430
Views
10
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

The assembly of apoB-containing lipoproteins: A structural biology point of view

&
Pages 253-267 | Published online: 08 Jul 2009

References

  • Davidson NO, Shelness GS. Apolipoprotein B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr. 2000; 20: 169–93
  • Hevonoja T, Pentikainen MO, Hyvonen MT, Kovanen PT, Ala-Korpela M. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta. 2000; 1488: 189–210
  • Shelness GS, Sellers JA. Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol. 2001; 12: 151–7
  • Hussain MM, Fatma S, Pan X, Iqbal J. Intestinal lipoprotein assembly. Curr Opin Lipidol. 2005; 16: 281–5
  • Parhofer K, Barrett H. What we have learned about VLDL and LDL metabolism from human kinetics studies. J Lipid Res. 2006; 47: 1620–30
  • Shoulders CC, Shelness GS. Current biology of MTP: implications for selective inhibition. Curr Top Med Chem. 2005; 5: 283–300
  • Olofsson S, Billton P, Asp L. Intracellular assembly of VLDL Two major steps in separate cell compartments. Trends Cardiovasc Med. 2000; 10: 338–45
  • Segrest JP, Jones MK, De Loof H, Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res. 2001; 42: 1346–67
  • Lunin VY, Lunina NL, Ritter S, Frey I, Berg A, Diederichs K, et al. Low-resolution data analysis for low-density lipoprotein particle. Acta Crystallogr D Biol Crystallogr. 2001; 57: 108–21
  • Vance JE, Davis RA. Structure, assembly and secretion of lipoproteins. Elsevier, Amsterdam 1996
  • Wahli W, Dawid I, Ryffel G, Weber R. Vitellogenesis and the Vitellogenin Gene Family. Science. 1981; 212: 298–304
  • Raag R, Appelt K, Xuong NH, Banaszak L. Structure of the lamprey yolk lipid-protein complex lipovitellin-phosvitin at 2.8 A resolution. J Mol Biol. 1988; 200: 553–69
  • Anderson TA, Levitt DG, Banaszak LJ. The structural basis of lipid interactions in lipovitellin, a soluble lipoprotein. Structure. 1998; 6: 895–909
  • Thompson J, Banaszak L. Lipid-Protein interactions in Lipovitellin. Biochemistry. 2002; 41: 9398–409
  • Mann CJ, Anderson TA, Read J, Chester SA, Harrison GB, Kochl S, et al. The Structure of Vitellogenin Provides a Molecular Model For the Assembly and Secretion of Atherogenic Lipoproteins. J Mol Biol. 1999; 285: 391–408
  • Babin P, Bogerd J, Kooiman F, Van Marrewijk W, Van der Horst D. Apolipophorin II/I, apolipoprotein B, vitellogenin and microsomal triglyceride transfer protein genes are derived from a common ancestor. J Mol Evol. 1999; 49: 150–60
  • Schneider W. Removal of lipoproteins from plasma. Biochemistry of Lipids, Lipoproteins and Membranes, DE Vance, JE Vance. Elsevier, Amsterdam 1996
  • Sellers J, Hou L, Schoenberg D, Batistuzzo de Medeiros S, Wahli W, Shelness G. Microsomal triglyceride transfer protein promotes the secretion of Xenopus laevis Vitellogenin A1. J Biol Chem. 2005; 280: 13902–5
  • Wetterau J, Zilversmit D. Purification and characterization of microsomal triglyceride and cholesteryl ester transfer protein from bovine liver microsomes. Chem Phys Lipids. 1985; 38: 205–22
  • Wetterau J, Lin M, Jamil H. Microsomal triglyceride transfer protein. Biochim Biophys Acta. 1997; 1345: 136–50
  • Cartwright I, Higgins J. Direct evidence for a two-step assembly of apoB48-containing lipoproteins in the lumen of the smooth endoplasmic reticulum of rabbit enterocytes. J Biol Chem. 2001; 276: 48048–57
  • Johs A, Hammel M, Waldner I, May R, Laggner P, Prassl R. Modular structure of solubilized human apolipoprotein B-100. Low resolution model revealed by small angle neutron scattering. J Biol Chem. 2006; 281: 19732–9
  • Meyer D, Nealis A, Bruckdorfer K, Perkins S. Characterization of the structure of polydisperse human low-density-lipoprotein by neutron-scattering. Biochem J. 1995; 310: 407–15
  • Meyer D, Mayans M, Groot P, Suckling K, Bruckdorfer R, Perkins S. Time-course studies by neutron solution scattering and biochemical assays of the aggregation of human low-density-lipoprotein during Cu2 + -induced oxidation. Biochem J. 1995; 310: 417–26
  • Witte D, Taskinen M, Perttunen-Nio H, Van Tol A, Livingstone S, Colhoun H. Study of agreement between LDL size as measured by nuclear magnetic resonance and gradient gel electrophoresis. J Lipid Res. 2004; 45: 1069–76
  • Teerlink T, Scheffer P, Bakker S, Heine R. Combined data from LDL composition and size measurement are compatible with a discoid particle shape. J Lipid Res. 2004; 45: 954–66
  • Luzzati V, Tardieu A, Aggerbeck L. Structure of serum low-density lipoprotein: I. A solution x-ray scattering study of a hyperlipidemic monkey low-density lipoprotein. J Mol Biol. 1979; 131: 435–73
  • Baumstark M, Kreutz W, Berg A, Frey I, Keul J. Structure of human low-density lipoprotein subfractions, determined by x-ray small-angle scattering. Biochim Biophys Acta. 1990; 1037: 48–57
  • Muller K, Laggner P, Glatter O, Kostner G. The structure of human-plasma low-density lipoprotein B: An x-ray small-angle scattering study. Euro J Biochem. 1978; 82: 73–90
  • van Antwerpen R, Gilkey J. Cryo-Electron microscopy reveals human low density lipoprotein substructure. J Lipid Res. 1994; 35: 2223–31
  • Spin J, Atkinson D. Cryoelectron microscopy of low-density-lipoprotein in vitreous ice. Biophys J. 1995; 68: 2115–23
  • Orlova E, Sherman M, Chiu W, Mowri H, Smith L, Gotto A. Three-dimensional structure of low density lipoproteins by electron cryomicroscopy. PNAS. 1999; 96: 8420–5
  • Sherman M, Orlova EV, Decker G, Chiu W, Pownall H. Structure of triglyceride-rich human low-density lipoproteins according to cryoelectron microscopy. Biochemistry. 2003; 42: 14988–93
  • Chatterton R, Phillips M, Curtiss L, Milne R, Fruchart J, Schumaker V. Immunoelectron microscopy of low density lipoproteins yields a ribbon and bow model for the conformation of apolipoprotein B on the lipoprotein surface. J Lipid Res. 1995; 36: 2027–37
  • van Antwerpen R, La Belle M, Navratilova E, Krauss R. Structural heterogeneity of apo b-containing serum lipoproteins visualized using cryo-electron microscopy. J Lipid Res. 1999; 40: 1827–36
  • Gantz D, Walsh M, Small D. Morphology of sodium deoxycholate-solubilized apolipoprotein B-100 using negative stain and vitreous ice electron microscopy. J Lipid Res. 2000; 41: 1464–72
  • Jiang Z, Gantz D, Bullitt E, McKnight C. Defining lipid-interacting domains in the N-terminal region of apolipoprotein B. Biochemistry. 2006; 45: 11799–808
  • Jones B, Jones E, Bonney S, Patel H, Mensenkamp A, Eichenbaum-Voline S, et al. Mutations in a Sar1 GTPase of COPII vesicles are associated with lipid absorption disorders. Nat Genet. 2003; 34: 29–31
  • Bradbury P, Mann C, Kochl S, Anderson T, Chester S, Hanock J, et al. A common binding site on the Microsomal Triglyceride Transfer protein for Apolipoprotein B and Protein Disulfide Isomerase. J Biol Chem. 1999; 274: 3159–64
  • Segrest J, Jones M, Dashti N. N-terminal domain of apolipoprotein B has structural homology to lipovitellin and microsomal triglyceride transfer protein: a ‘lipid pocket’ model for self-assembly of apoB-containing lipoprotein particles. J Lipid Res. 1999; 40: 1401–16
  • Read J, Anderson T, Ritchie P, Vanloo B, Amey J, Levitt D, et al. A mechanism of membrane neutral lipid acquisition by the microsomal triglyceride transfer protein. J Biol Chem. 2000; 275: 30372–7
  • Lange R. Lattice parameters as revealed by electron microscopy and a comparison between lipoprotein crystals from cyclostome eggs formed in vivo and in vitro. J Mol Biol. 1984; 179: 765–8
  • Lange R. Highly conserved lipoprotein assembly in teleost and amphibian yolk-platelet crystals. Nature. 1981; 289: 329–30
  • Lange R, Magdowski G. Lipoprotein crystals in the yolk platelet of a teleost, Pelvicachromis pulcher (cichlidae). Cell Tissue Res. 1980; 209: 511–3
  • Lange R, Grodzinski Z, Kilarski W. Yolk-platelet crystals in three ancient bony fishes: Polypterus bichir (polypteri), Amia calva l., and Lepisosteus osseus (l.) (holostei). Cell Tissue Res. 1982; 222: 159–65
  • Lange R, Richter H. A symmetric lipovitellin-phosvitin dimer in cyclostome yolk platelet crystals: structural and biochemical observations. J Mol Biol. 1981; 148: 487–91
  • Lange R. The lipoprotein crystals of cyclostome yolk platelets (myxine glutinosal., lampetra planeri [bloch], l.fluviatilis [l.]). J Ultrastruct Res. 1982; 79: 1–17
  • Murdoch SJ, Boright AP, Paterson AD, Zinman B, Steffes M, Cleary P, et al. LDL composition in E2/2 subjects and LDL distribution by Apo E genotype in type 1 diabetes. Atherosclerosis. 2007; 192: 138–47
  • Yang C-Y, Kim T, Weng S-A, Lee B, Yang M, Gotto AM, Jr. Isolation and characterization of sulfhydryl and disulfide peptides of human apolipoprotein B-100. PNAS. 1990; 87: 5523–7
  • Thornton J. Disulphide bridges in globular proteins. J Mol Biol. 1981; 151: 261–87
  • Timmins P, Poliks B, Banaszak L. The location of bound lipid in the lipovitellin complex. Science. 1992; 257: 652–5
  • Rehberg EF, Samson-Bouma ME, Kienzle B, Blinderman L, Jamil H, Wetterau JR, et al. A novel abetalipoproteinemia genotype: identification of a missense mutation in the 97 kDa subunit of the microsomal triglyceride transfer protein that prevents complex formation with protein disulfide isomerase. J Biol Chem. 1996; 271: 29945–52
  • Rava P, Ojakian GK, Shelness GS, Hussain MM. Phospholipid transfer activity of microsomal triacylglycerol transfer protein is sufficient for the assembly and secretion of apolipoprotein B lipoproteins. J Biol Chem. 2006; 281: 11019–27
  • Dougan SK, Salas A, Rava P, Agyemang A, Kaser A, Morrison J, et al. Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J Exp Med. 2005; 202: 529–39
  • Hussain M, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apo B assembly. J Lipid Res. 2003; 44: 22–32
  • Magnin DR, Biller SA, Wetterau J, Robl JA, Dickson JK, Jr, Taunk P, et al. Microsomal triglyceride transfer protein inhibitors: discovery and synthesis of alkyl phosphonates as potent MTP inhibitors and cholesterol lowering agents. Bioorg Med Chem Lett. 2003; 13: 1337–40
  • Shelness GS, Hou L, Ledford AS, Parks JS, Weinberg RB. Identification of the lipoprotein initiating domain of apolipoprotein B. J Biol Chem. 2003; 278: 44702–7
  • Levy E, Stan S, Delvin E, Menard D, Shoulders C, Garofalo C, et al. Localization of microsomal triglyceride transfer protein in the Golgi: possible role in the assembly of chylomicrons. J Biol Chem. 2002; 277: 16470–7
  • Innerarity T, Boren J, Yamanaka S, Olofsson S. Biosynthesis of apolipoprotein B48-containing lipoproteins: regulation by novel post-translational mechanisms. J Biol Chem. 1996; 271: 2353–6
  • Swift L, Zhu M, Kakkad B, Jovanovska A, Neely M, Valyi-Nagy K, et al. Subcellular localization of microsomal triglyceride transfer protein. J Lipid Res. 2003; 44: 1841–9
  • Kaufman R. Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem Sci. 2004; 29: 152–8
  • Olofsson S, Asp L, Boren J. The assembly and secretion of apolipoprotein B-containing lipoproteins. Curr Opin Lipidol. 1999; 10: 341–6
  • Wetterau J, Combs K, Spinnner S, Joiner B. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J Biol Chem. 1990; 265: 9800–7
  • Tian G, Xiang S, Noiva R, Lennarz W, Schindelin H. The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell. 2006; 124: 61–73
  • Wetterau J, Combs K, McLean L, Spinner S, Aggerback L. Protein disulfide isomerase appears necessary to maintain the catalytically active structure of the microsomal triglyceride transfer protein. Biochemistry. 1991; 30: 9728–35
  • Shoulders C, Brett D, Narcisi T, Jarmuz A, Grantham T, Leoni P, et al. Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum Mol Gen. 1993; 2: 2109–16
  • Stillemark-Billton P, Beck C, Boren J, Olofsson S. Relation of the size and intracellular sorting of apoB to the formation of VLDL 1 and VLDL 2. J Lipid Res. 2005; 46: 104–14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.