mediates decreased plasma levels of HDL cholesterol and apoA‐I in response to inflammation in human apoA‐I transgenic mice. Arterioscler Thromb Vasc Biol 2002; 22: 1213–8
  • Oram J. F. HDL apolipoproteins and ABCA1: partners in the removal of excess cellular cholesterol. Arterioscler Thromb Vasc Biol 2003; 23: 720–7
  • Barter P. J., Nicholls S., Rye K. A., Anantharamaiah G. M., Navab M., Fogelman A. M. Antiinflammatory Properties of HDL. Circ Res 2004; 95: 764–72
  • Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med 1999; 340: 115–26
  • Blankenberg S., Barbaux S., Tiret L. Adhesion molecules and atherosclerosis. Atherosclerosis 2003; 170: 191–203
  • Cockerill G. W., Huehns T. Y., Weerasinghe A., Stocker C., Lerch P. G., Miller N. E., et al. Elevation of plasma high‐density lipoprotein concentration reduces interleukin‐1‐induced expression of E‐selectin in an in vivo model of acute inflammation. Circulation 2001; 103: 108–12
  • Calabresi L., Gomaraschi M., Villa B., Omoboni L., Dmitrieff C., Franceschini G. Elevated soluble cellular adhesion molecules in subjects with low HDL‐cholesterol. Arterioscler Thromb Vasc Biol 2002; 22: 656–61
  • Lundman P., Eriksson M. J., Silveira A., Hansson. L. O., Pernow J., Ericsson C. G., et al. Relation of hypertriglyceridemia to plasma concentrations of biochemical markers of inflammation and endothelial activation (C‐reactive protein, interleukin‐6, soluble adhesion molecules, von Willebrand factor, and endothelin‐1). Am J Cardiol 2003; 91: 1128–31
  • Kowalska I., Straczkowski M., Szelachowska M., Kinalska I., Prokop J., Bachorzewska‐Gajewska H., et al. Circulating E‐selectin, vascular cell adhesion molecule‐1, and intercellular adhesion molecule‐1 in men with coronary artery disease assessed by angiography and disturbances of carbohydrate metabolism. Metabolism 2002; 51: 733–6
  • Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285: 2486–97
  • Ridker P. M., Buring J. E., Cook N. R., Rifai N. C‐reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8‐year follow‐up of 14 719 initially healthy American women. Circulation 2003; 107: 391–7
  • Soro A., Pajukanta P., Lilja H. E., Ylitalo K., Hiekkalinna T., Perola M., et al. Genome scans provide evidence for low‐HDL‐C loci on chromosomes 8q23, 16q24.1‐24.2, and 20q13.11 in Finnish families. Am J Hum Genet 2002; 70: 1333–40
  • Vartiainen E., Jousilahti P., Alfthan G., Sundvall J., Pietinen P., Puska P. Cardiovascular risk factor changes in Finland, 1972–1997. Int J Epidemiol 2000; 29: 49–56
  • Friedewald W. T., Levy R. I., Fredrickson D. S. Estimation of the concentration of low‐density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18: 499–502
  • Parra H. J., Mezdour H., Ghalim N., Bard J. M., Fruchart J. C. Differential electroimmunoassay of human LpA‐I lipoprotein particles on ready‐to‐use plates. Clin Chem 1990; 36: 1431–5
  • Taskinen M. R., Kuusi T., Helve E., Nikkila E. A., Yki‐Jarvinen H. Insulin therapy induces antiatherogenic changes of serum lipoproteins in noninsulin‐dependent diabetes. Arteriosclerosis 1988; 8: 168–77
  • Matthews D. R., Hosker J. P., Rudenski A. S., Naylor B. A., Treacher D. F., Turner R. C. Homeostasis model assessment: insulin resistance and beta‐cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–9
  • Ridker P. M., Rifai N., Rose L., Buring J. E., Cook N. R. Comparison of C‐reactive protein and low‐density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347: 1557–65
  • Pasceri V., Willerson J. T., Yeh E. T. Direct proinflammatory effect of C‐reactive protein on human endothelial cells. Circulation 2000; 102: 2165–8
  • Pasceri V., Cheng J. S., Willerson J. T., Yeh E. T., Cheng J. Modulation of C‐reactive protein‐mediated monocyte chemoattractant protein‐1 induction in human endothelial cells by anti‐atherosclerosis drugs. Circulation 2001; 103: 2531–4
  • Wadham C., Albanese N., Roberts J., Wang L., Bagley C. J., Gamble J. R., et al. High‐density lipoproteins neutralize C‐reactive protein proinflammatory activity. Circulation 2004; 109: 2116–22
  • Xia P., Vadas M. A., Rye K. A., Barter P. J., Gamble J. R. High density lipoproteins (HDL) interrupt the sphingosine kinase signaling pathway. A possible mechanism for protection against atherosclerosis by HDL. J Biol Chem 1999; 274: 33143–7
  • Nofer J. R., Geigenmuller S., Gopfert C., Assmann G., Buddecke E., Schmidt A. High density lipoprotein‐associated lysosphingolipids reduce E‐selectin expression in human endothelial cells. Biochem Biophys Res Commun 2003; 310: 98–103
  • Baker P. W., Rye K. A., Gamble J. R., Vadas M. A., Barter P. J. Phospholipid composition of reconstituted high density lipoproteins influences their ability to inhibit endothelial cell adhesion molecule expression. J Lipid Res 2000; 41: 1261–7
  • Marx N., Sukhova G. K., Collins T., Libby P., Plutzky J. PPARalpha activators inhibit cytokine‐induced vascular cell adhesion molecule‐1 expression in human endothelial cells. Circulation 1999; 99: 3125–31
  • Greenfield J. R., Samaras K., Jenkins A. B., Kelly P. J., Spector T. D., Gallimore J. R., et al. Obesity is an important determinant of baseline serum C‐reactive protein concentration in monozygotic twins, independent of genetic influences. Circulation 2004; 109: 3022–8
  • Lemieux I., Pascot A., Prud'homme D., Almeras N., Bogaty P., Nadeau A., et al. Elevated C‐reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol 2001; 21: 961–7
  • Lilja H. E., Soro A., Ylitalo K., Nuotio I., Viikari J. S., Salomaa V., et al. A candidate gene study in low HDL‐cholesterol families provides evidence for the involvement of the APOA2 gene and the APOA1C3A4 gene cluster. Atherosclerosis 2002; 164: 103–11
  • Cederberg A., Gronning L. M., Ahren B., Tasken K., Carlsson P., Enerback S. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet‐induced insulin resistance. Cell 2001; 106: 563–73
  • Yanagisawa K., Hingstrup Larsen L., Andersen G., Drivsholm T., Cederberg A., Westergren R., et al. The FOXC2 ‐512C>T variant is associated with hypertriglyceridaemia and increased serum C‐peptide in Danish Caucasian glucose‐tolerant subjects. Diabetologia 2003; 46: 1576–80
  • Ghosh S., Watanabe R. M., Valle T. T., Hauser E. R., Magnuson V. L., Langefeld C. D., et al. The Finland‐United States investigation of non‐insulin‐dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. Am J Hum Genet 2000; 67: 1174–85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.