1,027
Views
111
CrossRef citations to date
0
Altmetric
Review Article

Endothelium‐dependent hyperpolarizations: Past beliefs and present facts

&
Pages 495-516 | Published online: 08 Jul 2009

References

  • Félétou M., Vanhoutte P. M. EDHF: the complete story. Taylor & Francis, CRC press, Boca Raton, Fl 2005
  • Félétou M., Vanhoutte P. M. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 2006; 291: H985–1002
  • Furchgott R. F., Vanhoutte P. M. Endothelium‐derived relaxing and contracting factors. FASEB J 1989; 3: 2007–18
  • Furchgott R. F., Zawadzki J. V. The obligatory role of the endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 373–6
  • Busse R., Edwards G., Félétou M., Fleming I., Vanhoutte P. M., Weston A. H. Endothelium‐dependent hyperpolarization, bringing the concepts together. Trends Pharmacol Sci 2002; 23: 374–80
  • Itoh T., Seki N., Suzuki S., Ito S., Kajikuri J., Kuriyama H. Membrane hyperpolarisation inhibits agonist‐induced synthesis of inositol 1,4,5‐trisphosphate in rabbit mesenteric artery. J Physiol 1992; 451: 307–28
  • del Valle‐Rodriguez A., Lopez‐Barneo J., Urena J. Ca2+ channel‐sarcoplasmic reticulum coupling: a mechanism of arterial myocyte contraction without Ca2+ influx. EMBO J 2003; 22: 4337–45
  • Moncada S., Vane J. R. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 1979; 30: 293–331
  • Smyth E. M., FitzGerald G. A. Human prostacyclin receptor. Vitam Horm 2002; 65: 149–65
  • Corriu C., Félétou M., Edwards G., Weston A. H., Vanhoutte P. M. Differential effects of Prostacyclin and Iloprost in the isolated carotid artery of the guinea‐pig. Eur J Pharmacol 2001; 426: 89–94
  • Parkington H. C., Coleman H. A., Tare M. Prostacyclin and endothelium‐dependent hyperpolarizations. Pharmacol Res 2004; 49: 509–14
  • Li P. L., Zou A. P., Campbell W. B. Regulation of potassium channels in coronary arterial smooth muscle by endothelium‐derived vasodilators. Hypertension 1997; 29: 262–7
  • Orie N. N., Fry C. H., Clapp L. H. Evidence that inward rectifier K+ channels mediate relaxation by the PGI2 receptor agonist cicaprost via a cyclic AMP‐independent mechanism. Cardiovasc Res 2006; 69: 107–15
  • Schubert R., Serebryakov N. V., Engel H., Hopp H. H. Iloprost activates KCa channels of vascular smooth muscle cells: role of cyclic‐AMP‐dependent proteine kinase. Am J Physiol 1996; 271: C1203–11
  • Clapp L. H., Turcato S., Hall S., Baloch M. Evidence that Ca2+‐activated K+ channels play a major role in mediating the vascular effects of iloprost and cicaprost. Eur J Pharmacol 1998; 356: 215–24
  • Olschewski A., Li Y., Tang B., Hanze J., Eul B., Bohle R. M., et al. Impact of TASK‐1 in human pulmonary artery smooth muscle cells. Circ Res 2006; 98: 1072–80
  • Yamaki F., Kaga M., Horinouchi T., Tanaka H., Koike K., Shigenobu K., et al. MaxiK channel‐mediated relaxation of guinea‐pig aorta following stimulation of IP receptor with beraprost via cyclic AMP‐dependent and ‐independent mechanisms. Naunyn Schmiedebergs Arch Pharmacol 2001; 364: 538–50
  • Fleming I. Cytochrome P450 epoxygenases as EDHF synthase(s). Pharmacol Res 2004; 49: 525–33
  • Fisslthaler B., Popp R., Kiss L., Potente M., Harder D. R., Fleming I., et al. Cytochrome P4540 2C is an EDHF synthase in coronary arteries. Nature 1999; 401: 493–7
  • Popp R., Bauersachs J., Sauer E., Hecker M., Fleming I., Busse R. A transferable, β‐naphtoflavone‐inducible, hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells. J Physiol 1996; 497: 699–709
  • Campbell W. B., Gebremedhin D., Pratt P. F., Harder D. R. Identification of epoxyeicosatrienoic acids as endothelium‐derived hyperpolarizing factor. Circ Res 1996; 78: 415–23
  • Gauthier K. M., Edwards E. M., Falck J. R., Reddy D. S., Campbell W. B. 14,15‐Epoxyeicosatrienoic acid represents a transferable endothelium‐dependent relaxing factor in bovine coronary arteries. Hypertension 2005; 45: 666–71
  • Huang A., Sun D., Jacobson A., Carroll M. A., Kalck J. R., Kaley G. Epoxyeicosatrienoic acids are released to mediate shear stress‐dependent hyperpolarization of arteriolar smooth muscle. Circ Res 2005; 96: 376–83
  • Weston A. H., Félétou M., Vanhoutte P. M., Falck J. R., Campbell W. B., Edwards G. Endothelium‐dependent hyperpolarizations induced by bradykinin in the vasculature; clarification of the role of epoxyeicosatrienoic acids. Br J Pharmacol 2005; 145: 775–84
  • Ordway R. W., Walsh J. V., Singer J. J. Arachidonic acid and other fatty acids directly activates potassium channels in vascular smooth muscle cells. Science 1989; 244: 1176–9
  • Li P. L., Campbell W. B. Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circ Res 1997; 80: 877–84
  • Li P. L., Chen C. L., Bortell R., Campbell W. B. Epoxyeicosatrienoic acid stimulates endogenous mono‐ADP‐ribosylation in bovine coronary artery smooth muscle. Circ Res 1999; 85: 349–56
  • Sacerdoti D., Bolognesi M., Di Pascoli M., Gatta A., McGiff J. C., Schwartzman M. L., et al. Rat mesenteric arterial dilator response to 11,12‐epoxyeicosatrienoic acid is mediated by activating heme oxygenase. Am J Physiol Heart Circ Physiol 2006; 291: H1999–2002
  • Earley S., Heppner T. J., Nelson M. T., Brayden J. E. TRPV4 forms a novel Ca2+‐signaling complex with ryanodine receptors and BKCa channels. Circ Res 2005; 97: 1270–9
  • Imig J. D. Epoxide hydrolase and epoxygenase metabolites as therapeutic targets for renal diseases. Am J Physiol Renal Physiol 2005; 289: F496–503
  • Larsen B. T., Campbell W. B., Gutterman D. D. Beyond vasodilatation: non‐vasomotor roles of epoxyeicosatrienoic acids in the cardiovascular system. Trends Pharmacol Sci 2007; 28: 32–8
  • Corriu C., Félétou M., Canet E., Vanhoutte P. M. Inhibitors of the cytochrome P450‐monooxygenase and endothelium‐dependent hyperpolarisations in the guinea‐pig isolated carotid artery. Br J Pharmacol 1996; 117: 607–10
  • Chataigneau T., Félétou M., Duhault J., Vanhoutte P. M. Epoxyeicosatrienoic acids, potassium channel blockers and endothelium‐dependent hyperpolarisation in the guinea‐pig carotid artery. Br J Pharmacol 1998; 123: 574–80
  • Zink M. H., Oltman C. L., Lu T., Katakam P. V., Kaduce T. L., Lee H., et al. 12‐lipoxygenase in porcine coronary circulation: implications for coronary vasoregulation. Am J Physiol 2001; 280: H693–704
  • Pfister S. L., Spitzbarth N., Nithipatikom K., Edgemont W., Falk J. R., Campbell W. B. Identification of 11,14,15‐ and 11,12,15‐trihydroxyeicosatrienoic acids as endothelium‐derived relaxing factors of rabbit aorta. J Biol Chem 1998; 273: 30879–87
  • Tang X., Holmes B. B., Nithipatikom K., Hillard C. J., Kuhn H., Campbell W. B. Reticulocyte 15‐lipoxygenase‐I is important in acetylcholine‐induced endothelium‐dependent vasorelaxation in rabbit aorta. Arterioscler Thromb Vasc Biol 2006; 26: 78–84
  • Quignard J. F., Chataigneau T., Corriu C., Edwards G., Weston A. H., Félétou M., et al. Endothelium‐dependent hyperpolarization and lipoxygenase derived metabolites of arachidonic acid in the carotid artery of the guinea‐pig. J Cardiovasc Pharmacol 2002; 40: 467–77
  • Randall M. D., Kendall D. A., O'Sullivan S. The complexities of the cardiovascular actions of cannbinoids. Br J Pharmacol 2004; 142: 20–6
  • Chataigneau T., Félétou M., Thollon C., Villeneuve N., Vilaine J. P., Duhault J., et al. Cannabinoid CB1 receptor and endothelium‐dependent hyperpolarisation in guinea‐pig carotid, rat mesenteric and porcine coronary arteries. Br J Pharmacol 1998; 123: 968–74
  • Wang R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?. FASEB J 2002; 16: 1792–8
  • Carvajal J. A., Germain A. M., Huidobro‐Toro J. P., Weiner C. P. Molecular mechanism of cGMP‐mediated smooth muscle relaxation. J Cell Physiol 2000; 184: 409–20
  • Cohen R. A., Adachi T. Nitric‐oxide‐induced vasodilatation: regulation by physiologic s‐glutathiolation and pathologic oxidation of the sarcoplasmic endoplasmic reticulum calcium ATPase. Trends Cardiovasc Med 2006; 16: 109–14
  • Robertson B. E., Schubert R., Hescheler J., Nelson M. T. Cyclic‐GMP‐dependent protein kinase activates Ca‐activated K channels in cerebral artery smooth muscle cells. Am J Physiol 1993; 65: C299–303
  • Quignard J. F., Félétou M., Corriu C., Chataigneau T., Edwards G., Weston A. H., et al. 3‐Morpholinosydnonimine (SIN‐1) and K+ Channels in Smooth Muscle Cells of the Rabbit and Guinea‐Pig Carotid Arteries. Eur J Pharmacol 2000; 399: 9–16
  • Archer S. L., Huang J. M. C., Hampl V., Nelson D. P., Shultz P. J., Weir E. K. Nitric oxide and cyclic‐GMP cause vasorelaxation by activation of a charybdotoxin‐sensitive K channel by cyclic‐GMP‐dependent protein kinase. Proc Natl Acad Sci USA 1994; 91: 7583–7
  • Bolotina V. M., Najibi S., Palacino J. J., Pagano P. J., Cohen R. A. Nitric oxide directly activates calcium‐dependent potassium channels in vascular smooth muscle cells. Nature 1994; 368: 850–3
  • Mistry D. K., Garland C. J. Nitric oxide (NO)‐induced activation of large conductance Ca2+‐dependent K+ channels (BKCa) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol 1998; 124: 1131–40
  • Yuan X. J., Tod M. L., Rubin L. J., Blaustein M. P. NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage‐gated K+ channels. Proc Natl Acad Sci USA 1996; 93: 10489–94
  • Parkington H. C., Tare M., Tonta M. A., Coleman H. A. Stretch revealed three components in the hyperpolarisation of guinea‐pig coronary artery in response to acetylcholine. J Physiol 1993; 465: 459–76
  • Corriu C., Félétou M., Canet E., Vanhoutte P. M. Endothelium‐derived factors and hyperpolarisations of the isolated carotid artery of the guinea‐pig. Br J Pharmacol 1996; 119: 959–64
  • Schubert R., Krien U., Wulfsen I., Schiemann D., Lehmann G., Ulfig N., et al. Nitric oxide donor sodium nitroprusside dilates rat small arteries by activation of inward rectifier potassium channels. Hypertension 2004; 43: 891–6
  • Cohen R. A., Plane F., Najibi S., Huk I., Malinski T., Garland C. J. Nitric oxide is the mediator of both endothelium‐dependent relaxation and hyperpolarisation of the rabbit carotid artery. Proc Natl Acad Sci USA 1997; 94: 4193–8
  • Ge Z. D., Zhang X. H., Fung P. C., He G. W. Endothelium‐dependent hyperpolarization and relaxation: resistance to N(G)‐nitro‐L‐arginine and indomethacin in coronary circulation. Cardiovasc Res 2000; 46: 547–56
  • Furchgott R. F., Jothianandan D. Endothelium‐dependent and ‐independent vasodilatation involves cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 1991; 28: 52–61
  • Chauhan S., Rahman A., Nilsson H., Clapp L., MacAllister R., Ahluwalia A. NO contributes to EDHF‐like responses in rat small arteries: role of NO stores. Cardiovasc Res 2003; 57: 207–16
  • Muller B., Kleschyov A. L., Alencar J. L., Vanin A., Stoclet J. C. Nitric oxide transport and storage in the cardiovascular system. Ann N Y Acad Sci 2002; 962: 131–9
  • Batenburg W. W., De Vries R., Saxena P. R., Danser A. H. L‐S nitrosothiols: endothelium‐derived hyperpolarizing factors in porcine coronary arteries. J Hypertens 2004; 22: 1927–36
  • Félétou M., Vanhoutte P. M. EDHF: where are we now?. Arterioscler Thromb Vasc Biol 2006; 26: 1215–25
  • Wu L., Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev 2005; 57: 585–630
  • Durante W. Carbon monoxide and bile pigments: surprising mediators of vascular function. Vasc Med 2002; 7: 195–202
  • Foresti R., Hammad J., Clark J. E., Johnson T. R., Mann B. E., Friebe A., et al. Vasoactive properties of CORM‐3, a novel water‐soluble carbon monoxide‐releasing molecule. Br J Pharmacol 2004; 142: 453–60
  • Barbe C., Dubuis E., Rochetaing A., Kreher P., Bonnet P., Vandier C. A 4‐AP‐sensitive current is enhanced by chronic carbon monoxide exposure in coronary artery myocytes. Am J Physiol Heart Circ Physiol 2002; 282: H2031–8
  • Jaggar J. H., Leffler C. W., Cheranov S. Y., Tcheranova D. E. S., Cheng X. Carbon monoxide dilates cerebral arterioles by enhancing the coupling of Ca2+ sparks to Ca2+‐activated K+ channels. Circ Res 2002; 91: 610–7
  • Roman R. J. P450 Metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 2002; 82: 131–85
  • Durante W., Johnson F. K., Johnson R. A. Role of carbon monoxide in cardiovascular function. J Cell Mol Med 2006; 10: 672–86
  • Zakhary R., Gaine S. P., Dinerman J. L., Ruat M., Flavahan N. A., Snyder S. H. Heme oxygenase 2: endothelial and neuronal localization and role in endothelium‐dependent relaxation. Proc Natl Acad Sci U S A 1996; 93: 795–8
  • Baragatti B., Brizzi F., Barogi S., Laubach V. E., Sodini D., Shesely E. G., et al. Interactions between NO, CO and an endothelium‐derived hyperpolarizing factor (EDHF) in maintaining patency of the ductus arteriosus in the mouse. Br J Pharmacol 2007; 151: 54–62
  • Miura H., Bosnjak J. J., Ning G., Saito T., Miura M., Gutterman D. D. Role for hydrogen peroxide in flow‐induced dilation of human coronary arterioles. Circ Res 2003; 92: e31–40
  • Hatoum O. A., Binion D. G., Miura H., Telford G., Otterson M. F., Gutterman D. D. Role of hydrogen peroxide in ACh‐induced dilation of human submucosal intestinal microvessels. Am J Physiol Heart Circ Physiol 2005; 288: H48–54
  • Cosentino F., Katusic Z. S. Tetrahydrobiopterin and dysfunction of endothelial nitric oxide synthase in coronary arteries. Circulation 1995; 91: 139–44
  • Matoba Y., Shimokawa H., Nakashima M., Hirakawa Y., Mukai Y., Hirano K., et al. Hydrogen peroxide is an endothelium‐derived hyperpolarizing factor in mice. J Clin Invest 2000; 106: 1521–30
  • Matoba Y., Shimokawa H., Kubota H., Morikawa K., Fujiki T., Kunihiro I., et al. Hydrogen peroxide is an endothelium‐derived hyperpolarizing factor in human mesenteric artery. Biochem Biophys Res Commun 2002; 290: 909–13
  • Shimokawa H., Matoba T. Hydrogen peroxide as an endothelium‐derived hyperpolarizing factor. Pharmacol Res 2004; 49: 543–9
  • Yada T., Shimokawa H., Hiramatsu O., Kajita T., Shigeto F., Goto M., et al. Hydrogen peroxide, an endogenous endothelium‐derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 2003; 107: 1040–5
  • Yada T., Shimokawa H., Hiramatsu O., Haruna Y., Morita Y., Kashihara N., et al. Cardioprotective role of endogenous hydrogen peroxide during ischemia‐reperfusion injury in canine coronary microcirculation in vivo. Am J Physiol Heart Circ Physiol 2006; 291: H1138–46
  • Ellis A., Triggle C. R. Endothelium‐derived reactive oxygen species: their relationship to endothelium‐dependent hyperpolarization and vascular tone. Can J Physiol Pharmacol 2003; 81: 1013–28
  • Hayabuchi Y., Nakaya Y., Matsukoa S., Kuroda Y. Hydrogen peroxide‐induced vascular relaxation in porcine coronary arteries is mediated by Ca2+‐activated K+ channels. Heart Vessels 1998; 13: 9–17
  • Thengchaisri N., Kuo L. Hydrogen peroxide induces endothelium‐dependent and ‐independent coronary arteriolar dilation: role of cyclooxygenase and potassium channels. Am J Physiol 2003; 285: H2255–63
  • Wei E. P., Kontos H. A., Beckman J. S. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. Am J Physiol 1996; 271: H1262–6
  • Rogers P. A., Dick G. M., Knudson J. D., Focardi M., Bratz I. N., Swafford A. N., Jr., et al. H2O2‐induced redox‐sensitive coronary vasodilation is mediated by 4‐aminopyridine‐sensitive K+ channels. Am J Physiol Heart Circ Physiol 2006; 291: H2473–82
  • Iida Y., Katusic Z. S. Mechanisms of cerebral arterial relaxations to hydrogen peroxide. Stroke 2000; 31: 2224–30
  • Tang X. D., Garcia M. L., Heinemann S. H., Hoshi T. Reactive oxygen species impair Slo1 BK channel function by altering cysteine‐mediated calcium sensing. Nat Struct Mol Biol 2004; 11: 171–8
  • Gluais P., Edwards G., Weston A. H., Vanhoutte P. M., Félétou M. Hydrogen peroxide and the endothelium‐dependent hyperpolarization of the guinea‐pig isolated carotid artery. Eur J Pharmacol 2005; 513: 219–24
  • Chaytor A. T., Edwards D. H., Bakker L. M., Griffith T. M. Distinct hyperpolarizing and relaxant roles for gap junctions and endothelium‐derived H2O2 in NO‐independent relaxations of rabbit arteries. Proc Natl Acad Sci U S A 2003; 100: 15212–7
  • Rosenblum W. I. Hydroxyl radical mediates the endothelium‐dependent relaxation produced by bradykinin in mouse cerebral arterioles. Circ Res 1987; 61: 601–3
  • Ohashi M., Faraci F., Heistad D. Peroxynitrite hyperpolarizes smooth muscle and relaxes internal carotid artery in rabbit via ATP‐sensitive K+ channels. Am J Physiol Heart Circ Physiol 2005; 289: H2244–50
  • Koller K. J., Goeddel D. V. Molecular biology of the natriuretic peptides and their recptors. Circulation 1992; 86: 1081–8
  • Kelsall C. J., Chester A. H., Sarathchandra P., Singer D. R. Expression and localization of C‐type natriuretic peptide in human vascular smooth muscle cells. Vascul Pharmacol 2006; 45: 368–73
  • Stingo A. J., Clavell A. L., Heublein D. M., Wei C. M., Pittlekow M. R., Burnett J. C., Jr. Presence of C‐type natriuretic peptide in cultured human endothelial cells and plasma. Am J Physiol 1992; 263: H1318–21
  • Honing M. L., Smits P., Morrison P. J., Burnett J. C., Jr., Rabelink T. J. C‐type natriuretic peptide‐induced vasodilation is dependent on hyperpolarization in human forearm resistance vessels. Hypertension 2001; 37: 1179–83
  • Wei C. M., Hu S., Miller V. M., Burnett J. C., Jr. Vascular actions of C‐type natriuretic peptide in isolated porcine coronary arteries and coronary vascular smooth muscle cells. Biochem Biophys Res Comm 1994; 205: 765–71
  • Banks M., Wei C. M., Kim C. H., Burnett J. C., Jr., Miller V. M. Mechanism of relaxations to C‐type natriuretic peptide in veins. Am J Physiol 1996; 271: H1907–11
  • Suga S., Itoh H., Komatsu Y., Ogawa Y., Hama N., Yoshimasa T., et al. Cytokine‐induced C‐type natriuretic peptide (CNP) secretion from vascular endothelial cells—evidence for CNP as a novel autocrine/paracrine regulator from endothelial cells. Endocrinology 1993; 133: 3038–41
  • Chauhan S. D., Nilsson H., Ahluwalia A., Hobbs A. J. Release of C‐type natriuretic peptide accounts for the biological activity of endothelium‐derived hyperpolarizing factor. Proc Natl Acad Sci U S A 2003; 100: 1426–31
  • Villar I. C., Panayiotou C. M., Sheraz A., Madhani M., Scotland R. S., Nobles M., et al. Definitive role for natriuretic peptide receptor‐C in mediating the vasorelaxant activity of C‐type natriuretic peptide and endothelium‐derived hyperpolarising factor. Cardiovasc Res 2007; 74: 515–25
  • Ahluwalia A., Hobbs A. J. Endothelium‐derived C‐type natriuretic peptide: more than just a hyperpolarizing factor. Trends Pharmacol Sci 2005; 26: 162–7
  • Sandow S. L., Tare M. C‐type natriuretic peptide: a new endothelium‐derived hyperpolarizing factor?. Trends Pharmacol Sci 2007; 28: 61–7
  • Leuranguer V., Verbeuren T., Félétou M. C‐type natriuretic peptide (CNP) is not an EDHF in the guinea‐pig carotid artery. Fundam Clin Pharmacol 2007; 21: S1
  • Shepherd J. T., Vanhoutte P. M. The Human Cardiovascular System. Facts and Concepts. Raven Press, New York 1979
  • Berne R. M. The role of adenosine in the regulation of coronary blood flow. Circ Res 1980; 47: 807–13
  • Garland C. J., Plane F. Relative importance of endothelium‐derived hyperpolarizing factor for the relaxation of vascular smooth muscle in different arterial beds. Endothelium‐Derived Hyperpolarizing Factor, P. M Vanhoutte. Harwood Academic Publishers, Amsterdam 1996; 173–9
  • Gluais P., Edwards G., Weston A. H., Falck J. R., Vanhoutte P. M., Félétou M. SKCa and IKCa in the endothelium‐dependent hyperpolarization of the guinea‐pig isolated carotid artery. Br J Pharmacol 2005; 144: 477–85
  • Neylon C. B., Lang R. J., Fu Y., Bobik A., Reinhart P. H. Molecular cloning and characterization of the intermediate‐conductance Ca(2+)‐activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle function. Circ Res 1999; 85: 33–43
  • Quignard J. F., Félétou M., Edwards G., Duhault J., Weston A. H., Vanhoutte P. M. Role of endothelial cells hyperpolarization in EDHF‐mediated responses in the guinea‐pig carotid artery. Br J Pharmacol 2000; 129: 1103–12
  • Köhler R., Degenhardt C., Kühn M., Runkel N., Paul M., Hoyer J. Expression and function of endothelial Ca2+‐activated K+ channels in human mesenteric artery—A single cell reverse transcriptase‐polymerase chain reaction and electrophysiological study in situ. Circ Res 2000; 87: 496–503
  • Burnham M. P., Bychkov R., Félétou M., Richards G. R., Vanhoutte P. M., Weston A. H., et al. Characterization of an apamin‐sensitive small conductance Ca2+‐activated K+ channel in porcine coronary artery endothelium: relevance to EDHF. Br J Pharmacol 2002; 135: 1133–43
  • Bychkov R., Burnham M. P., Richards G. R., Edwards G., Weston A. H., Félétou M., et al. Characterization of a Charybdotoxin‐Sensitive Intermediate Conductance Ca2+‐Activated K+ Channel in Porcine Coronary Endothelium: Relevance to EDHF. Br J Pharmacol 2002; 138: 1346–54
  • Taylor M. S., Bonev A. D., Gross T. P., Eckman D. M., Brayden J. E., Bond C. T., et al. Altered expression of small‐conductance Ca2+‐activated K+ (SK3) channels modulate arterial tone and blood pressure. Circ Res 2003; 93: 124–31
  • Si H., Heyken W. T., Wolfle S. E., Tysiac M., Schubert R., Grgic I., et al. Impaired Endothelium‐Derived Hyperpolarizing Factor‐Mediated Dilations and Increased Blood Pressure in Mice Deficient of the Intermediate‐Conductance Ca2+‐Activated K+ Channel. Circ Res 2006; 99: 537–44
  • Shinde U. A., Desai K. M., Yu C., Gopalakrishnan V. Nitric oxide synthase inhibition exaggerates the hypotensive response to ghrelin: role of calcium‐activated potassium channels. J Hypertens 2005; 23: 779–84
  • Desai K. M., Gopalakrishnan V., Hiebert L. M., McNeill J. R., Wilson T. W. EDHF‐mediated rapid restoration of hypotensive response to acetylcholine after chronic, but not acute, nitric oxide synthase inhibition in rats. Eur J Pharmacol 2006; 546: 120–6
  • Parkington H. C., Chow J. A., Evans R. G., Coleman H. A., Tare M. Role for endothelium‐derived hyperpolarizing factor in vascular tone in rat mesenteric and hindlimb circulations in vivo. J Physiol 2002; 542: 929–37
  • Sandow S. L., Hill C. E. Incidence of myo‐endothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium‐derived hyperpolarizing factor‐mediated responses. Circ Res 2000; 86: 341–6
  • Hwa J. J., Ghibaudi L., Williams P., Chaterjee M. Comparison of acetylcholine‐dependent relaxation in large and small arteries of rat mesenteric vascular bed. Am J Physiol 1994; 266: H952–8
  • Shimokawa H., Yasutake H., Fujii K., Owada M. K., Nakaike R., Fukumoto Y., et al. The importance of the hyperpolarizing mechanism increases as the vessel size decrease in endothelium‐dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 1996; 28: 703–11
  • Sandow S. L., Tare M., Coleman H. A., Hill C. E., Parkington H. C. Involvement of myoendothelial gap junctions in the action of endothelium‐derived hyperpolarizing factor. Circ Res 2002; 90: 1108–13
  • Dora K. A., Sandow S., Gallagher N. T., Takano H., Rummery N. M., Hill C. E., et al. Myoendothelial gap junctions may provide the pathway for EDHF in mouse mesenteric artery. J Vasc Res 2003; 40: 480–90
  • Dora K. A., Doyle M. P., Duling B. R. Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc Natl Acad Sci U S A 1997; 94: 6529–34
  • Yashiro Y., Duling B. R. Integrated Ca(2+) signaling between smooth muscle and endothelium of resistance vessels. Circ Res 2000; 87: 1048–54
  • Beny J. L., Pacicca C. Bidirectional electrical communication between smooth muscle and endothelial cells in the pig coronary artery. Am J Physiol 1994; 266: H1465–72
  • Marchenko S. M., Sage S. O. Smooth muscle cells affect endothelial membrane potential in rat aorta. Am J Physiol 1994; 267: H804–11
  • Yamamoto Y., Fukuta H., Nakahira Y., Suzuki H. Blockade by 18β‐glycyrrhetinic acid of intercellular electrical coupling in guinea‐pig arterioles. J Physiol 1998; 511: 501–18
  • Yamamoto Y., Imaeda K., Suzuki H. Endothelium‐dependent hyperpolarization and intercellular electrical coupling in guinea‐pig mesenteric arterioles. J Physiol 1999; 514: 505–13
  • Emerson G. G., Segal S. S. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: role in vasomotor control. Circ Res 2000; 87: 474–9
  • Emerson G. G., Segal S. S. Endothelial cell pathway for conduction of hyperpolarization and vasodilation along hamster feed artery. Circ Res 2000; 86: 94–100
  • Coleman H. A., Tare M., Parkington H. C. EDHF is not K+ but may be due to spread of current from the endothelium in guinea‐pig arterioles. Am J Physiol 2001; 280: H2478–83
  • Griffith T. M. Endothelium‐dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis?. Br J Pharmacol 2004; 141: 881–903
  • Lang N. N., Luksha L., Newby D., Kublickiene K. Connexin 43 Mediates Endothelium‐Derived Hyperpolarising Factor Induced Vasodilatation in Subcutaneous Resistance Arteries from Healthy Pregnant Women. Am J Physiol Heart Circ Physiol 2006; 292: H1026–32
  • Haddock R. E., Grayson T. H., Brackenbury T. D., Meaney K. R., Neylon C. B., Sandow S. L., et al. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol 2006; 291: H2047–56
  • Matchkov V. V., Rahman A., Bakker L. M., Griffith T. M., Nilsson H., Aalkjaer C. Analysis of effects of connexin‐mimetic peptides in rat mesenteric small arteries. Am J Physiol Heart Circ Physiol 2006; 291: H357–67
  • Chaytor A. Y., Evans W. H., Griffith T. M. Central role of heterocellular gap junction communication in endothelium‐dependent relaxations of rabbit arteries. J Physiol 1998; 508: 561–73
  • Chaytor A. Y., Martin P. E., Edwards D. H., Griffith T. M. Gap junctional communication underpins EDHF‐type relaxations evoked by ACh in the rat hepatic artery. Am J Physiol 2001; 280: H2441–50
  • Dora K. A., Martin P. E., Chaytor A. T., Evans W. H., Garland C. J., Griffith T. M. Role of heterocellular Gap junctional communication in endothelium‐dependent smooth muscle hyperpolarization: inhibition by a connexin‐mimetic peptide. Biochem Biophys Res Commun 1999; 254: 27–31
  • Edwards G., Félétou M., Gardener M. J., Thollon C., Vanhoutte P. M., Weston A. H. Role of gap junctions in the responses to EDHF in rat and guinea‐pig small arteries. Br J Pharmacol 1999; 128: 1788–94
  • Edwards G., Thollon C., Gardener M. J., Félétou M., Vilaine J. P., Vanhoutte P. M., et al. Role of gap junctions and EETs in endothelium‐dependent hyperpolarization of porcine coronary artery. Br J Pharmacol 2000; 129: 1145–62
  • Berman R. S., Martin P. E. M., Evans W. H., Griffith T. M. Relative contributions of NO and gap junctional communication to endothelium‐dependent relaxations of rabbit resistance arteries vary with vessel size. Microvasc Res 2002; 63: 115–28
  • De Vriese A. S., Van de Voorde J., Lameire N. H. Effects of connexin‐mimetic peptides on nitric oxide synthase‐ and cyclooxygenase‐independent renal vasodilatation. Kidney Int 2002; 61: 177–85
  • Mather S., Dora K. A., Sandow S. L., Winter P., Garland C. J. Rapid endothelial cell‐selective loading of connexin 40 antibody blocks endothelium‐derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ Res 2005; 97: 399–407
  • Sandow S. L., Neylon C. B., Chen M. X., Garland C. J. Spatial separation of endothelial small‐ and intermediate‐conductance calcium‐activated potassium channels (K(Ca)) and connexins: possible relationship to vasodilator function?. J Anat 2006; 209: 689–98
  • Hendrickx H., Casteels R. Electrogenic sodium pump in arterial smooth muscle cells. Pflugers Arch 1974; 346: 299–306
  • Nelson M. T., Quayle J. M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol 1995; 268: C799–822
  • Prior H. M., Webster N., Quinn K., Beech D. J., Yates M. S. K(+)‐induced dilation of a small renal artery: no role for inward rectifier K+ channels. Cardiovasc Res 1998; 37: 780–90
  • Knot H. J., Zimmermann P. A., Nelson M. T. Extracellular K(+)‐induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. J Physiol 1996; 492: 419–30
  • Edwards G., Dora K. A., Gardener M. J., Garland C. J., Weston A. H. K+ is an endothelium‐derived hyperpolarizing factor in rat arteries. Nature 1998; 396: 269–72
  • Edwards G., Gardener M. J., Félétou M., Brady G., Vanhoutte P. M., Weston A. H. Further investigation of endothelium‐derived hyperpolarizing factor (EDHF) in rat hepatic artery: studies using 1‐EBIO and ouabain. Br J Pharmacol 1999; 128: 1064–70
  • Dora K. A., Garland C. J. Properties of smooth muscle hyperpolarization and relaxation to K+ in the rat isolated mesenteric artery. Am J Physiol 2001; 280: H2424–9
  • McGuire J. J., Hollenberg M. D., Andrade‐Gordon P., Triggle C. R. Multiple mechanisms of vascular smooth muscle relaxation by the activation of proteinase‐activated receptor 2 in mouse mesenteric arterioles. Br J Pharmacol 2002; 135: 155–69
  • Beny J. L., Schaad O. An evaluation of potassium ions as endothelium‐derived hyperpolarizing factor in porcine coronary arteries. Br J Pharmacol 2000; 131: 965–73
  • Nelli S., Wilson W. S., Laidlaw H., Llano A., Middleton S., Price A. G., et al. Evalauation of potassium ions as the endothelium‐derived hyperpolarizing factor (EDHF) in the bovine coronary artery. Br J Pharmacol 2003; 139: 982–8
  • Randriamboavonjy V., Busse R., Fleming I. 20‐HETE‐induced contraction of small coronary arteries depends on the activation of Rho‐kinase. Hypertension 2003; 41: 801–6
  • Büssemaker E., Wallner C., Fisslthaler B., Fleming I. The Na+K+‐ATPase is a target for an EDHF displaying characteristics similar to potassium ions in the porcine renal interlobar arteries. Br J Pharmacol 2002; 137: 647–54
  • Büssemaker E., Popp R., Binder J., Busse R., Fleming I. Characterization of the endothelium‐derived hyperpolarizing factor (EDHF) response in the human interlobar artery. Kidney Int 2003; 63: 1749–55
  • Richards G. R., Weston A. H., Burnham M. P., Félétou M., Vanhoutte P. M., Edwards G. Suppression of K(+)‐induced hyperpolarization by phenylephrine in rat mesenteric artery: relevance to studies of endothelium‐derived hyperpolarizing factor. Br J Pharmacol 2001; 134: 1–5
  • Bradley K. K., Jaggar J. H., Bonev A. D., Heppner T. J., Flynn E. R., Nelson M. T., et al. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. J Physiol 1999; 515: 639–51
  • Zaritsky J. J., Eckman D. M., Wellman G. C., Nelson M. T., Schwarz T. L. Targeted disruption of Kir2.1 and Kir2.2 genes reveal the essential role of the inwardly rectifying K+ current in K+‐mediated vasodilation. Circ Res 2000; 87: 160–6
  • Edwards G., Richards G. R., Gardener M. J., Félétou M., Vanhoutte P. M., Weston A. H. Role of the inward‐rectifier K+ channel and Na+/K+‐ATPase in the hyperpolarization to K+ in rat mesenteric arteries. EDHF 2002, P. M Vanhoutte. Taylor & Francis, London 2003; 309–17
  • Quignard J. F., Félétou M., Duhault J., Vanhoutte P. M. Potassium ions as endothelium‐derived hyperpolarizing factors in the isolated carotid artery of the guinea‐pig. Br J Pharmacol 1999; 127: 27–34
  • Dong H., Jiang Y., Cole W. C., Triggle C. R. Comparison of the pharmacological properties of EDHF‐mediated vasorelaxation in the guinea‐pig cerebral and mesenteric resistance vessels. Br J Pharmacol 2000; 130: 1983–91
  • Brandes R. P., Schmitz‐Winnenthal F. H., Félétou M., Gödecke A., Huang P. L., Vanhoutte P. M., et al. An endothelium‐derived hyperpolarizing factor distinct from NO and prostacyclin is a major endothelium‐dependent vasodilator in resistance vessels of wild type and endothelial NO synthase knock‐out mice. Proc Natl Acad Sci U S A 2000; 97: 9747–52
  • Wu Y., Huang A., Sun D., Falck J. R., Koller A., Kaley G. Gender‐specific compensation for the lack of NO in the mediation of flow‐induced arteriolar dilation. Am J Physiol Heart Circ Physiol 2001; 280: H2456–61
  • Scotland R. S., Madhani M., Chauhan S., Moncada S., Andresen J., Nilsson H., et al. Investigation of vascular responses in endothelial nitric oxide synthase/cyclooxygenase‐1 double knock‐out mice. Key role for endothelium‐derived hyperpolarizing factor in the regulation of blood pressure in vivo. Circulation 2005; 111: 796–803
  • Bond C. T., Sprengel R., Bissonnette J. M., Kaufmann W. A., Pribnow D., Neelands T., et al. Respiratory and parturition affected by conditional overexpression of the Ca2+‐activated K+ channel subunit, SK3. Science 2000; 289: 1942–6
  • Simon A. M., McWhorter A. R. Decreased intercellular dye‐transfer and downregulation of non‐ablated connexins in aortic endothelium deficient in connexin37 or connexin40. J Cell Sci 2003; 116: 2223–36
  • Wagner C., de Wit C., Kurtz L., Grunberger C., Kurtz A., Schweda F. Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res 2007; 100: 556–63
  • Simon A. M., McWhorter A. R. Vascular abnormalities in mice lacking the endothelial gap junction protein connexin37 and connexin40. Dev Biol 2002; 251: 206–20
  • De Wit C., Roos F., Bolz S. S., Kirchhoff S., Kruge O., Willecke K., et al. Impaired conduction of vasodilatation along arterioles in connexin 40‐deficient mice. Circ Res 2000; 86: 649–55
  • De Wit C., Roos F., Bolz S. S., Pohl U. Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics 2003; 13: 169–77
  • Figueroa X. F., Paul D. L., Simon A. M., Goodenough D. A., Day K. H., Damon D. N., et al. Central role of connexin 40 in the propagation of electrically activated vasodilation in mouse cremasteric arterioles in vivo. Circ Res 2003; 92: 793–800
  • Theis M., de Wit C., Shlaeger T. M., Eckardt D., Kruger O., Doring B., et al. Endothelium‐specific replacement of the connexin 43 coding region by a lacZ reporter gene. Genesis 2001; 29: 1–13
  • Liao Y., Day K. H., Damon D. N., Duling B. R. Endothelial cell‐specific knockout of connexin 43 causes hypotension and bradycardia in mice. Proc Natl Acad Sci U S A 2001; 98: 9989–94
  • Woolfson R. G., Poston L. Effect of NG‐monomethyl‐L‐arginine on endothelium‐dependent relaxation of human subcutaneous resistance arteries. Clin Sci London 1990; 79: 273–8
  • Urakami‐Harasawa L., Shimokawa H., Nakashima M., Egashira K., Takeshita A. Importance of endothelium‐derived hyperpolarizing factor in human arteries. J Clin Invest 1997; 100: 2793–9
  • Miura H., Gutterman D. D. Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P450 monooxygenase and Ca2+‐activated K+ channels. Circ Res 1998; 83: 501–7
  • Miura H., Wachtel R. E., Liu Y., Loberiza F. R., Jr., Saito T., Miura M., et al. Flow‐induced dilation of human coronary arterioles: important role of Ca(2+)‐activated K(+) channels. Circulation 2001; 103: 1992–8
  • Coats P., Johnston F., MacDonald J., McMurray J. J., Hillier C. Endothelium‐derived hyperpolarizing factor: identification and mechanisms of action in human subcutaneous resistance arteries. Circulation 2001; 103: 1702–8
  • Archer S. L., Gragasin F. S., Wu X., Wang S., McMurthry S., Kim D. H., et al. Endothelium‐derived hyperpolarizing factor in human internal mammary artery is 11,12‐epoxieicosatrienoic acid and causes relaxation by activating BK(Ca) channels. Circulation 2003; 107: 769–76
  • Luksha L., Nisell H., Kublickiene K. The mechanism of EDHF‐mediated responses in subcutaneous small arteries of healthy pregnant women. Am J Physiol 2004; 286: R1102–9
  • Torondel B., Vila J. M., Segarra G., Lluch P., Medina P., Martinez‐Leon J., et al. Endothelium‐dependent responses in human isolated thyroid arteries from donors. J Endocrinol 2004; 181: 379–84
  • Garcha R. S., Hughes A. D. CNP, but not ANP or BNP, relax human isolated subcutaneous resistance arteries by an action involving cyclic GMP and BKCa channels. J Renin Angiotensin Aldosterone Syst 2006; 7: 87–91
  • Stanke‐Labesque F., Devillier P., Bedouch P., Cracowski J. L., Chavanon O., Bessard G. Angiotensin II‐induced contractions in human internal mammary artery: effects of cyclooxygenase and lipoxygenase inhibition. Cardiovasc Res 2000; 47: 376–83
  • Tagawa H., Shimokawa H., Tagawa T., Kuroiwa‐Matsumoto M., Hirooka Y., Takeshita A. Short‐term estrogen augments both nitric oxide‐mediated and non‐nitric oxide‐mediated endothelium‐dependent vasodilation in postmenopausal women. J Cardiovasc Pharmacol 1997; 30: 481–8
  • Honing M. L., Smits P., Morrison P. J., Rabelink T. J. Bradykinin‐induced vasodilatation of human forearm resistance vessels is primarily mediated by endothelium‐dependent hyperpolarization. Hypertension 2000; 35: 1314–8
  • Katz S. D., Krum H. Acetylcholine‐mediated vasodilatation in the forearm circulation of patients with heart failure: indirect evidence for the role of endothelium‐derived hyperpolarizing factor. Am J Physiol 2001; 87: 1089–92
  • Halcox J. P., Narayanan S., Cramer‐Joyce L., Mincemoyer R., Quyyumi A. A. Characterization of endothelium‐derived hyperpolarizing factor in the human forearm microcirculation. Am J Physiol 2001; 280: H2470–7
  • Inokuchi K., Hirooka Y., Shimokawa H., Sakai K., Kishi T., Ito K., et al. Role of endothelium‐derived hyperpolarizing factor in human forearm circulation. Hypertension 2003; 42: 919–24
  • Bellien J., Joannides R., Iacob M., Arnaud P., Thuillez C. Calcium‐activated potassium channels and NO regulate human peripheral conduit artery mechanics. Hypertension 2005; 46: 210–6
  • Bellien J., Joannides R., Iacob M., Arnaud P., Thuillez C. Evidence for a basal release of a cytochrome‐related endothelium‐derived hyperpolarizing factor in the radial artery in humans. Am J Physiol Heart Circ Physiol 2006; 290: H1347–52
  • Bellien J., Iacob M., Gutierrez L., Isabelle M., Lahary A., Thuillez C., et al. Crucial role of NO and endothelium‐derived hyperpolarizing factor in human sustained conduit artery flow‐mediated dilatation. Hypertension 2006; 48: 1088–94
  • Hillig T., Krustrup P., Fleming I., Osada T., Saltin B., Hellsten Y. Cytochrome P450 2C9 plays an important role in the regulation of exercise‐induced skeletal muscle blood flow and oxygen uptake in humans. J Physiol 2003; 546: 307–14
  • Taddei S., Versari D., Cipriano A., Ghiadoni L., Galetta F., Franzoni F., et al. Identification of a cytochrome P450 2C9‐derived endothelium‐derived hyperpolarizing factor in essential hypertensive patients. J Am Coll Cardiol 2006; 48: 508–15
  • Passauer J., Bussemaker E., Lassig G., Pistrosch F., Fauler J., Gross P., et al. Baseline blood flow and bradykin‐induced vasodilator responses in the human forearm are insensitive to the cytochrome P450 2C9 (CYP2C9) inhibitor sulphaphenazole. Clin Sci 2003; 105: 513–8
  • Passauer J., Pistrosch F., Lassig G., Herbrig K., Bussemaker E., Gross P., et al. Nitric oxide‐ and EDHF‐mediated arteriolar tone in uremia is unaffected by selective inhibition of vascular cytochrome P450 2C9. Kidney Int 2005; 67: 1907–12
  • Fichtlscherer S., Dimmeler S., Breuer S., Busse R., Zeiher A. M., Fleming I. Inhibition of cytochrome P450 2C9 improves endothelium‐dependent, nitric oxide‐mediated vasodilatation in patients with coronary diseases. Circulation 2004; 109: 178–83
  • Fleming I., Michaelis U. R., Bredenkotter D., Fisslthaler B., Dehghani F., Brandes R. P., et al. Endothelium‐derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 2001; 88: 44–51
  • Alvarez J., Montero M., Garcia‐Sancho J. High affinity inhibition of Ca2+‐dependent K+ channels by cytochrome P‐450 inhibitors. J Biol Chem 1992; 267: 11789–93
  • Félétou M., Vanhoutte P. M. EDHF: new therapeutic targets?. Pharmacol Res 2004; 49: 565–80
  • Taddei S., Virdis A., Ghiadoni L., Sudano I., Salvetti A. Endothelial dysfunction in hypertension. J Cardiovasc Pharmacol 2001; 38: S11–4
  • Kenny L. C., Baker P. N., Kendall D. A., Randall M. D., Dunn W. R. Different mechanisms of endothelial‐dependent vasodilator responses in human myometrial small arteries in normal pregnancy and pre‐eclampsia. Clin Sci 2002; 103: 67–73
  • Selemidis S., Cocks T. M. Endothelium‐dependent hyperpolarization as a remote anti‐atherogenic mechanism. Trends Pharmacol Sci 2002; 23: 213–20
  • Brandes R. P., Behra A., Lebherz C., Boger R. H., Bode‐Boger S. M., Phivthong‐Ngam L., et al. N(G)‐nitro‐L‐arginine‐ and indomethacin‐resistant endothelium‐dependent relaxation in the rabbit renal artery: effect of hypercholestorelemia. Atherosclerosis 1997; 135: 49–55
  • Kagota S., Tamashiro A., Yamaguchi Y., Nakamura K., Kunimoto M. Excessive salt or cholesterol intake alters the balance among endothelium‐derived factors released from renal arteries in spontaneously hypertensive rats. J Cardiovasc Pharmacol 1999; 34: 533–9
  • Morikawa K., Matoba T., Kubota H., Hatanaka M., Fujiki T., Takahashi S., et al. Influence of diabetes mellitus, hypercholesterolemia, and their combination on EDHF‐mediated responses in mice. J Cardiovasc Pharmacol 2005; 45: 485–90
  • Wolfle S. E., de Wit C. Intact endothelium‐dependent dilation and conducted responses in resistance vessels of hypercholesterolemic mice in vivo. J Vasc Res 2005; 42: 475–82
  • Ding H., Hashem M., Wiehler W. B., Lau W., Martin J., Reid J., et al. Endothelial dysfunction in the streptozotocin‐induced diabetic apoE‐deficient mouse. Br J Pharmacol 2005; 146: 1110–8
  • Krummen S., Falck J. R., Thorin E. Two distinct pathways account for EDHF‐dependent dilatation in the gracilis artery of dyslipidaemic hApoB+/+ mice. Br J Pharmacol 2005; 145: 264–70
  • De Vriese A. S., Verbeuren T. J., Van de Voorde J., Lameire N. H., Vanhoutte P. M. Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130: 963–74
  • Matsumoto T., Kobayashi T., Wakabayashi K., Kamata K. Cilostazol improves endothelium‐derived hyperpolarizing factor‐type relaxation in mesenteric arteries from diabetic rats. Am J Physiol Heart Circ Physiol 2005; 289: H1933–40
  • Wulff H., Miller M. J., Haensel W., Grissner S., Cahalan M. D., Chandy K. G. Design of potent and selective inhibitor of the intermediate‐conductance Ca2+‐activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A 2000; 97: 8151–6
  • Liegeois J. F., Mercier F., Graulich A., Graulich‐Lorge F., Scuvee‐Moreau J., Setin V. Modulation of small conductance calcium‐activated potassium (SK) channels: a new challenge in medicinal chemistry. Curr Med Chem 2003; 10: 625–47
  • Corriu C., Félétou M., Puybasset L., Bea M. L., Berdeaux A., Vanhoutte P. M. Endothelium‐dependent hyperpolarization in isolated arteries taken from animals treated with NO‐synthase inhibitors. J Cardiovasc Pharmacol 1998; 32: 944–50
  • Félétou M., Vanhoutte P. M. Endothelium‐dependent hyperpolarisation of canine coronary smooth muscle. Br J Pharmacol 1988; 93: 515–24
  • Coleman H. A., Tare M., Parkington H. C. K+ currents underlying the action of endothelium‐derived hyperpolarizing factor in guinea‐pig, rat and human blood vessels. J Physiol 2001; 531: 359–73
  • Liu C., Ngai C. Y., Huang Y., Ko W. H., Wu M., He G. W., et al. Depletion of intracellular Ca2+ stores enhances flow‐induced vascular dilatation in rat small mesenteric artery. Br J Pharmacol 2006; 147: 506–15
  • Sokoya E. M., Burns A. R., Setiawan C. T., Coleman H. A., Parkington H. C., Tare M. Evidence for the involvement of myoendothelial gap junctions in EDHF‐mediated relaxation in the rat middle cerebral artery. Am J Physiol Heart Circ Physiol 2006; 291: H385–93
  • McNeish A. J., Dora K. A., Garland C. J. Possible role for K+ in endothelium‐derived hyperpolarizing factor‐linked dilatation in rat middle cerebral artery. Stroke 2005; 36: 1526–32
  • McSherry I. N., Sandow S. L., Campbell W. B., Falck J. R., Hill M. A., Dora K. A. A role for heterocellular coupling and EETs in dilation of rat cremaster arteries. Microcirculation 2006; 13: 119–30
  • Pannirselvam M., Ding H., Anderson T. J., Triggle C. R. Pharmacological characteristics of endothelium‐derived hyperpolarizing factor‐mediated relaxation of small mesenteric arteries from db/db mice. Eur J Pharmacol 2006; 551: 98–107
  • Morikawa K., Shimokawa H., Matoba T., Kubota H., Akaike T., Talukder M. A., et al. Pivotal role of Cu,Zn‐superoxide dismutase in endothelium‐dependent hyperpolarization. J Clin Invest 2003; 112: 1871–9
  • Dong H., Waldron G. J., Galipeau D., Cole W. C., Triggle C. R. NO/PGI2‐independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery. Br J Pharmacol 1997; 120: 695–701
  • Bauersachs J., Popp R., Hecker M., Sauer E., Fleming I., Busse R. Nitric oxide attenuates the release of endothelium‐derived hyperpolarizing factor. Circulation 1996; 94: 3341–7
  • Griffith T. M., Chaytor A. T., Taylor H. J., Giddings B. D., Edwards D. H. cAMP facilitates EDHF‐type relaxations in conduit arteries by enhancing electrotonic conduction via gap junctions. Proc Natl Acad Sci U S A 2002; 99: 6392–7
  • Zhang D. X., Gauthier K. M., Chawengsub Y., Campbell W. B. Acetylcholine‐induced relaxations of rabbit small mesenteric arteries: role of arachidonic acid metabolites and K+. Am J Physiol Heart Circ Physiol 2007 Mar 2, [Epub ahead of print]
  • Ujiie H., Chaytor A. T., Bakker L. M., Griffith T. M. Essential role of Gap junctions in NO‐ and prostanoid‐independent relaxations evoked by acetylcholine in rabbit intracerebral arteries. Stroke 2003; 34: 544–50
  • Matoba T., Shimokawa H., Morikawa K., Kubota H., Kunihiro I., Urakami‐Harasawa L., et al. Electron spin resonance detection of hydrogen peroxide as an endothelium‐derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler Thromb Vasc Biol 2003; 23: 1224–30
  • Randriamboavonjy V., Kiss L., Falck J. R., Busse R., Fleming I. The synthesis of 20‐HETE in small porcine coronary arteries antagonizes EDHF‐mediated relaxation. Cardiovasc Res 2005; 65: 487–94
  • Nishikawa Y., Stepp D. W., Chilian W. M. In vivo location and mechanism of EDHF‐mediated vasodilation in canine coronary microcirculation. Am J Physiol 1999; 277: H1252–9
  • Tanaka M., Kanatsuka H., Ong B. H., Tanikawa T., Uruno A., Komaru T., et al. Cytochrome P‐450 metabolites but not NO, PGI2, and H2O2 contribute to ACh‐induced hyperpolarization of pressurized canine coronary microvessels. Am J Physiol Heart Circ Physiol 2003; 285: H1939–48
  • Drummond G. R., Selemidis S., Cocks T. M. Apamin‐sensitive, non‐nitric oxide (NO) endothelium‐dependent relaxations to bradykinin in the bovine isolated coronary artery: no role for cytochrome P450 and K+. Br J Pharmacol 2000; 129: 811–9
  • Kenny L. C., Baker P. N., Kendall D. A., Randall M. D., Dunn W. R. The role of gap junctions in mediating endothelium‐dependent responses to bradykinin in myometrial small arteries isolated from pregnant women. Br J Pharmacol 2002; 136: 1085–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.