3,077
Views
184
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression

, , , , , , , , , , , , , , , , , , & show all
Pages 229-238 | Received 21 Nov 2006, Accepted 09 Feb 2007, Published online: 08 Jul 2009

References

  • Lesch K. P. Gene‐environment interaction and the genetics of depression. J Psychiatry Neurosci 2004; 29: 174–84
  • Rosenthal N. E., Sack D. A., Gillin J. C., Lewy A. J., Goodwin F. K., Davenport Y., et al. Seasonal affective disorder: a description of the syndrome and preliminary findings with light therapy. Arch Gen Psychiatry 1984; 41: 72–80
  • Lewy A. J., Lefler B. J., Emens J. S., Bauer V. K. The circadian basis of winter depression. Proc Natl Acad Sci U S A 2006; 103: 7414–9
  • Partonen T., Lönnqvist J. Seasonal affective disorder. Lancet 1998; 352: 1369–74
  • Lam R. W., Tam E. M., Yatham L. N., Shiah I. S., Zis A. P. Seasonal depression: the dual vulnerability hypothesis revisited. J Affect Disord 2001; 63: 123–32
  • Lewy A. J., Sack R. L., Miller L. S., Hoban T. M. Antidepressant and circadian phase‐shifting effects of light. Science 1987; 235: 352–4
  • Czeisler C. A., Kronauer R. E., Mooney J. J., Anderson J. L., Allan J. S. Biologic rhythm disorders, depression, and phototherapy: a new hypothesis. Psychiatr Clin North Am 1987; 10: 687–709
  • Teicher M. H., Glod C. A., Magnus E., Harper D., Benson G., Krueger K., et al. Circadian rest‐activity disturbances in seasonal affective disorder. Arch Gen Psychiatry 1997; 54: 124–30
  • Huang Z. J., Edery I., Rosbash M. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 1993; 364: 259–62
  • Crews S. T. Control of cell lineage‐specific development and transcription by bHLH‐PAS proteins. Genes Dev 1998; 12: 607–20
  • Shearman L. P., Sriram S., Weaver D. R., Maywood E. S., Chaves I., Zheng B., et al. Interacting molecular loops in the mammalian circadian clock. Science 2000; 288: 1013–9
  • Kaasik K., Lee C. C. Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 2004; 430: 467–71
  • Bunney W. E., Bunney B. G. Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology 2000; 22: 335–45
  • Zheng B., Larkin D. W., Albrecht U., Sun Z. S., Sage M., Eichele G., et al. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 1999; 400: 169–73
  • Bae K., Jin X., Maywood E. S., Hastings M. H., Reppert S. M., Weaver D. R. Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 2001; 30: 525–36
  • Xu Y., Toh K. L., Jones C. R., Shin J. Y., Fu Y. H., Ptáček L. J. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 2007; 128: 59–70
  • Bunger M. K., Wilsbacher L. D., Moran S. M., Clendenin C., Radcliffe L. A., Hogenesch J. B., et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000; 103: 1009–17
  • Dudley C. A., Erbel‐Sieler C., Estill S. J., Reick M., Franken P., Pitts S., et al. Altered patterns of sleep and behavioral adaptability in NPAS2‐deficient mice. Science 2003; 301: 379–83
  • Franken P., Dudley C. A., Estill S. J., Barakat M., Thomason R., O'Hara B. F., et al. NPAS2 as a transcriptional regulator of non‐rapid eye movement sleep: genotype and sex interactions. Proc Natl Acad Sci U S A 2006; 103: 7118–23
  • Desan P. H., Oren D. A. Is seasonal affective disorder a disorder of circadian rhythms?. CNS Spectr 2001; 6: 487–94
  • Lincoln G. A., Andersson H., Loudon A. Clock genes in calendar cells as the basis of annual timekeeping in mammals—a unifying hypothesis. J Endocrinol 2003; 179: 1–13
  • Pando M. P., Pinchak A. B., Cermakian N., Sassone‐Corsi P. A cell‐based system that recapitulates the dynamic light‐dependent regulation of the vertebrate clock. Proc Natl Acad Sci U S A 2001; 98: 10178–83
  • American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Press, Washington, DC 1994, 4th ed
  • Rosenthal N. E., Bradt G. H., Wehr T. A. Seasonal Pattern Assessment Questionnaire. National Institute of Mental Health, Bethesda, Md 1984
  • Horne J. A., Östberg O. A self‐assessment questionnaire to determine morningness‐eveningness in human circadian rhythms. Int J Chronobiol 1976; 4: 97–110
  • Duffy J. F., Rimmer D. W., Czeisler C. A. Association of intrinsic circadian period with morningness‐eveningness, usual wake time, and circadian phase. Behav Neurosci 2001; 115: 895–9
  • François P., Hakim V. Design of genetic networks with specified functions by evolution in silico. Proc Natl Acad Sci U S A 2004; 101: 580–5
  • Di Ventura B., Lemerle C., Michalodimitrakis K., Serrano L. From in vivo to in silico biology and back. Nature 2006; 443: 527–33
  • Sherry S. T., Ward M. H., Kholodov M., Baker J., Phan L., Smigielski E. M., et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 2001; 29: 308–11
  • Riva A., Kohane I. S. SNPper: retrieval and analysis of human SNPs. Bioinformatics 2002; 18: 1681–5
  • Schug J., Overton G. C. TESS: Transcription Element Search Software on the WWW. Technical Report CBIL‐TR‐1997‐1001‐v0.0. Computational Biology and Informatics Laboratory at the University of Pennsylvania, Philadelphia, Pa 1997
  • Long F., Liu H., Hahn C., Sumazin P., Zhang M. Q., Zilberstein A. Genome‐wide prediction and analysis of function‐specific transcription factor binding sites. In Silico Biology 2004; 4: 395–410
  • Duan J., Wainwright M. S., Comeron J. M., Saitou N., Sanders A. R., Gelernter J., et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 2003; 12: 205–16
  • Wang D., Johnson A. D., Papp A. C., Kroetz D. L., Sadee W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 2005; 15: 693–704
  • Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003; 31: 3406–15
  • Xia X. Maximizing transcription efficiency causes codon usage bias. Genetics 1996; 144: 1309–20
  • Oresic M., Shalloway D. Specific correlations between relative synonymous codon usage and protein secondary structure. J Mol Biol 1998; 281: 31–48
  • Xie T., Ding D. The relationship between synonymous codon usage and protein structure. FEBS Lett 1998; 434: 93–6
  • Cartegni L., Wang J., Zhu Z., Zhang M. Q., Krainer A. R. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 2003; 31: 3568–71
  • Blencowe B. J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 2000; 25: 106–10
  • Caceres J. F., Kornblihtt A. R. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 2002; 18: 186–93
  • Pesole G., Liuni S., Grillo G., Licciulli F., Mignone F., Gissi C., et al. UTRdb and UTRsite: specialized databases of sequences and functional elements of 5' and 3' untranslated regions of eukaryotic mRNAs. Update 2002. Nucleic Acids Res 2002; 30: 335–40
  • Mignone F., Grillo G., Licciulli F., Iacono M., Liuni S., Kersey P. J., et al. UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 2005; 33((Database issue))D141–6
  • de Bakker P. I., Yelensky R., Peter I., Gabriel S. B., Daly M. J., Altshuler D. Efficiency and power in genetic association studies. Nat Genet 2005; 37: 1217–23
  • Johansson C., Willeit M., Smedh C., Ekholm J., Paunio T., Kieseppä T., et al. Circadian clock‐related polymorphisms in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 2003; 28: 734–9
  • Hattersley A. T., McCarthy M. I. What makes a good genetic association study?. Lancet 2005; 366: 1315–23
  • Cermakian N., Boivin D. B. A molecular perspective of human circadian rhythm disorders. Brain Res Rev 2003; 42: 204–20
  • Johansson C., Smedh C., Partonen T., Pekkarinen P., Paunio T., Ekholm J., et al. Seasonal affective disorder and serotonin‐related polymorphisms. Neurobiol Dis 2001; 8: 351–7
  • Johansson C., Willeit M., Levitan R., Partonen T., Smedh C., Del Favero J., et al. The serotonin transporter promoter repeat length polymorphism, seasonal affective disorder and seasonality. Psychol Med 2003; 33: 785–92
  • Marchini J., Donelly P., Cardon L. Genome‐wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 2005; 37: 413–7
  • Faedda G. L., Tondo L., Teicher M. H., Baldessarini R. J., Gelbard H. A., Floris G. H. Seasonal mood disorders: patterns of seasonal recurrence in mania and depression. Arch Gen Psychiatry 1993; 50: 17–23
  • Spanagel R., Pendyala G., Abarca C., Zghoul T., Sanchis‐Segura C., Magnone M. C., et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 2005; 11: 35–42
  • Spanagel R., Rosenwasser A. M., Schumann G., Sarkar D. K. Alcohol consumption and the body's biological clock. Alcohol Clin Exp Res 2005; 29: 1550–7
  • Lecomte M. J., Basseville M., Fauquet M. Involvement of intronic sequences in cell‐specific expression of the peripherin gene. J Neurochem 1999; 73: 1806–15
  • van Haasteren G., Li S., Ryser S., Schlegel W. Essential contribution of intron sequences to Ca(2+)‐dependent activation of c‐fos transcription in pituitary cells. Neuroendocrinology 2000; 72: 368–78
  • Mastrangelo I. A., Courey A. J., Wall J. S., Jackson S. P., Hough P. V. DNA looping and Sp1 multimer links: a mechanism for transcriptional synergism and enhancement. Proc Natl Acad Sci U S A 1991; 88: 5670–4
  • Su W., Jackson S., Tjian R., Echols H. DNA looping between sites for transcriptional activation: self‐association of DNA‐bound Sp1. Genes Dev 1991; 5: 820–6
  • Lamont E. W., Robinson B., Stewart J., Amir S. The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc Natl Acad Sci U S A 2005; 102: 4180–4
  • Ueda H. R., Hayashi S., Chen W., Sano M., Machida M., Shigeyoshi Y., et al. System‐level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 2005; 37: 187–92
  • Akashi M., Ichise T., Mamine T., Takumi T. Molecular mechanism of cell‐autonomous circadian gene expression of Period2, a crucial regulator of the mammalian circadian clock. Mol Biol Cell 2006; 17: 555–65
  • Yamamoto Y., Yagita K., Okamura H. Role of cyclic mPer2 expression in the mammalian cellular clock. Mol Cell Biol 2005; 25: 1912–21
  • Hogenesch J. B., Chan W. K., Jackiw V. H., Brown R. C., Gu Y. Z., Pray‐Grant M., et al. Characterization of a subset of the basic‐helix‐loop‐helix‐PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 1997; 272: 8581–93
  • Sato T. K., Yamada R. G., Ukai H., Baggs J. E., Miraglia L. J., Kobayashi T. J., et al. Feedback repression is required for mammalian circadian clock function. Nat Genet 2006; 38: 312–9
  • Akashi M., Takumi T. The orphan nuclear receptor ROR( regulates circadian transcription of the mammalian core‐clock Bmal1. Nat Struct Mol Biol 2005; 12: 441–8
  • Sato T. K., Panda S., Miraglia L. J., Reyes T. M., Rudic R. D., McNamara P., et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 2004; 43: 527–37
  • Wiesenberg I., Missbach M., Kahlen J‐P., Schräder M., Carlberg C. Transcriptional activation of the nuclear receptor RZR alpha by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand. Nucleic Acids Res 1995; 23: 327–33
  • Wehr T. A., Duncan W. C., Jr., Sher L., Aeschbach D., Schwartz P. J., Turner E. H., et al. A circadian signal of change of season in patients with seasonal affective disorder. Arch Gen Psychiatry 2001; 58: 1108–14
  • Tu B. P., McKnight S. L. Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol 2006; 7: 696–701
  • Zhang J., Kaasik K., Blackburn M. R., Lee C. C. Constant darkness is a circadian metabolic signal in mammals. Nature 2006; 439: 340–3
  • Colwell C. S., Michel S., Itri J., Rodriguez W., Tam J., Lelièvre V., et al. Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol 2004; 287: R1194–201
  • Yujnovsky I., Hirayama J., Doi M., Borrelli E., Sassone‐Corsi P. Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc Natl Acad Sci U S A 2006; 103: 6386–91
  • Lincoln G. A., Clarke I. J., Hut R. A., Hazlerigg D. G. Characterizing a mammalian circannual pacemaker. Science 2006; 314: 1941–4
  • Prosser H. M., Bradley A., Chesham J. E., Ebling F. J. P., Hastings M. H., Maywood E. S. Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nuclei. Proc Natl Acad Sci U S A 2007; 104: 648–53
  • Gaist P. A., Obarzanek E., Skwerer R. G., Duncan C. C., Shultz P. M., Rosenthal N. E. Effects of bright light on resting metabolic rate in patients with seasonal affective disorder and control subjects. Biol Psychiatry 1990; 28: 989–96
  • Thompson C., Stinson D., Smith A. Seasonal affective disorder and season‐dependent abnormalities of melatonin suppression by light. Lancet 1990; 336: 703–6
  • Depue R. A., Arbisi P., Spoont M. R., Krauss S., Leon A., Ainsworth B. Seasonal and mood independence of low basal prolactin secretion in premenopausal women with seasonal affective disorder. Am J Psychiatry 1989; 146: 989–95
  • Partonen T. The molecular basis for winter depression. Ann Med 1994; 26: 239–43

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.