859
Views
19
CrossRef citations to date
0
Altmetric
Review Article

Cytochrome P450 — physiological key factor against cholesterol accumulation and the atherosclerotic vascular process

Pages 359-370 | Published online: 08 Jul 2009

References

  • Omura T., Sato R. The carbon‐monoxide‐binding pigment in liver microsomes. II. Solubilization, purification and properties. J Biol Chem 1964; 239: 2379–85
  • Nebert D. W., Russell D. W. Clinical importance of the cytochromes P450. Lancet 2002; 360: 1155–62
  • Luoma P. V., Sotaniemi E. A., Pelkonen R. O., Myllylä V. V. Plasma high density lipoprotein cholesterol and hepatic cytochrome P‐450 concentrations in epileptics undergoing anticonvulsant treatment. Scand J Clin Lab Invest 1980; 40: 163–7
  • Luoma P. V., Sotaniemi E. A., Pelkonen R. O., Ehnholm C. Plasma high density lipoprotein and liver microsomal enzyme activity in man. The Medical Research Council 1977–1979, A. S Pilli‐Sihvola, T. H Laaksovirta. The Academy of Finland, Helsinki 1980; 71
  • Luoma P. V., Sotaniemi E. A., Pelkonen R. O., Arranto A., Ehnholm C. Plasma high density lipoproteins and hepatic microsomal induction—relation to histological changes in the liver. Eur J Clin Pharmacol 1982; 23: 275–82
  • Luoma P. V., Sotaniemi E. A., Pelkonen R. O. Inverse relation of serum LDL cholesterol and the LDL/HDL cholesterol ratio to liver microsomal induction in man. Res Commun Chem Pathol Pharmacol 1983; 42: 173–6
  • Luoma P. V., Sotaniemi E. A., Arranto A. J. Serum LDL cholesterol and LDL/HDL cholesterol ratio and liver microsomal induction evaluated by antipyrine kinetics. Scand J Clin Lab Invest 1983; 43: 671–5
  • Janowski B. A., Willy P. J., Devi T. R., Falck J. R., Mangelsdorf D. J. An oxysterol signalling pathway mediated by the nuclear receptor LXRα. Nature 1996; 383: 728–31
  • Lehmann J. M., Kliewer S. A., Moore L. B., Smith‐Oliver T. A., Oliver B. B., Su J. L., et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem 1997; 272: 3137–40
  • Björkhem I., Andersson O., Diczfalusy U., Sefastik B., Xiu R. ‐J., Duan C., et al. Atherosclerosis and sterol 27‐hydroxylase: Evidence for a role of this enzyme in elimination of cholesterol from human macrophages. Proc Natl Acad Sci U S A 1994; 91: 8592–6
  • Reiss A. B., Martin K. O., Javitt N. B., Martin D. W., Grossi E. A., Galloway A. C. Sterol 27‐hydroxylase: high levels of activity in vascular endothelium. J Lipid Res 1994; 35: 1026–30
  • Björkhem I., Diczfalusy U., Lütjohann D. Removal of cholesterol from extrahepatic sources by oxidative mechanisms. Curr Opin Lipidol 1999; 10: 161–5
  • Wang N., Silver D. L., Costet P., Tall A. R. Specific binding of apoA‐I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABCA1. J Biol Chem 2000; 275: 33053–8
  • Wang N., Lan D., Chen W., Matsuura F., Tall A. R. ATP‐binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high‐density lipoproteins. Proc Natl Acad Sci U S A 2004; 101: 9774–9
  • Klucken J., Büchler C., Orsó E., Kaminski W. E., Porsch‐Özcϋrϋmez M., Liebisch G., et al. ABCG1 (ABC8), the human homolog of the drosophila white gene, is regulator of macrophage cholesterol and phospholipid transport. Proc Natl Acad Sci U S A 2000; 97: 817–22
  • Luoma P. V. Gene activation, apolipoprotein A‐I/ high density lipoprotein, atherosclerosis prevention and longevity. Pharmacol Toxicol 1997; 81: 57–64
  • Luoma P. V., Savolainen M. J., Sotaniemi E. A., Pelkonen R. O., Arranto A. J., Ehnholm C. Plasma high density lipoprotein and liver lipids and proteins in man. Relation to hepatic histology and microsomal enzyme induction. Acta Med Scand 1983; 214: 103–9
  • Chao Y. U., Pickett C. B., Yamin T. T., Guo L. S., Alberts A., Kroon P. A. Phenobarbital induces rat liver apoliprotein A‐I mRNA. Mol Pharmacol 1985; 27: 394–8
  • Malmendier C. L., Delcroix C. Effect of alcohol intake on high and low density lipoprotein metabolism in healthy volunteers. Clinica Chimica Acta 1985; 152: 281–8
  • Malmendier C., Delcroix C. Effects of fenofibrate on high and low density lipoprotein metabolism in heterozygous familial hypercholesterolemia. Atherosclerosis 1985; 55: 161–9
  • Saku K., Gartside P. S., Hynd B. A., Kashyap M. L. Mechanism of action of gemfibrozil on lipoprotein metabolism. J Clin Invest 1985; 75: 1702–12
  • Tam S. P. Effects of gemfibrozil and ketoconazole on human apolipoprotein A‐I and E levels in two hepatoma cell lines HepG2 and HepG3. Atherosclerosis 1991; 91: 51–61
  • Tam S. P. Effect of ethanol on lipoprotein secretion in two human hepatoma cell lines HepG2 and HepG3. Alcohol Clin Exp Res 1992; 16: 1021–8
  • Rubin E. M., Krauss M. R., Spangler E. A., Verstuyft J. G., Clift M. S. Inhibition of early atherogenesis in transgenic mice by human apoprotein A‐I. Nature 1991; 353: 265–7
  • Duverger N., Kruth N. H., Emmanuel F., Caillaud J. M., Viglietta C., Castro G., et al. Inhibition of atherosclerosis development in cholesterol‐fed human apolipoprotein A‐I transgenic rabbits. Circulation 1996; 94: 713–7
  • Eriksson M., Carlson L. A., Miettinen T. A., Angelin B. Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A‐I. Potential reverse cholesterol transport in humans. Circulation 1999; 100: 594–8
  • Russell D. W. Oxysterol biosynthetic enzymes. Biochim Biophys Acta 2000; 1529: 126–35
  • Tontonoz P., Mangelsdorf D. J. Liver X receptors signalling pathways in cardiovascular disease. Mol Endocrinol 2003; 17: 985–93
  • Ory D. S. Nuclear receptor signalling in the control of cholesterol homeostasis: have the orphans found a home. Circ Res 2004; 95: 660–70
  • Russell D. W. The enzymes, regulation and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72: 137–74
  • Björkhem I., Diczfalusy U. Oxysterols–friends, foes or just fellow passengers. Arterioscler Thromb Vasc Biol 2002; 22: 734–42
  • Fu X., Menke J. G., Chen Y., Zhou G., MacNaul K. L., Wright S. D., et al. 27–hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol loaded cells. J Biol Chem 2001; 276: 38378–87
  • Escher G., Krozowski Z., Croft K. D., Sviridov D. Expression of sterol 27‐hydroxylase (CYP27A1) enhances cholesterol efflux. J Biol Chem 2003; 278: 11015–9
  • Norlin M., Andersson U., Björkhem I., Wikwall K. Oxysterol 7α‐hydroxylase activity by cholesterol 7α‐hydroxylase (CYP7A). J Biol Chem 2000; 275: 34046–53
  • Björkhem I., Meaney S. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc Biol 2004; 24: 806–15
  • Dietschy J. M., Turley S. D. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res 2004; 45: 1375–97
  • Lütjohann D., Breuer O., Ahlborg G., Nennesmo I., Sidén Å., Diczfalusy U., et al. Cholesterol homeostasis in human brain: Evidence for an age‐dependent flux of 24S‐hydroxycholesterol from the brain into circulation. Proc Natl Acad Sci U S A 1996; 93: 9799–804
  • Li‐Hawkins J., Lund E. G., Bronson A. D., Russell D. W. Expression cloning of an oxysterol 7α‐hydroxylase selective for 24‐hydroxycholesterol. J Biol Chem 2000; 275: 16543–48
  • Abildayeva K., Jansen P. J., Hirsch‐Reinshagen V., Bloks W. V., Bakker A. H. F., Ramaekers F. C. S., et al. 24(S)‐hydroxycholesterol participates in a liver X receptor‐controlled pathway in astrocytes that regulates apolipoprotein E‐mediated cholesterol efflux. J Biol Chem 2006; 281: 12799–808
  • Pfrieger F. W. Outsourcing in the brain: do neurons depend on cholesterol delivery by astrocytes. Bioessays 2002; 25: 72–8
  • Panzenboeck U., Balazs Z., Sovic A., Hrzenjak A., Levak‐Frank S., Wintersperger A., et al. ABCA1 and scavenger receptor class B, type I, are modulators of reverse cholesterol transport at an in vitro blood‐brain barrier constituted porcine brain capillary endothelial cells. J Biol Chem 2002; 277: 42781–9
  • Lütjohann D., Papassotiropoulos A., Björkhem I., Locatelli S., Bagli M., Oehring R. D., et al. Plasma 24S‐hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J Lipid Res 2000; 41: 195–8
  • Bodin K., Bretillon L., Aden Y., Bertilsson L., Broome U., Einarsson C., et al. Antiepileptic drugs increase plasma levels of 4β‐hydroxycholesterol in humans. J Biol Chem 2001; 276: 38685–9
  • Gibbons G. F. The role of cytochrome P450 in the regulation of cholesterol biosynthesis. Lipids 2002; 37: 1163–70
  • Ridgway N. D., Dawson P. A., Ho Y. K., Brown M. S., Goldstein J. L. Translocation of oxysterol binding protein to Golgi apparatus triggered by ligand binding. J Cell Biol 1992; 116: 307–19
  • Olkkonen V. M., Johansson M., Suchanek M., Yan D., Hynynen R., Ehnholm C., et al. The OSBP‐related proteins (ORPS): global sterol sensors for co‐ordination of cellular lipid metabolism, membrane trafficking and signalling processes. Biochem Soc Transact 2006; 34: 389–91
  • Raychaudhuri S., Im Y. J., Hurley J. H., Prinz W. A. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol‐binding protein related proteins and phosphoinositides. J Cell Biol 2006; 173: 107–19
  • Chawla A., Boisvert W., Lee C. ‐H., Laffitte B. A., Barak Y., Joseph S. B., et al. A PPARγ– LXR–ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 2001; 7: 161–71
  • Bodzioch M., Orso E., Klucken J., Langmann T., Bottcher A., Diederich W., et al. The gene encoding ATP‐binding cassette transporter 1 is mutated in Tangier disease. Nat Genet 1999; 22: 347–51
  • Brooks‐Wilson A., Marcil M., Clee S. M., Zhang L. H., Roomp K., van Dam M., et al. Mutations in ABC1 in Tangier disease and familial high‐density lipoprotein deficiency. Nat Genet 1999; 22: 336–45
  • Rust S., Rosier M., Funke H., Real J., Amoura Z., Piett J. C., et al. Tangier disease is caused by mutations in the gene encoding ATP‐binding cassette transporter 1. Nat Genet 1999; 22: 352–5
  • Lawn R. M., Wade D. P., Garvin M. R., Wang X., Schwartz K., Porter J. G., et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein‐mediated lipid removal pathway. J Clin Invest 1999; 104: R25–31
  • Tangirala R. K., Bischoff E. D., Joseph S. B., Wagner B. L., Walczak R., Laffitte B. A., et al. Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci U S A 2002; 99: 11896–901
  • Schuster G. U., Parini P., Wang L., Alberti S. A., Steffensen K. R., Hansson G. K., et al. Accumulation of foam cells in liver X receptor‐deficient mice. Circulation 2002; 106: 1147–53
  • Singaraja R. R., Fievet C., Castro G., James E. R., Hennuyer N., Clee S. M., et al. Increased ABCA1 activity protects against atherosclerosis. J Clin Invest 2002; 110: 35–42
  • Brewer H. B., Jr, Remaley A. T., Neufeld E. B., Basso F., Jouce C. Regulation of plasma high‐density lipoprotein levels by the ABCA1 transporter and the emerging role of high‐density lipoprotein in the treatment of cardiovascular disease. Arterioscler Thromb Vasc Biol 2004; 24: 1755–60
  • Timmins J. M., Lee J. ‐Y., Boydyguina E., Kluckman K. D., Brunham L. R., Mulya A., et al. Targeted inactivation of hepatic Abc 1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA‐I. J Clin Invest 2005; 115: 1333–42
  • Brunham L. R., Kruit K. J., Iqbal J., Fievet C., Timmins J. M., Pape T., et al. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Invest 2006; 116: 1052–62
  • Repa J. J., Turley S. D., Lobaccaro J. A., Medina J., Li L., Lustig K., et al. Regulation of absorption of ABCA1‐mediated efflux of cholesterol by RXR heterodimers. Science 2000; 289: 1524–9
  • Yu L., Li‐Hawkins J., Hammer R. E., Berge K. E., Horton J. D., Cohen J. C., et al. Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 2002; 110: 671–80
  • Kruit J. K., Plösch T., Havinga R., Boverhof R., Groot P. E. H., Groen A. K., et al. Increased fecal neutral steroid loss upon liver‐X‐receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 2005; 128: 147–56
  • Berge K. E., Tian H., Graf G. A., Yu L., Grishin N. V., Schutz J., et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000; 290: 1771–5
  • Chinetti G., Lestavel S., Bocher V., Remaley A. T., Neve B., Torra I. P., et al. PPARα and PPARγ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 2001; 7: 53–8
  • Li A. C., Glass C. K. PPAR‐ and LXR‐dependent pathways controlling lipid metabolism and the development of atherosclerosis. J Lipid Res 2004; 45: 2161–73
  • Mak P. A., Laffitte B. A., Resrumaux C., Joseph S. B., Curtiss L. K., Mangelsdorf D. J., et al. Regulated expression of the apolipoproteinE/C‐I/C‐IV/C‐CII gene cluster in murine and human macrophage. A critical role for nuclear liver X receptors α and β. J Biol Chem 2002; 277: 31900–8
  • Duverger N., Tremp G., Caillaud J. M., Emmanuel F., Castro G., Fruchart J. M., et al. Protection against atherogenesis in mice mediated by human apolipoprotein AIV. Science 1996; 273: 966–8
  • Liang Y., Jiang X. ‐C., Liu R., Liang G., Beyer T. P., Gao H., et al. Liver X receptors (LXRs) regulate apolipoprotein AIV—implications of the antiatherosclerotic effect of LXR agonists. Mol Endocrinol 2004; 18: 2000–10
  • Repa J. J., Liang G., Ou J., Bashmakov Y., Lobaccaro J. M. A., Shimomura I., et al. Regulation of mouse sterol regulatory element‐binding protein‐1c (SREBP‐1c) by oxysterol receptors LXRα and LXRβ. Genes Dev 2000; 14: 2819–30
  • Horton J. D., Goldstein J. L., Brown M. S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125–31
  • Malerod L., Juvet L. K., Hanssen‐Bauer A., Eskild W., Berg T. Oxysterol‐activated LXRalpha/RXR induces hSR‐BI‐promoter activity in hepatoma cells and preadipocytes. Biochem Biophys Res Commun 2002; 299: 916–23
  • Ji Y., Jian B., Wang N., Sun Y., de la Llera Moya M., Phillips M. C., et al. Scavenger receptor BI promotes high density lipoprotein‐mediated cellular cholesterol efflux. J Biol Chem 1997; 272: 20982–5
  • Eloranta J. J., Kullak‐Ublick G. A. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys 2005; 433: 397–412
  • Claudel T., Staels B., Kuipers F. The farnesoid X receptor—a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005; 25: 2020–31
  • Bodin K., Lindbom U., Diczfalusy U. Novel pathways of bile acid metabolism involving CYP3A4. Biochim Biophys Acta 2005; 1687: 84–93
  • Goodwin B., Moore J. T. CAR: detailing new models. Trends Pharmacol Sci 2004; 25: 437–41
  • Prueksaritanont T., Richards K. M., Qui Y., Strong‐Basalyga K., Miller A., Li C., et al. Comparative effects of fibrates on drug metabolizing enzymes in human hepatocytes. Pharmaceut Res 2005; 22: 71–8
  • Amacher D., Beck D., Schomaker S. J., Kenny C. V. Hepatic microsomal enzyme induction, β‐oxidation, and cell proliferation following administration of clofibrate, gemfibrozil or bezafibrate in the CD rat. Toxicol Appl Pharmacol 1997; 142: 143–50
  • Kocarek T., Dahn M. S., Cai H., Strom S. C., Mercer‐Haines N. A. Regulation of CYP2B6 and CYP3A expression by hydroxymethylglutaryl coenzyme A inhibitors in primary cultured human hepatocytes. Drug Metab Dispos 2002; 30: 1400–5
  • Kobayashi K., Yamanaka Y., Iwazaki N., Nakajo I., Hosokawa M., Negishi M., et al. Identification of HMG‐CoA reductase inhibitors as activators for human, mouse and rat constitutive androstane receptor. Drug Metab Dispos 2005; 33: 924–9
  • Fan P., Zhang B., Kuroki S., Saku K. Pitavastatin, a potent hydroxymethylglutaryl coenzyme A reductase inhibitor, increases cholesterol 7α‐hydroxylase gene expression in HepG2 cells. Circ J 2004; 68: 1061–6
  • Sahi J., Black C. B., Hamilton G. A., Zheng X., Jolley S., Rose K. A., et al. Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab Dispos 2003; 31: 439–46
  • Lieber C. S. To drink (moderately) or not to drink?. N Engl J Med 1984; 310: 846–8
  • Luoma PV Sotaniemi E. A., Pelkonen R. O., Ehnholm C. High‐density lipoproteins and hepatic microsomal enzyme induction in alcohol consumers. Res Commun Chem Pathol Pharmacol 1982; 37: 91–6
  • Reiss A. B., Rahman M., Chan E. S., Montesinos C., Awadallah N. W., Cronstein B. N. Adenosine A2A receptor occupancy stimulates expression of proteins involved in reverse cholesterol transport and inhibits foam cell formation in macrophages. J Leucoc Biol 2004; 76: 727–34
  • Langmann T., Liebisch G., Moehle C., Schifferer R., Dayoab R., Heiduczek S., et al. Gene expression profiling identifies retinoids as potent inducers of macrophage lipid efflux. Biochim Biophys Acta 2005; 1740: 155–61
  • Staels B., Dallongville D., Auwerx J., Schhoonjans K., Leitersdorf E., Fruchart J. C. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98: 2088–93
  • Arakawa R., Tamehiro N., Nishimaki‐Mogami T., Ueda K., Yokoyama S. Fenofibric acid, an active form of fenofibrate increases apolipoprotein A‐I‐mediated high‐density lipoprotein biogenesis by enhancing transcription of ATP‐binding cassette transporter AI gene in a liver X receptor‐dependent manner. Arterioscler Thromb Vasc Biol 2005; 25: 1193–7
  • Knight B. L., Patel D. D., Humphreys S. M., Wiggins D., Gibbons G. F. Inhibition of cholesterol absorption associated with a PPARα‐dependent increase in ABC binding cassette transporter A1 in mice. J Lipid Res 2003; 44: 2049–58
  • Guan J. ‐Z., Tamasava N., Murakami H., Matsui J., Yamato K., Suda T. Clofibrate, a peroxisome‐proliferator, enhances reverse cholesterol transport through cytochrome P450 activation and oxysterol generation. Tohoku J Exp Med 2003; 201: 251–9
  • Argmann C. A., Edwards J. Y., Sawyez C. G., O'Neil C. H., Hegele R. A., Pickering J. G., et al. Regulation of macrophage cholesterol efflux through hydroxymethylglutaryl‐CoA reductase inhibition. J Biol Chem 2005; 280: 22212–21
  • Maejima T., Yamazaki H., Aoki T., Tamaki T., Sato F., Kitahara M., et al. Y. Effect of pitavastatin on apolipoprotein A‐I production in HepG2 cell. Biochem Biophys Res Commun 2004; 324: 835–9
  • Martin G., Duez H., Blanquart C., Berezowski V., Poulain P., Fruchart J. C., et al. Statin‐induced inhibition of the Rho‐signaling pathway activates PPARα and induces HDL apoA‐I. J Clin Invest 2001; 107: 1423–32
  • Lehmann J. M., McKee D. D., Watson M. A., Willson T. M., Moore J. T., Kliewer S. A. Human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998; 102: 1016–23
  • Fajas L., Schoonjans K., Gelman L., Kim J. B., Najib J., Martin G., et al. Regulation of peroxisome proliferator‐activated receptor gamma expression by adipocyte differentation and determination factor1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol 1999; 19: 5495–503
  • Glueck C. J. Nonpharmacologic and pharmacologic alteration of high‐density lipoprotein cholesterol: therapeutic approaches to prevention of atherosclerosis. Am Heart J 1985; 110: 1107–15
  • Shepherd J. The effect of cholestyramine on high density lipoprotein metabolism. Atherosclerosis 1979; 33: 433–44
  • Forman B. M., Tontonoz P., Chen J., Brun R. P., Spiegelman B. M., Evans R. M. 15‐deoxy‐Δ 12,14‐prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 1995; 83: 803–12
  • Lehmann J. M., Moore L. B., Smith‐Oliver T. A., Wilkison W. O., Wilson T. M., Kliewer S. A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator‐activated receptor PPARγ. J Biol Chem 1995; 270: 12953–6
  • Myers C. D., Kashyap M. L. Pharmacological augmentation of high‐density lipoproteins: mechanisms of currently available and emerging therapies. Curr Opin Cardiol 2005; 20: 307–12
  • Akiyama T. E., Sakai S., Lambert G., Nicol C. J., Matsusue K., Pimprale S., et al. Conditional disruption of the peroxisome proliferator‐activated receptor γ gene in mice results in lowered expression of ABCA1, ABCG1 and apo E in macrophages and reduced cholesterol efflux. Mol Cell Biol 2002; 22: 2607–19
  • Chinetti G., Gbaguidi F. G., Griglio S., Mallat Z., Antonucci M., Poulain P., et al. CLA‐1/SR‐BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator‐activated receptors. Circulation 2000; 101: 2411–7
  • Szanto A., Benko S., Szatmari I., Balint L. B., Furtos I., Rϋhl R., et al. Transcriptional regulation of human CYP27 integrates retinoid, peroxisome proliferator‐activated receptor, and liver X receptor signalling in macrophages. Mol Cell Biol 2004; 24: 8154–66
  • Quinn C. M., Jessup W., Wong J., Kritharides L., Brown A. J. Expression and regulation of sterol 27‐hydroxylase (CYP27A1) in human macrophages: a role for RXR and PPARγ ligands. Biochem J 2005; 385: 823–30
  • Luo G., Cunningham M., Kim S., Burn T., Lin J., Sinz M., et al. 3A4 induction by drugs: correlation between a pregnane x receptor receptor gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Disp 2002; 30: 795–802
  • Moore L. B., Parks D. J., Jonest S. A., Bledsoe R. K., Consler T. G., Stimmel J. B., et al. Orphan nuclear receptors constitutive androstane receptor and Pregnane receptor share xenobiotic and steroid ligands. J Biol Chem 2000; 275: 15122–7
  • Makishima M., Lu T. T., Xie W., Whitfield G. K., Domoto H., Evans R. M., et al. Vitamin D receptor as an intestinal bile acid sensor. Science 2002; 296: 1313–6
  • Beulens J. W., Sierksma A., van Tol A., Fournier N., van Gent T., Paul J. ‐L., et al. Moderate alcohol consumption increases cholesterol efflux mediated by ABCA1. J Lipid Res 2004; 45: 1716–23
  • Costet P., Lalanne F., Gerbod‐Gionnone M., Molina J. R., Fu X., Lund E. G., et al. Retinoid acid receptor‐mediated induction of ABCA1 in macrophages. Mol Cell Biol 2003; 23: 7756–66
  • Astrup P., Kjeldsen K., Wanstrup J. Effects of carbon monoxide exposure on the arterial walls. Ann NY Acad Sci 1970; 174: 294–300
  • Haustein K. O., Krause J., Haustein H., Rasmussen T., Cort N. Comparison of the effects of combined nicotine replacement therapy vs. cigarette smoking in males. Nicotine Tob Res 2003; 5: 195–203
  • Moffatt R. J., Stamford B. A., Biggerstaff K. D. Influence of worksite tobacco smoke on serum lipoprotein profiles of female nonsmokers. Metabolism 1995; 44: 1536–9
  • Hedblad B., Ögren M., Engström G., Wollmer P., Janzon L. Heterogeneity of cardiovascular risk among smokers is related to degree of carbon monoxide exposure. Atherosclerosis 2005; 179: 177–83
  • Reiss A. B., Patel C. A., Rahman M. M., Chan E. S. L., Hasneen K., Montesinos M. M., et al. Interferon‐γ impedes reverse cholesterol transport and promotes foam cell transformation in TPH‐1 human monocytes/macrophages. Med Sci Monit 2004; 10: BR420–5
  • Williams J. F. Cytochrome isoforms. Regulation during infection, inflammation and by cytokines. J Fla Med Assoc 1991; 78: 517–9
  • Panousis V. G., Zuckerman S. H. Interferon‐γ induces downregulation of Tangier disease gene (ATP‐binding cassette transporter 1) in macrophage derived foam cells. Arterioscler Thromb Vasc Biol 2000; 20: 1565–71
  • von Bahr S., Movin T., Papadogiannakis N., Pikuleva I., Rönnow P., Diczfalusy U., et al. Mechanism of accumulation of cholesterol and cholestanol in tendons and the role of sterol 27‐hydroxylase (CYP27A1). Arterioscler Thromb Vasc Biol 2002; 22: 1129–35
  • Pullinger C. R., Eng C., Salen G., Shefer S., Barra A. K., Erickson S. K., et al. Human cholesterol 7α‐hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest 2002; 110: 109–17
  • Frick M. H., Syvänne M., Nieminen M. S., Kauma H., Majahalme S., Virtanen V., et al. Prevention of the angiographic progression of coronary vein‐graft atherosclerosis by gemfibrozil after coronary by‐pass surgery in men with low levels of HDL cholesterol. Circulation 1997; 96: 2137–43
  • Ericsson C. G., de Faire U., Grip L., Svane B., Hamsten A., Nilsson J. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996; 347: 849–53
  • Effect of fenofibrate on progression of coronary artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 2001; 357: 905–10
  • Effect of simvastatin on coronary atheroma. The Multicentre Anti‐Atheroma Study (MAAS). Lancet 1994; 344: 633–8
  • Blankenhorn D. H., Azen S. P., Kramsch D. M., Mack W. J., Cashin‐Hemphill L., Hodis H. N., , the MARS Research Group, et al. Coronary angiographic changes with lovastatin therapy; The Monitored Atherosclerosis Regression Study (MARS). Ann Intern Med 1993; 119: 969–76
  • Watts G. F., Lewis B., Brunt J. N. H., Lewis E. s., Coltart D. J., Smith L. D., et al. Effects on coronary artery disease of lipid lowering diet, or diet plus cholestyramine. In St Thomas Atherosclerosis Regression Study (STARS). Lancet 1992; 339: 563–9
  • Langenfeld M. R., Forst T., Hohberg C., Kann P., Lubben G., Konrad T., et al. Pioglitazone decreases carotid intima‐media thickness independently of glycemic control in patients with type 2 diabetes mellitus. Results from a controlled randomized study. Circulation 2005; 111: 2525–31
  • Myasnikov A. L. Influence of some factors on development of experimental cholesterol atherosclerosis. Circulation 1958; 17: 99–113
  • Salvador R. A., Atkins C., Haber S., Kozma C., Conney A. H. Effect of phenobarbital and chlorcyclizine on the development of atheromatosis in the cholesterol‐fed rabbit. Biochem Pharmacol 1970; 19: 1975–81
  • Kiehl S., Willeit J., Rungger G., Egger G., Oberhollenzer F., Bonora E., et al. Alcohol consumption and atherosclerosis: What is the relation. Prospective results from the Bruneck study. Stroke 1998; 29: 900–7
  • Femia R., Natali A., L'Abbate A., Ferrannini E. Coronary atherosclerosis and alcohol consumption. Angiographic and mortality data. Arterioscler Thromb Vasc Biol 2006; 26: 1607–12
  • Frick M. H., Elo O., Haapa K., Heinonen O. P., Heinsalmi P., Helo P., et al. Helsinki Heart Study: primary prevention trial with gemfibrozil in middle‐aged men with dyslipidemia. New Engl J Med 1987; 317: 1237–45
  • Tenkanen L., Mänttäri M., Kovanen P. T., Virkkunen H., Manninen V. Gemfibrozil in the treatment of dyslipidemia. An 18‐year follow‐up of the Helsinki Heart Study. Arch Intern Med 2006; 166: 743–8
  • Keech A., Simes R. J., Barter J., Best J., Scott R., Taskinen M. R., et al. Effects of long‐term fenofibrate therapy on cardiovascular events in 9759 people with type 2 diabetes mellitus (the FIELD Study): randomised controlled trial. Lancet 2005; 366: 1849–61
  • Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9
  • Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high‐risk individuals: a randomised placebo‐controlled trial. Lancet 2002; 360: 7–22
  • Cheung B. M. Y., Lauder I. J., Lau C. ‐P., Kumana C. Meta‐analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol 2004; 57: 640–51
  • Baigent C., Keech A., Kearney P. M., Blackwell L., Buck G., Pollicino C., , Cholesterol Treatment Trialists' (CTT) Collaborators, et al. Efficacy and safety of cholesterol‐lowering treatment: prospective meta‐analysis of data from 90 056 participants in 14 randomised trials of statins. Lancet 2005; 366: 1267–78
  • The Lipid Research Clinics Coronary Primary Prevention Trial: results. I. Reduction in the incidence of coronary heart disease. JAMA 1984; 251: 351–64
  • Dormandy J. A., Charbonnel B., Eckland D. A. J., Erdmann E., Massi‐Benedetti M., Moules I. K., et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the Proactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366: 1279–89
  • Poikolainen K. Alcohol and mortality: a review. J Clin Epidemiol 1995; 48: 455–65
  • Luoma P. V., Savolainen MJ., Sotaniemi E. A., Arranto A. J., Pelkonen R. O. Plasma HDL cholesterol and blood glucose in non‐insulin‐dependent diabetics related to liver lipids and microsomal enzyme activity. Acta Med Scand 1985; 217: 473–9
  • Luoma P. V., Rautio A., Stengård J., Sotaniemi E. A., Marniemi J. High‐density lipoprotein subfractions, apolipoproteins and antipyrine clearance in normal subjects. Eur J Clin Pharmacol 1990; 38: 625–7
  • Tokola O., Pelkonen O., Karki N. T., Luoma P. Hepatic drug‐oxidizing enzyme systems and urinary D‐glucaric acid excretion in patients with congestive heart failure. Br J Clin Pharmacol 1975; 2: 429–36
  • Luoma P. V., Myllylä V. V., Hokkanen E. Relationship between plasma high‐density lipoprotein cholesterol and anticonvulsant levels in epileptics. J Cardiovasc Pharmacol 1982; 4: 1024–7
  • LaPorte R., Valvo‐Gerard L., Kuller L., Wanju R., Bates M., Cresanta J., et al. The relationship between alcohol consumption, liver enzymes and high‐density lipoprotein cholesterol. Circulation 1981; 64(suppl III)67–72
  • Steyn K., Fourie J., Benade A. J., Roussow J. E., Langenhoven M. L., Joubert G., et al. Factors associated with high density lipoprotein cholesterol in a population with high high density lipoprotein cholesterol levels. Arteriosclerosis 1989; 9: 390–7
  • Dixon R. M., Borden E. C., Keim N. L., Anderson S., Spennetta T. L., Tormey D. C., et al. Decreases in serum high‐density‐lipoprotein cholesterol and total cholesterol resulting from naturally produced recombinant DNA‐derived leucocyte interferon. Metabolism 1984; 33: 400–4
  • Andrade R. J., Escolar J. L., Valdivielso P., Gonzelez‐Santos P. Apolipoprotein distribution in plasma HDL subfractions in alcohol consumers. Drug Alcohol Depend 1990; 26: 161–8
  • Robertson R. G., Krause B. R., Welty D. F., Wolfgang G. H. I., Grazian M. J., Pilcher G. D., et al. Hepatic microsomal induction profile of carbamic acid [[2,6‐bis(1‐methylethyl) phenoxy] sulfonyl]‐2,6‐bis(1‐methylethyl) phenyl ester, monosodium salt (PD138142‐15), a novel lipid regulating agent. Biochem Pharmacol 1995; 49: 799–808
  • Evans R. M. The nuclear receptor superfamily: a rosette stone for physiology. Mol Endocrinol 2005; 19: 1429–38
  • Luoma P. V., Sotaniemi E. A., Ehnholm C. Low high‐density lipoprotein and reduced antipyrine metabolism in members of a family with polycystic liver disease. Scand J Gastroenterol 1980; 15: 869–73
  • Luoma P. V., Sotaniemi E. A., Pelkonen R. O., Pirttiaho H. I. Serum low density and high density lipoprotein cholesterol, and liver size in subjects on drugs inducing hepatic microsomal enzymes. Eur J Clin Pharmacol 1985; 28: 615–8
  • Bretillon L., Lütjohann D., Ståhle L., Widhe T., Bindl L., Eggertsen G., et al. Plasma levels of 24S‐hydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface. J Lipid Res 2000; 41: 840–5
  • Lehrke M., Lebherz C., Millington S. C., Guan H. P., Millar J., Rader D. J., et al. Diet‐dependent cardiovascular lipid metabolism controlled by hepatic LXRα. Cell Metab 2005; 1: 297–308
  • Joseph S. B., Mckilligan E., Pei L., Watson M. A., Collins A. R., Laffitte B. A., et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A 2002; 99: 7604–9
  • Terasaka N., Hiroshima A., Koieyama T., Ubukata N., Morikawa Y., Nakai D., et al. T‐0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor‐deficient mice. FEBS Lett 2003; 536: 6–11
  • Kovanen P. T., Pentikäinen M. O. Pharmacological evidence for a role of liver X receptors in atheroprotection. FEBS Lett 2003; 536: 3–5
  • Levin N., Bischoff E. D., Daige C. L., Thomas D., Vu C. T., Heyman R. A., et al. Macrophage liver X receptor is required for anti‐atherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 2005; 25: 135–42
  • Naik S. U., Wang X., Da Silva J. S., Jaye M., Macphee C. H., Reilly M. R., et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 2006; 113: 90–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.