1,281
Views
56
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

The workings of the amyloid diseases

, , , , , , , & show all
Pages 200-207 | Published online: 08 Jul 2009

References

  • Merlini G., Bellotti V. Molecular mechanisms of amyloidosis. N Engl J Med 2003; 349: 583–96
  • Relini A., Rolandi R., Bolognesi M., Aboudan M., Merlini G., Bellotti V., et al. Ultrastructural organization of ex vivo amyloid fibrils formed by the apolipoprotein A–I Leu174Ser variant: an atomic force microscopy study. Biochim Biophys Acta 2004; 1690: 33–41
  • Serpell L. C., Sunde M., Benson M. D., Tennent G. A., Pepys M. B., Fraser P. E. The protofilament substructure of amyloid fibrils. J Mol Biol 2000; 300: 1033–9
  • Merlini G., Bellotti V. Lysozyme: a paradigmatic molecule for the investigation of protein structure, function and misfolding. Clin Chim Acta 2005; 357: 168–72
  • Perfetti V., Casarini S., Palladini G., Vignarelli M. C., Klersy C., Diegoli M., et al. Analysis of V lambda–J lambda expression in plasma cells from primary (AL) amyloidosis and normal bone marrow identifies 3r (lambda III) as a new amyloid‐associated germline gene segment. Blood 2002; 100: 948–53
  • Wetzel R. Domain stability in immunoglobulin light chain deposition disorders. Adv Protein Chem 1997; 50: 183–242
  • Esposito G., Garcia J., Mangione P., Giorgetti S., Corazza A., Viglino P., et al. Structural and folding dynamics properties of T70N variant of human lysozyme. J Biol Chem 2003; 28: 25190–8
  • Johnson R. J., Christodoulou J., Dumoulin M., Caddy G. L., Alcocer M. J., Murtagh G. J., et al. Rationalising lysozyme amyloidosis: insights from the structure and solution dynamics of T70N lysozyme. J Mol Biol 2005; 352: 823–36
  • Sebastiao M. P., Lamzin V., Saraiva M. J., Damas A. M. Transthyretin stability as a key factor in amyloidogenesis: X‐ray analysis at atomic resolution. J Mol Biol 2001; 306: 733–44
  • Chiti F., Calamai M., Taddei N., Stefani M., Ramponi G., Dobson C. M. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci U S A 2002; 99(Suppl 4)16419–26
  • Fernandez‐Escamilla A. M., Rousseau F., Schymkowitz J., Serrano L. Prediction of sequence‐dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 2004; 22: 1302–6
  • Chiti F., Dobson C. M. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006; 75: 333–66
  • Carrell R. W., Lomas D. A. Conformational disease. Lancet 1997; 350: 134–8
  • Perutz M. F. Amyloid fibrils. Mutations make enzymes polymerize. Nature 1997; 385: 773–5
  • Tennent G. A., Lovat L. B., Pepys M. B. Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci U S A 1995; 92: 4299–303
  • Kisilevsky R. Review: Amyloidogenesis—unquestioned answers and unanswered questions. J Struct Biol 2000; 130: 99–108
  • Castillo G. M., Lukito W., Wight T. N., Snow A. D. The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta‐amyloid protein fibril formation. J Neurochem 1999; 72: 1681–7
  • Diaz‐Nido J., Wandosell F., Avila J. Glycosaminoglycans and beta‐amyloid, prion and tau peptides in neurodegenerative diseases. Peptides 2002; 23: 1323–32
  • Yamamoto S., Yamaguchi I., Hasegawa K., Tsutsumi S., Goto Y., Gejyo F., et al. Glycosaminoglycans enhance the trifluoroethanol‐induced extension of beta(2)‐microglobulin‐related amyloid fibrils at a neutral pH. J Am Soc Nephrol 2004; 15: 126–33
  • Suk J. Y., Zhang F., Balch W. E., Linhardt R. J., Kelly J. W. Heparin accelerates gelsolin amyloidogenesis. Biochemistry 2006; 45: 2234–42
  • Li J. P., Galvis M. L., Gong F., Zhang X., Zcharia E., Metzger S., et al. In vivo fragmentation of heparan sulfate by heparanase overexpression renders mice resistant to amyloid protein A amyloidosis. Proc Natl Acad Sci U S A 2005; 102: 6473–7
  • Relini A., Canale C., De Stefano S., Rolandi R., Giorgetti S., Stoppini M., et al. Collagen plays an active role in the aggregation of beta 2‐microglobulin under physio‐pathological conditions of dialysis‐related amyloidosis. J Biol Chem 2006; 24: 16521–9
  • Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., et al. Diffusible, nonfibrillar ligands derived from Abeta1‐42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 1998; 95: 6448–53
  • Hartley D. M., Walsh D. M., Ye C. P., Diehl T., Vasquez S., Vassilev P. M., et al. Protofibrillar intermediates of amyloid beta‐protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 1999; 19: 8876–84
  • Andersson K., Olofsson A., Nielsen E. H., Svehag S. E., Lundgren E. Only amyloidogenic intermediates of transthyretin induce apoptosis. Biochem Biophys Res Commun 2002; 294: 309–14
  • Pepys M. B. Amyloidosis. Annu Rev Med 2006; 57: 223–41
  • Cecchi C., Pensalfini A., Baglioni S., Fiorillo C., Caporale R., Formigli L., et al. Differing molecular mechanisms appear to underlie early toxicity of prefibrillar HypF‐N aggregates to different cell types. FEBS J 2006; 273: 2206–22
  • Palladini G., Campana C., Klersy C., Balduini A., Vadacca G., Perfetti V., et al. Serum N‐terminal pro‐brain natriuretic peptide is a sensitive marker of myocardial dysfunction in AL amyloidosis. Circulation 2003; 107: 2440–5
  • Palladini G., Lavatelli F., Russo P., Perlini S., Perfetti V., Bosoni T., et al. Circulating amyloidogenic free light chains and serum N‐terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL amyloidosis. Blood 2006; 10: 3854–8
  • Carulla N., Caddy G. L., Hall D. R., Zurdo J., Gairi M., Feliz M., et al. Molecular recycling within amyloid fibrils. Nature 2005; 436: 554–8
  • Niewold T. A., Gruys E., Kisilevsky R., Shirahama T. S. Fibril amyloid enhancing factor (FAEF)‐accelerated amyloidosis in the hamster is not dependent on serine esterase activity and mononuclear phagocytosis. Scand J Immunol 1991; 34: 101–7
  • Jarrett J. T., Lansbury P. T., Jr. Seeding ‘one‐dimensional crystallization’ of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie?. Cell 1993; 73: 1055–8
  • Kelly J. W. Mechanisms of amyloidogenesis. Nat Struct Biol 2000; 7: 824–6
  • Ganowiak K., Hultman P., Engstrom U., Gustavsson A., Westermark P. Fibrils from synthetic amyloid‐related peptides enhance development of experimental AA‐amyloidosis in mice. Biochem Biophys Res Commun 1994; 199: 306–12
  • Johan K., Westermark G., Engstrom U., Gustavsson A., Hultman P., Westermark P. Acceleration of amyloid protein A amyloidosis by amyloid‐like synthetic fibrils. Proc Natl Acad Sci U S A 1998; 95: 2558–63
  • Lundmark K., Westermark G. T., Nystrom S., Murphy C. L., Solomon A., Westermark P. Transmissibility of systemic amyloidosis by a prion‐like mechanism. Proc Natl Acad Sci U S A 2002; 99: 6979–84
  • Olofsson B. O., Backman C., Karp K., Suhr O. B. Progression of cardiomyopathy after liver transplantation in patients with familial amyloidotic polyneuropathy, Portuguese type. Transplantation 2002; 73: 745–51
  • Yazaki M., Tokuda T., Nakamura A., Higashikata T., Koyama J., Higuchi K., et al. Cardiac amyloid in patients with familial amyloid polyneuropathy consists of abundant wild‐type transthyretin. Biochem Biophys Res Commun 2000; 274: 702–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.