10,949
Views
365
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Efflux pumps as antimicrobial resistance mechanisms

Pages 162-176 | Published online: 08 Jul 2009

References

  • Poole K. Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 2002; 92(Suppl. 1)55S–64S
  • Wright G. D. Mechanisms of resistance to antibiotics. Curr Opin Chem Biol 2003; 7: 563–9
  • McDermott P. F., Walker R. D., White D. G. Antimicrobials: modes of action and mechanisms of resistance. Int J Toxicol 2003; 22: 135–43
  • McMurry L. M., Petrucci R. E., Jr., Levy S. B. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci U S A 1980; 77: 3974–7
  • Ball P. R., Shales S. W., Chopra I. Plasmid‐mediated tetracycline resistance in Escherichia coli involves increased efflux of the antibiotic. Biochem Biophys Res Commun 1980; 93: 74–81
  • Putman M., van Veen H. W., Konings W. N. Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 2000; 64: 672–93
  • Poole K. Efflux‐mediated multidrug resistance in Gram‐negative bacteria. Clin Microbiol Infect 2003; 10: 12–26
  • Butaye P., Cloeckaert A., Schwarz S. Mobile genes coding for efflux‐mediated antimicrobial resistance in Gram‐positive and Gram‐negative bacteria. Int J Antimicrob Agents 2003; 22: 205–10
  • Poole K. Efflux‐mediated antimicrobial resistance. J Antimicrob Chemother 2005; 56: 20–51
  • Martin J. F., Casqueiro J., Liras P. Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr Opin Microbiol 2005; 8: 282–93
  • Piddock L. J. Multidrug‐resistance efflux pumps—not just for resistance. Nat Rev Microbiol 2006; 4: 629–36
  • Chopra I., Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65: 232–60
  • Roberts M. C. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 2005; 245: 195–203
  • Truong‐Bolduc Q. C., Dunman P. M., Strahilevitz J., Projan S. J., Hooper D. C. MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. J Bacteriol 2005; 187: 2395–405
  • Li Y., Dannelly H. K. Inactivation of the putative tetracycline resistance gene HP1165 in Helicobacter pylori led to loss of inducible tetracycline resistance. Arch Microbiol 2006; 185: 255–62
  • Crawford S. A., Fiebelkorn K. R., Patterson J. E., Jorgensen J. H. International clone of Neisseria meningitidis serogroup A with tetracycline resistance due to tet(B). Antimicrob Agents Chemother 2005; 49: 1198–200
  • Jorgensen J. H., Crawford S. A., Fiebelkorn K. R. Susceptibility of Neisseria meningitidis to 16 antimicrobial agents and characterization of resistance mechanisms affecting some agents. J Clin Microbiol 2005; 43: 3162–71
  • Gibreel A., Tracz D. M., Nonaka L., Ngo T. M., Connell S. R., Taylor D. E. Incidence of antibiotic resistance in Campylobacter jejuni isolated in Alberta, Canada, from 1999 to 2002, with special reference to tet(O)‐mediated tetracycline resistance. Antimicrob Agents Chemother 2004; 48: 3442–50
  • Roberts M. C. Tetracycline therapy: update. Clin Infect Dis 2003; 36: 462–7
  • Roberts M. C. Distribution of macrolide, lincosamide, streptogramin, ketolide and oxazolidinone (MLSKO) resistance genes in Gram‐negative bacteria. Curr Drug Targets Infect Disord 2004; 4: 207–15
  • Luna V. A., Cousin S., Jr., Whittington W. L., Roberts M. C. Identification of the conjugative mef gene in clinical Acinetobacter junii and Neisseria gonorrhoeae isolates. Antimicrob Agents Chemother 2000; 44: 2503–6
  • Ojo K. K., Ulep C., Van Kirk N., Luis H., Bernardo M., Leitao J., et al. The mef(A) gene predominates among seven macrolide resistance genes identified in gram‐negative strains representing 13 genera, isolated from healthy Portuguese children. Antimicrob Agents Chemother 2004; 48: 3451–6
  • Klaassen C. H., Mouton J. W. Molecular detection of the macrolide efflux gene: to discriminate or not to discriminate between mef(A) and mef(E). Antimicrob Agents Chemother 2005; 49: 1271–8
  • Wang Y., Wang G. R., Shelby A., Shoemaker N. B., Salyers A. A. A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in gram‐positive bacteria. Appl Environ Microbiol 2003; 69: 4595–603
  • Roberts M. C., Sutcliffe J., Courvalin P., Jensen L. B., Rood J., Seppala H. Nomenclature for macrolide and macrolide‐lincosamide‐streptogramin B resistance determinants. Antimicrob Agents Chemother 1999; 43: 2823–30
  • Pozzi G., Iannelli F., Oggioni M. R., Santagati M., Stefani S. Genetic elements carrying macrolide efflux genes in streptococci. Curr Drug Targets Infect Disord 2004; 4: 203–6
  • Del Grosso M., Iannelli F., Messina C., Santagati M., Petrosillo N., Stefani S., et al. Macrolide efflux genes mef(A) and mef(E) are carried by different genetic elements in Streptococcus pneumoniae. J Clin Microbiol 2002; 40: 774–8
  • Daly M. M., Doktor S., Flamm R., Shortridge D. Characterization and prevalence of MefA, MefE, and the associated msr(D) gene in Streptococcus pneumoniae clinical isolates. J Clin Microbiol 2004; 42: 3570–4
  • Cochetti I., Vecchi M., Mingoia M., Tili E., Catania M. R., Manzin A., et al. Molecular characterization of pneumococci with efflux‐mediated erythromycin resistance and identification of a novel mef gene subclass, mef(I). Antimicrob Agents Chemother 2005; 49: 4999–5006
  • Ardanuy C., Tubau F., Linares J., Dominguez M. A., Pallares R., Martin R. Distribution of subclasses mefA and mefE of the mefA gene among clinical isolates of macrolide‐resistant (M‐phenotype) Streptococcus pneumoniae, viridans group streptococci, and Streptococcus pyogenes. Antimicrob Agents Chemother 2005; 49: 827–9
  • Littauer P., Sangvik M., Caugant D. A., Hoiby E. A., Simonsen G. S., Sundsfjord A. Molecular epidemiology of macrolide‐resistant isolates of Streptococcus pneumoniae collected from blood and respiratory specimens in Norway. J Clin Microbiol 2005; 43: 2125–32
  • Colakoglu S., Alacam R., Hascelik G. Prevalence and mechanisms of macrolide resistance in Streptococcus pyogenes in Ankara, Turkey. Scand J Infect Dis 2006; 38: 456–9
  • Ergin A., Ercis S., Hascelik G. Macrolide resistance mechanisms and in vitro susceptibility patterns of viridans group streptococci isolated from blood cultures. J Antimicrob Chemother 2006; 57: 139–41
  • Tamayo J., Perez‐Trallero E., Gomez‐Garces J. L., Alos J. I. Resistance to macrolides, clindamycin and telithromycin in Streptococcus pyogenes isolated in Spain during 2004. J Antimicrob Chemother 2005; 56: 780–2
  • Richter S. S., Heilmann K. P., Beekmann S. E., Miller N. J., Miller A. L., Rice C. L., et al. Macrolide‐resistant Streptococcus pyogenes in the United States, 2002–2003. Clin Infect Dis 2005; 41: 599–608
  • Uh Y., Shin D. H., Jang I. H., Hwang G. Y., Lee M. K., Yoon K. J., et al. Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from blood cultures in Korea. J Antimicrob Chemother 2004; 53: 1095–7
  • Reinert R. R., Lutticken R., Reinert S., Al Lahham A., Lemmen S. Antimicrobial resistance of Streptococcus pneumoniae isolates of outpatients in Germany, 1999–2000. Chemotherapy (Basel) 2004; 50: 184–9
  • Monaco M., Camilli R., D'Ambrosio F., Del Grosso M., Pantosti A. Evolution of erythromycin resistance in Streptococcus pneumoniae in Italy. J Antimicrob Chemother 2005; 55: 256–9
  • Ambrose K. D., Nisbet R., Stephens D. S. Macrolide efflux in Streptococcus pneumoniae is mediated by a dual efflux pump (mel and mef) and is erythromycin inducible. Antimicrob Agents Chemother 2005; 49: 4203–9
  • Reynolds E., Ross J. I., Cove J. H. Msr(A) and related macrolide/streptogramin resistance determinants: incomplete transporters?. Int J Antimicrob Agents 2003; 22: 228–36
  • Canton R., Mazzariol A., Morosini M. I., Baquero F., Cornaglia G. Telithromycin activity is reduced by efflux in Streptococcus pyogenes. J Antimicrob Chemother 2005; 55: 489–95
  • Ojo K. K., Striplin M. J., Ulep C. C., Close N. S., Zittle J., Luis H., et al. Staphylococcus efflux msr(A) gene characterized in Streptococcus, Enterococcus, Corynebacterium, and Pseudomonas isolates. Antimicrob Agents Chemother 2006; 50: 1089–91
  • Cassone M., D'Andrea M. M., Iannelli F., Oggioni M. R., Rossolini G. M., Pozzi G. DNA microarray for detection of macrolide resistance genes. Antimicrob Agents Chemother 2006; 50: 2038–41
  • Chesneau O., Ligeret H., Hosan‐Aghaie N., Morvan A., Dassa E. Molecular analysis of resistance to streptogramin A compounds conferred by the Vga proteins of staphylococci. Antimicrob Agents Chemother 2005; 49: 973–80
  • Novotna G., Janata J. A new evolutionary variant of the streptogramin A resistance protein Vga(A)LC from Staphylococcus haemolyticus with shifted substrate pecificity towards lincosamides. Antimicrob Agents Chemother 2006; 50: 4070–6
  • Petinaki E., Spiliopoulou I., Maniati M., Maniatis A. N. Emergence of Staphylococcus hominis strains expressing low‐level resistance to quinupristin/dalfopristin in Greece. J Antimicrob Chemother 2005; 55: 811–2
  • Dina J., Malbruny B., Leclercq R. Nonsense mutations in the lsa‐like gene in Enterococcus faecalis isolates susceptible to lincosamides and streptogramins A. Antimicrob Agents Chemother 2003; 47: 2307–9
  • Reynaud Af Geijersstam A. H., Ellington M. J., Warner M., Woodford N., Haapasalo M. Antimicrobial susceptibility and molecular analysis of Enterococcus faecalis originating from endodontic infections in Finland and Lithuania. Oral Microbiol Immunol 2006; 21: 164–8
  • Masuda N., Sakagawa E., Ohya S., Gotoh N., Tsujimoto H., Nishino T. Substrate specificities of MexAB‐OprM, MexCD‐OprJ, and MexXY‐OprM efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2000; 44: 3322–7
  • Ge B., McDermott P. F., White D. G., Meng J. Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 2005; 49: 3347–54
  • Cagliero C., Mouline C., Payot S., Cloeckaert A. Involvement of the CmeABC efflux pump in the macrolide resistance of Campylobacter coli. J Antimicrob Chemother 2005; 56: 948–50
  • Mamelli L., Prouzet‐Mauleon V., Pages J. M., Megraud F., Bolla J. M. Molecular basis of macrolide resistance in Campylobacter: role of efflux pumps and target mutations. J Antimicrob Chemother 2005; 56: 491–7
  • Cagliero C., Mouline C., Cloeckaert A., Payot S. Synergy between the efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and C. coli. Antimicrob Agents Chemother 2006; 50: 3893–6
  • Bogdanovich T., Bozdogan B., Appelbaum P. C. Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Antimicrob Agents Chemother 2006; 50: 893–8
  • Schmitz F. J., Higgins P. G., Mayer S., Fluit A. C., Dalhoff A. Activity of quinolones against gram‐positive cocci: mechanisms of drug action and bacterial resistance. Eur J Clin Microbiol Infect Dis 2002; 21: 647–59
  • Oh H., Edlund C. Mechanism of quinolone resistance in anaerobic bacteria. Clin Microbiol Infect 2003; 9: 512–7
  • Giraud E., Baucheron S., Cloeckaert A. Resistance to fluoroquinolones in Salmonella: emerging mechanisms and resistance prevention strategies. Microbes Infect 2006; 8: 1937–44
  • Hopkins K. L., Davies R. H., Threlfall E. J. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents 2005; 25: 358–73
  • Payot S., Bolla J. M., Corcoran D., Fanning S., Megraud F., Zhang Q. Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. Microbes Infect 2006; 8: 1967–71
  • Higgins P. G., Fluit A. C., Schmitz F. J. Fluoroquinolones: structure and target sites. Curr Drug Targets 2003; 4: 181–90
  • Oyamada Y., Ito H., Fujimoto K., Asada R., Niga T., Okamoto R., et al. Combination of known and unknown mechanisms confers high‐level resistance to fluoroquinolones in Enterococcus faecium. J Med Microbiol 2006; 55: 729–36
  • Morris R. P., Nguyen L., Gatfield J., Visconti K., Nguyen K., Schnappinger D., et al. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2005; 102: 12200–5
  • Srinivasan V. B., Virk R. K., Kaundal A., Chakraborty R., Datta B., Ramamurthy T., et al. Mechanism of drug resistance in clonally related clinical isolates of Vibrio fluvialis isolated in Kolkata, India. Antimicrob Agents Chemother 2006; 50: 2428–32
  • Chenia H. Y., Pillay B., Pillay D. Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. J Antimicrob Chemother 2006; 58: 1274–8
  • Webber M. A., Talukder A., Piddock L. J. Contribution of mutation at amino acid 45 of AcrR to acrB expression and ciprofloxacin resistance in clinical and veterinary Escherichia coli isolates. Antimicrob Agents Chemother 2005; 49: 4390–2
  • Poole K. Efflux‐mediated multiresistance in Gram‐negative bacteria. Clin Microbiol Infect 2004; 10: 12–26
  • Rafii F., Park M., Wynne R. Evidence for active drug efflux in fluoroquinolone resistance in Clostridium hathewayi. Chemotherapy (Basel) 2005; 51: 256–62
  • Robertson G. T., Doyle T. B., Lynch A. S. Use of an efflux‐deficient streptococcus pneumoniae strain panel to identify ABC‐class multidrug transporters involved in intrinsic resistance to antimicrobial agents. Antimicrob Agents Chemother 2005; 49: 4781–3
  • Quinn T., O'Mahony R., Baird A. W., Drudy D., Whyte P., Fanning S. Multi‐drug resistance in Salmonella enterica: efflux mechanisms and their relationships with the development of chromosomal resistance gene clusters. Curr Drug Targets 2006; 7: 849–60
  • Piddock L. J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 2006; 19: 382–402
  • Bebear C. M., Pereyre S. Mechanisms of drug resistance in Mycoplasma pneumoniae. Curr Drug Targets Infect Disord 2005; 5: 263–71
  • De Rossi E., Ainsa J. A., Riccardi G. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 2006; 30: 36–52
  • Niga T., Ito H., Oyamada Y., Yamagishi J., Kadono M., Nishino T., et al. Cooperation between alteration of DNA gyrase genes and over‐expression of MexB and MexX confers high‐level fluoroquinolone resistance in Pseudomonas aeruginosa strains isolated from a patient who received a liver transplant followed by treatment with fluoroquinolones. Microbiol Immunol 2005; 49: 443–6
  • Higgins P. G., Fluit A. C., Milatovic D., Verhoef J., Schmitz F. J. Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents 2003; 21: 409–13
  • Oh H., Stenhoff J., Jalal S., Wretlind B. Role of efflux pumps and mutations in genes for topoisomerases II and IV in fluoroquinolone‐resistant Pseudomonas aeruginosa strains. Microb Drug Resist 2003; 9: 323–8
  • Casin I., Breuil J., Darchis J. P., Guelpa C., Collatz E. Fluoroquinolone resistance linked to GyrA, GyrB, and ParC mutations in Salmonella enterica typhimurium isolates in humans. Emerg Infect Dis 2003; 9: 1455–7
  • Chu C., Su L. H., Chu C. H., Baucheron S., Cloeckaert A., Chiu C. H. Resistance to fluoroquinolones linked to gyrA and par C mutations and overexpression of AcrAB efflux pump in Salmonella enterica serotype Choleraesuis. Microb Drug Resist 2005; 11: 248–53
  • Saito R., Sato K., Kumita W., Inami N., Nishiyama H., Okamura N., et al. Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone‐resistant clinical isolates of Proteus mirabilis. J Antimicrob Chemother 2006; 58: 673–7
  • Pumbwe L., Chang A., Smith R. L., Wexler H. M. Clinical significance of overexpression of multiple RND‐family efflux pumps in Bacteroides fragilis isolates. J Antimicrob Chemother 2006; 58: 543–8
  • Yan M., Sahin O., Lin J., Zhang Q. Role of the CmeABC efflux pump in the emergence of fluoroquinolone‐resistant Campylobacter under selection pressure. J Antimicrob Chemother 2006; 58: 1154–9
  • Oyamada Y., Ito H., Inoue M., Yamagishi J. Topoisomerase mutations and efflux are associated with fluoroquinolone resistance in Enterococcus faecalis. J Med Microbiol 2006; 55: 1395–401
  • Schneiders T., Amyes S. G., Levy S. B. Role of AcrR and RamA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob Agents Chemother 2003; 47: 2831–7
  • Goldman J. D., White D. G., Levy S. B. Multiple antibiotic resistance (mar) locus protects Escherichia coli from rapid cell killing by fluoroquinolones. Antimicrob Agents Chemother 1996; 40: 1266–9
  • Jumbe N. L., Louie A., Miller M. H., Liu W., Deziel M. R., Tam V. H., et al. Quinolone efflux pumps play a central role in emergence of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2006; 50: 310–7
  • Lomovskaya O., Lee A., Hoshino K., Ishida H., Mistry A., Warren M. S., et al. Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999; 43: 1340–6
  • Martínez‐Martínez L., García I., Ballesta S., Benedí V. J., Hernández‐Allés S., Pascual A. Energy‐dependent accumulation of fluoroquinolones in quinolone‐resistant Klebsiella pneumoniae strains. Antimicrob Agents Chemother 1998; 42: 1850–2
  • Ricci V., Tzakas P., Buckley A., Piddock L. J. Ciprofloxacin‐resistant Salmonella enterica serovar Typhimurium strains are difficult to select in the absence of AcrB and TolC. Antimicrob Agents Chemother 2006; 50: 38–42
  • Baucheron S., Imberechts H., Chaslus‐Dancla E., Cloeckaert A. The AcrB multidrug transporter plays a major role in high‐level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. Microb Drug Resist 2002; 8: 281–9
  • Chan Y. Y., Tan T. M., Ong Y. M., Chua K. L. BpeAB‐OprB, a multidrug efflux pump in Burkholderia pseudomallei. Antimicrob Agents Chemother 2004; 48: 1128–35
  • Magnet S., Courvalin P., Lambert T. Resistance‐nodulation‐cell division‐type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 2001; 45: 3375–80
  • Poole K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2004; 49: 479–87
  • Poole K. Resistance to β‐lactam antibiotics. Cell Mol Life Sci 2004; 61: 2200–23
  • Masuda N., Gotoh N., Ishii C., Sakagawa E., Ohya S., Nishino T. Interplay between chromosomal β‐lactamase and the MexAB‐OprM efflux system in intrinsic resistance to β‐lactams in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999; 43: 400–2
  • Boutoille D., Corvec S., Caroff N., Giraudeau C., Espaze E., Caillon J., et al. Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing β‐lactam resistance. FEMS Microbiol Lett 2004; 230: 143–6
  • Cavallo J. D., Plesiat P., Couetdic G., Leblanc F., Fabre R. Mechanisms of β‐lactam resistance in Pseudomonas aeruginosa: prevalence of OprM‐overproducing strains in a French multicentre study (1997). J Antimicrob Chemother 2002; 50: 1039–43
  • El Amin N., Giske C. G., Jalal S., Keijser B., Kronvall G., Wretlind B. Carbapenem resistance mechanisms in Pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS 2005; 113: 187–96
  • Pournaras S., Maniati M., Spanakis N., Ikonomidis A., Tassios P. T., Tsakris A., et al. Spread of efflux pump‐overexpressing, non‐metallo‐β‐lactamase‐producing, meropenem‐resistant but ceftazidime‐susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. J Antimicrob Chemother 2005; 56: 761–4
  • Quale J., Bratu S., Gupta J., Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother 2006; 50: 1633–41
  • Szabo D., Silveira F., Hujer A. M., Bonomo R. A., Hujer K. M., Marsh J. W., et al. Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. Antimicrob Agents Chemother 2006; 50: 2833–5
  • Chang L. L., Chen H. F., Chang C. Y., Lee T. M., Wu W. J. Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 2004; 53: 518–21
  • Li X‐Z., Zhang L., Poole K. SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2002; 46: 333–43
  • Veal W. L., Nicholas R. A., Shafer W. M. Overexpression of the MtrC‐MtrD‐MtrE efflux pump due to an mtrR mutation is required for chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. J Bacteriol 2002; 184: 5619–24
  • Kaczmarek F. S., Gootz T. D., Dib‐Hajj F., Shang W., Hallowell S., Cronan M. Genetic and molecular characterization of β‐lactamase‐negative ampicillin‐resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother 2004; 48: 1630–9
  • Kallman O., Fendukly F., Karlsson I., Kronvall G. Contribution of efflux to cefuroxime resistance in clinical isolates of Escherichia coli. Scand J Infect Dis 2003; 35: 464–70
  • Kristiansen M. M., Leandro C., Ordway D., Martins M., Viveiros M., Pacheco T., et al. Thioridazine reduces resistance of methicillin‐resistant Staphylococcus aureus by inhibiting a reserpine‐sensitive efflux pump. In Vivo 2006; 20: 361–6
  • Hocquet D., Nordmann P., El Garch F., Cabanne L., Plesiat P. Involvement of the MexXY‐OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50: 1347–51
  • Poole K. Acquired resistance. Russell, Hugo & Ayliffe's principles and practice of disinfection, preservation & streilization, A. P Fraise, P. A Lambert, J‐Y Maillard. Blackwell Publishing, Oxford 2004; 170–83, 4th ed
  • Noguchi N., Suwa J., Narui K., Sasatsu M., Ito T., Hiramatsu K., et al. Susceptibilities to antiseptic agents and distribution of antiseptic‐resistance genes qacA/B and smr of methicillin‐resistant Staphylococcus aureus isolated in Asia during 1998 and 1999. J Med Microbiol 2005; 54: 557–65
  • Noguchi N., Nakaminami H., Nishijima S., Kurokawa I., So H., Sasatsu M. Antimicrobial agent susceptibilities and antiseptic resistance gene distribution among methicillin‐resistant Staphylococcus aureus isolates from patients with impetigo and staphylococcal scalded skin syndrome. J Clin Microbiol 2006; 44: 2119–25
  • Nagai K., Murata T., Ohta S., Zenda H., Ohnishi M., Hayashi T. Two different mechanisms are involved in the extremely high‐level benzalkonium chloride resistance of a Pseudomonas fluorescens strain. Microbiol Immunol 2003; 47: 709–15
  • Chuanchuen R., Karkhoff‐Schweizer R. R., Schweizer H. P. High‐level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control 2003; 31: 24–7
  • Morita Y., Murata T., Mima T., Shiota S., Kuroda T., Mizushima T., et al. Induction of mexCD‐oprJ operon for a multidrug efflux pump by disinfectants in wild‐type Pseudomonas aeruginosa PAO1. J Antimicrob Chemother 2003; 5: 991–4
  • Davin‐Regli A., Chollet R., Bredin J., Chevalier J., Lepine F., Pages J. M. Enterobacter gergoviae and the prevalence of efflux in parabens resistance. J Antimicrob Chemother 2006; 57: 757–60
  • Noguchi N., Tamura M., Narui K., Wakasugi K., Sasatsu M. Frequency and genetic characterization of multidrug‐resistant mutants of Staphylococcus aureus after selection with individual antiseptics and fluoroquinolones. Biol Pharm Bull 2002; 25: 1129–32
  • Yazdankhah S. P., Scheie A. A., Hoiby E. A., Lunestad B. T., Heir E., Fotland T. O., et al. Triclosan and antimicrobial resistance in bacteria: an overview. Microb Drug Resist 2006; 12: 83–90
  • Randall L. P., Ridley A. M., Cooles S. W., Sharma M., Sayers A. R., Pumbwe L., et al. Prevalence of multiple antibiotic resistance in 443 Campylobacter spp. isolated from humans and animals. J Antimicrob Chemother 2003; 52: 507–10
  • Randall L. P., Cooles S. W., Sayers A. R., Woodward M. J. Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes. J Med Microbiol 2001; 50: 919–24
  • Cole E. C., Addison R. M., Rubino J. R., Leese K. E., Dulaney P. D., Newell M. S., et al. Investigation of antibiotic and antibacterial agent cross‐resistance in target bacteria from homes of antibacterial product users and nonusers. J Appl Microbiol 2003; 95: 664–76
  • Dean C. R., Narayan S., Daigle D. M., Dzink‐Fox J. L., Puyang X., Bracken K. R., et al. Role of the AcrAB‐TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415. Antimicrob Agents Chemother 2005; 49: 3129–35
  • Li X., Zolli‐Juran M., Cechetto J. D., Daigle D. M., Wright G. D., Brown E. D. Multicopy suppressors for novel antibacterial compounds reveal targets and drug efflux susceptibility. Chem Biol 2004; 11: 1423–30
  • Tzeng Y. L., Ambrose K. D., Zughaier S., Zhou X., Miller Y. K., Shafer W. M., et al. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol 2005; 187: 5387–96
  • Schumacher A., Trittler R., Bohnert J. A., Kummerer K., Pages J. M., Kern W. V. Intracellular accumulation of linezolid in Escherichia coli, Citrobacter freundii and Enterobacter aerogenes: role of enhanced efflux pump activity and inactivation. J Antimicrob Chemother, in press
  • van Amsterdam K., Bart A., van der E. A. A Helicobacter pylori TolC efflux pump confers resistance to metronidazole. Antimicrob Agents Chemother 2005; 49: 1477–82
  • Colangeli R., Helb D., Sridharan S., Sun J., Varma‐Basil M., Hazbon M. H., et al. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol 2005; 55: 1829–40
  • Poole K., Lomovskaya O. Can efflux inhibitors really counter resistance?. Drug Discov Today: Therapeut Strat 2006; 3: 145–52
  • Lynch A. S. Efflux systems in bacterial pathogens: an opportunity for therapeutic intervention?. An industry view. Biochem Pharmacol 2006; 71: 949–56
  • Burger M. T., Hiebert C., Seid M., Chu D. T., Barker L., Langhorne M., et al. Synthesis and antibacterial activity of novel C12 ethyl ketolides. Bioorg Med Chem 2006; 14: 5592–604
  • Zhanel G. G., Homenuik K., Nichol K., Noreddin A., Vercaigne L., Embil J., et al. The glycylcyclines: a comparative review with the tetracyclines. Drugs 2004; 64: 63–88
  • Lomovskaya O., Bostian K. A. Practical applications and feasibility of efflux pump inhibitors in the clinic—a vision for applied use. Biochem Pharmacol 2006; 71: 910–8
  • Kaatz G. W. Bacterial efflux pump inhibition. Curr Opin Investig Drugs 2005; 6: 191–8
  • Pages J. M., Masi M., Barbe J. Inhibitors of efflux pumps in Gram‐negative bacteria. Trends Mol Med 2005; 11: 382–9
  • Lomovskaya O., Watkins W. Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J Mol Microbiol Biotechnol 2001; 3: 225–36
  • D'Costa V. M., McGrann K. M., Hughes D. W., Wright G. D. Sampling the antibiotic resistome. Science 2006; 311: 374–7
  • Nishino K., Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 2001; 183: 5803–12
  • Poole K. Efflux pumps. Pseudomonas, Vol I. Genomics, life style and molecular architecture, J‐L Ramos. Kluwer Academic/Plenum Publishers, New York 2004; 635–74
  • Grkovic S., Brown M. H., Skurray R. A. Transcriptional regulation of multidrug efflux pumps in bacteria. Semin Cell Dev Biol 2001; 12: 225–37
  • Dewi B. E., Akira S., Hayashi H., Ba‐Thein W. High occurrence of simultaneous mutations in target enzymes and MtrRCDE efflux system in quinolone‐resistant Neisseria gonorrhoeae. Sex Transm Dis 2004; 31: 353–9
  • Sanchez P., Alonso A., Martinez J. L. Regulatory regions of smeDEF in Stenotrophomonas maltophilia strains expressing different amounts of the multidrug efflux pump SmeDEF. Antimicrob Agents Chemother 2004; 48: 2274–6
  • Join‐Lambert O. F., Michea‐Hamzehpour M., Kohler T., Chau F., Faurisson F., Dautrey S., et al. Differential selection of multidrug efflux mutants by trovafloxacin and ciprofloxacin in an experimental model of Pseudomonas aeruginosa acute pneumonia in rats. Antimicrob Agents Chemother 2001; 45: 571–6
  • Chang W., Small D. A., Toghrol F., Bentley W. E. Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 2005; 6: 115
  • Chang W., Small D. A., Toghrol F., Bentley W. E. Microarray analysis of toxicogenomic effects of peracetic acid on Pseudomonas aeruginosa. Environ Sci Technol 2005; 39: 5893–9
  • Morita Y., Sobel M. L., Poole K. Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic‐inducible PA5471 gene product. J Bacteriol 2006; 188: 1847–55
  • Ciofu O., Riis B., Pressler T., Poulsen H. E., Hoiby N. Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 2005; 49: 2276–82
  • Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D'Argenio D. A., et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 2006; 103: 8487–92
  • Truong‐Bolduc Q. C., Strahilevitz J., Hooper D. C. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50: 1104–7
  • Gould V. C., Avison M. B. SmeDEF‐mediated antimicrobial drug resistance in Stenotrophomonas maltophilia clinical isolates having defined phylogenetic relationships. J Antimicrob Chemother 2006; 57: 1070–6
  • Rouquette‐Loughlin C. E., Balthazar J. T., Shafer W. M. Characterization of the MacA‐MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 2005; 56: 856–60
  • Chau S. L., Chu Y. W., Houang E. T. Novel resistance‐nodulation‐cell division efflux system AdeDE in Acinetobacter genomic DNA group 3. Antimicrob Agents Chemother 2004; 48: 4054–5
  • Giovanetti E., Brenciani A., Burioni R., Varaldo P. E. A novel efflux system in inducibly erythromycin‐resistant strains of Streptococcus pyogenes. Antimicrob Agents Chemother 2002; 46: 3750–5
  • Hisanaga T., Hoban D. J., Zhanel G. G. Mechanisms of resistance to telithromycin in Streptococcus pneumoniae. J Antimicrob Chemother 2005; 56: 447–50
  • Chollet R., Chevalier J., Bryskier A., Pages J. M. The AcrAB‐TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Antimicrob Agents Chemother 2004; 48: 3621–4
  • Peleg A. Y., Potoski B. A., Rea R., Adams J., Sethi J., Capitano, et al. Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 2007; 59: 128–131
  • Gil H., Platz G. J., Forestal C. A., Monfett M., Bakshi C. S., Sellati T. J., et al. Deletion of TolC orthologs in Francisella tularensis identifies roles in multidrug resistance and virulence. Proc Natl Acad Sci U S A 2006; 103: 12897–902
  • Pumbwe L., Ueda O., Yoshimura F., Chang A., Smith R. L., Wexler H. M. Bacteroides fragilis BmeABC efflux systems additively confer intrinsic antimicrobial resistance. J Antimicrob Chemother 2006; 58: 37–46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.