4,280
Views
289
CrossRef citations to date
0
Altmetric
Review Article

Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction

, MD, , , &
Pages 180-196 | Published online: 08 Jul 2009

References

  • Suwaidi J. A., Hamasaki S., Higano S. T., Nishimura R. A., Holmes D. R Jr., Lerman A. Long‐term follow‐up of patients with mild coronary artery disease and endothelial dysfunction. Circulation 2000; 101: 948–54
  • Moncada S., Korbut R., Bunting S., Vane J. R. Prostacyclin is a circulating hormone. Nature 1978; 273: 767–8
  • Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium‐derived relaxing factor. Nature 1987; 327: 524–6
  • Stupack D. G., Cheresh D. A. Integrins and angiogenesis. Curr Top Dev Biol 2004; 64: 207–38
  • Busse R., Fleming I. Regulation of NO synthesis in endothelial cells. Kidney Blood Press Res 1998; 21: 264–6
  • Fleming I., Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 2003; 284: R1–12
  • Oelze M., Mollnau H., Hoffmann N., Warnholtz A., Bodenschatz M., Smolenski A., et al. Vasodilator‐stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction. Circ Res 2000; 87: 999–1005
  • Myers P. R., Minor R. L Jr., Guerra R Jr., Bates J. N., Harrison D. G. Vasorelaxant properties of the endothelium‐derived relaxing factor more closely resemble S‐nitrosocysteine than nitric oxide. Nature 1990; 345: 161–3
  • Radomski M. W., Palmer R. M., Moncada S. The anti‐aggregating properties of vascular endothelium: interactions between prostacyclin and nitric oxide. Br J Pharmacol 1987; 92: 639–46
  • Garg U. C., Hassid A. Nitric oxide‐generating vasodilators and 8‐bromo‐cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1774–7
  • Gryglewski R. J., Moncada S., Palmer R. M. Bioassay of prostacyclin and endothelium‐derived relaxing factor (EDRF) from porcine aortic endothelial cells. Br J Pharmacol 1986; 87: 685–94
  • Beckman J. S. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 1996; 9: 836–44
  • Beckman J. S., Koppenol W. H. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996; 271: C1424–37
  • Zou M. H., Ullrich V. Peroxynitrite formed by simultaneous generation of nitric oxide and superoxide selectively inhibits bovine aortic prostacyclin synthase. FEBS Lett 1996; 382: 101–4
  • Zou M. H., Shi C., Cohen R. A. Oxidation of the zinc‐thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 2002; 109: 817–26
  • Kuzkaya N., Weissmann N., Harrison D. G., Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric‐oxide synthase. J Biol Chem 2003; 278: 22546–54
  • Zeiher A. M., Drexler H., Wollschlager H., Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991; 83: 391–401
  • Zeiher A. M., Drexler H., Wollschlager H., Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis. Circulation 1991; 84: 1984–92
  • Kahler J., Ewert A., Weckmuller J., Stobbe S., Mittmann C., Koster R., et al. Oxidative stress increases endothelin‐1 synthesis in human coronary artery smooth muscle cells. J Cardiovasc Pharmacol 2001; 38: 49–57
  • Kahler J., Mendel S., Weckmuller J., Orzechowski H. D., Mittmann C., Koster R., et al. Oxidative stress increases synthesis of big endothelin‐1 by activation of the endothelin‐1 promoter. J Mol Cell Cardiol 2000; 32: 1429–37
  • Lerman A., Holmes D. R Jr., Bell M. R., Garratt K. N., Nishimura R. A., Burnett J. C Jr. Endothelin in coronary endothelial dysfunction and early atherosclerosis in humans. Circulation 1995; 92: 2426–31
  • Celermajer D. S., Sorensen K. E., Gooch V. M., Spiegelhalter D. J., Miller O. I., Sullivan I. D., et al. Non‐invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992; 340: 1111–5
  • Gokce N., Keaney J. F Jr., Hunter L. M., Watkins M. T., Menzoian J. O., Vita J. A. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function: a prospective study. Circulation 2002; 105: 1567–72
  • Gokce N., Keaney J. F Jr., Hunter L. M., Watkins M. T., Nedeljkovic Z. S., Menzoian J. O., et al. Predictive value of noninvasively determined endothelial dysfunction for long‐term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol 2003; 41: 1769–75
  • Anderson T. J., Uehata A., Gerhard M. D., Meredith I. T., Knab S., Delagrange D., et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 1995; 26: 1235–41
  • Warnholtz A., Ostad M. A., Heitzer T., Thuneke F., Frohlich M., Tschentscher P., et al. AT1‐receptor blockade with irbesartan improves peripheral but not coronary endothelial dysfunction in patients with stable coronary artery disease. Atherosclerosis 2007; 194: 439–45
  • Bonetti P. O., Pumper G. M., Higano S. T., Holmes D. R Jr., Kuvin J. T., Lerman A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol 2004; 44: 2137–41
  • Kannel W. B., Dawber T. R., McGee D. L. Perspectives on systolic hypertension. The Framingham study. Circulation 1980; 61: 1179–82
  • Millasseau S. C., Kelly R. P., Ritter J. M., Chowienczyk P. J. Determination of age‐related increases in large artery stiffness by digital pulse contour analysis. Clin Sci (Lond) 2002; 103: 371–7
  • Hayward C. S., Kraidly M., Webb C. M., Collins P. Assessment of endothelial function using peripheral waveform analysis: a clinical application. J Am Coll Cardiol 2002; 40: 521–8
  • Otto M. E., Svatikova A., Barretto R. B., Santos S., Hoffmann M., Khandheria B., et al. Early morning attenuation of endothelial function in healthy humans. Circulation 2004; 109: 2507–10
  • Plotnick G. D., Corretti M. C., Vogel R. A. Effect of antioxidant vitamins on the transient impairment of endothelium‐dependent brachial artery vasoactivity following a single high‐fat meal. JAMA 1997; 278: 1682–6
  • Title L. Regarding ‘Endothelium‐dependent vasodilatation is impaired in both microcirculation and macrocirculation during acute hyperglycemia’. J Vasc Surg 1999; 29: 942–3
  • Jarvisalo M. J., Jartti L., Marniemi J., Ronnemaa T., Viikari J. S., Lehtimaki T., et al. Determinants of short‐term variation in arterial flow‐mediated dilatation in healthy young men. Clin Sci (Lond) 2006; 110: 475–82
  • Duffy S. J., Gokce N., Holbrook M., Hunter L. M., Biegelsen E. S., Huang A., et al. Effect of ascorbic acid treatment on conduit vessel endothelial dysfunction in patients with hypertension. Am J Physiol Heart Circ Physiol 2001; 280: H528–34
  • Levine G. N., Frei B., Koulouris S. N., Gerhard M. D., Keaney J. F Jr., Vita J. A. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996; 93: 1107–13
  • Heitzer T., Just H., Munzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 1996; 94: 6–9
  • Ting H. H., Timimi F. K., Boles K. S., Creager S. J., Ganz P., Creager M. A. Vitamin C improves endothelium‐dependent vasodilation in patients with non‐insulin‐dependent diabetes mellitus. J Clin Invest 1996; 97: 22–8
  • Munzel T., Genth‐Zotz S., Hink U. Targeting heme‐oxidized soluble guanylate cyclase: solution for all cardiorenal problems in heart failure?. Hypertension 2007; 49: 974–6
  • Bastian N. R., Hibbs J. B Jr. Assembly and regulation of NADPH oxidase and nitric oxide synthase. Curr Opin Immunol 1994; 6: 131–9
  • Griendling K. K., Sorescu D., Ushio‐Fukai M. NADPH oxidase: role in cardiovascular biology and disease. Circ Res 2000; 86: 494–501
  • Warnholtz A., Nickenig G., Schulz E., Macharzina R., Brasen J. H., Skatchkov M., et al. Increased NADH‐oxidase‐mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin‐angiotensin system. Circulation 1999; 99: 2027–33
  • Guzik T. J., West N. E., Black E., McDonald D., Ratnatunga C., Pillai R., et al. Vascular superoxide production by NADPH oxidase: association with endothelial dysfunction and clinical risk factors. Circ Res 2000; 86: E85–90
  • Sorescu D., Weiss D., Lassegue B., Clempus R. E., Szocs K., Sorescu G. P., et al. Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 2002; 105: 1429–35
  • Ohishi M., Ueda M., Rakugi H., Naruko T., Kojima A., Okamura A., et al. Enhanced expression of angiotensin‐converting enzyme is associated with progression of coronary atherosclerosis in humans. J Hypertens 1997; 15: 1295–302
  • Diet F., Pratt R. E., Berry G. J., Momose N., Gibbons G. H., Dzau V. J. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996; 94: 2756–67
  • Schieffer B., Schieffer E., Hilfiker‐Kleiner D., Hilfiker A., Kovanen P. T., Kaartinen M., et al. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 2000; 101: 1372–8
  • Nickenig G., Baumer A. T., Temur Y., Kebben D., Jockenhovel F., Bohm M. Statin‐sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation 1999; 100: 2131–4
  • Fukui T., Ishizaka N., Rajagopalan S., Laursen J. B., Capers Q. T., Taylor W. R., et al. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 1997; 80: 45–51
  • Rajagopalan S., Kurz S., Munzel T., Tarpey M., Freeman B. A., Griendling K. K., et al. Angiotensin II‐mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 1996; 97: 1916–23
  • Morawietz H., Weber M., Rueckschloss U., Lauer N., Hacker A., Kojda G. Upregulation of vascular NADPH oxidase subunit gp91phox and impairment of the nitric oxide signal transduction pathway in hypertension. Biochem Biophys Res Commun 2001; 285: 1130–5
  • Hink U., Li H., Mollnau H., Oelze M., Matheis E., Hartmann M., et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 2001; 88: E14–22
  • Landmesser U., Dikalov S., Price S. R., McCann L., Fukai T., Holland S. M., et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest 2003; 111: 1201–9
  • Ohara Y., Peterson T. E., Harrison D. G. Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 1993; 91: 2546–51
  • White C. R., Darley‐Usmar V., Berrington W. R., McAdams M., Gore J. Z., Thompson J. A., et al. Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proc Natl Acad Sci U S A 1996; 93: 8745–9
  • Cardillo C., Kilcoyne C. M., Cannon R. O 3rd., Quyyumi A. A., Panza J. A. Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension 1997; 30: 57–63
  • Butler R., Morris A. D., Belch J. J., Hill A., Struthers A. D. Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 2000; 35: 746–51
  • O'Driscoll J. G., Green D. J., Rankin J. M., Taylor R. R. Nitric oxide‐dependent endothelial function is unaffected by allopurinol in hypercholesterolaemic subjects. Clin Exp Pharmacol Physiol 1999; 26: 779–83
  • Nakazono K., Watanabe N., Matsuno K., Sasaki J., Sato T., Inoue M. Does superoxide underlie the pathogenesis of hypertension?. Proc Natl Acad Sci U S A 1991; 88: 10045–8
  • Cleland J. G., Coletta A. P., Clark A. L. Clinical trials update from the Heart Failure Society of America meeting: FIX‐CHF‐4, selective cardiac myosin activator and OPT‐CHF. Eur J Heart Fail 2006; 8: 764–6
  • Pritchard K. A Jr., Groszek L., Smalley D. M., Sessa W. C., Wu M., Villalon P., et al. Native low‐density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circ Res 1995; 77: 510–8
  • Vergnani L., Hatrik S., Ricci F., Passaro A., Manzoli N., Zuliani G., et al. Effect of native and oxidized low‐density lipoprotein on endothelial nitric oxide and superoxide production : key role of L‐arginine availability. Circulation 2000; 101: 1261–6
  • White C. R., Brock T. A., Chang L. Y., Crapo J., Briscoe P., Ku D., et al. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci U S A 1994; 91: 1044–8
  • Laursen J. B., Somers M., Kurz S., McCann L., Warnholtz A., Freeman B. A., et al. Endothelial regulation of vasomotion in apoE‐deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 2001; 103: 1282–8
  • Milstien S., Katusic Z. Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 1999; 263: 681–4
  • Forstermann U., Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation 2006; 113: 1708–14
  • Schachinger V., Britten M. B., Zeiher A. M. Prognostic impact of coronary vasodilator dysfunction on adverse long‐term outcome of coronary heart disease. Circulation 2000; 101: 1899–906
  • Heitzer T., Schlinzig T., Krohn K., Meinertz T., Munzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation 2001; 104: 2673–8
  • Heitzer T., Baldus S., von Kodolitsch Y., Rudolph V., Meinertz T. Systemic endothelial dysfunction as an early predictor of adverse outcome in heart failure. Arterioscler Thromb Vasc Biol 2005; 25: 1174–9
  • Perticone F., Ceravolo R., Pujia A., Ventura G., Iacopino S., Scozzafava A., et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation 2001; 104: 191–6
  • Brevetti G., Silvestro A., Di Giacomo S., Bucur R., Di Donato A., Schiano V., et al. Endothelial dysfunction in peripheral arterial disease is related to increase in plasma markers of inflammation and severity of peripheral circulatory impairment but not to classic risk factors and atherosclerotic burden. J Vasc Surg 2003; 38: 374–9
  • Verma S., Wang C. H., Lonn E., Charbonneau F., Buithieu J., Title L. M., et al. Cross‐sectional evaluation of brachial artery flow‐mediated vasodilation and C‐reactive protein in healthy individuals. Eur Heart J 2004; 25: 1754–60
  • Kathiresan S., Gona P., Larson M. G., Vita J. A., Mitchell G. F., Tofler G. H., et al. Cross‐sectional relations of multiple biomarkers from distinct biological pathways to brachial artery endothelial function. Circulation 2006; 113: 938–45
  • Juonala M., Viikari J. S., Alfthan G., Marniemi J., Kahonen M., Taittonen L., et al. Brachial artery flow‐mediated dilation and asymmetrical dimethylarginine in the cardiovascular risk in young Finns study. Circulation 2007; 116: 1367–73
  • Blann A. D., Woywodt A., Bertolini F., Bull T. M., Buyon J. P., Clancy R. M., et al. Circulating endothelial cells. Biomarker of vascular disease. Thromb Haemost 2005; 93: 228–35
  • Rajagopalan S., Somers E. C., Brook R. D., Kehrer C., Pfenninger D., Lewis E., et al. Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. Blood 2004; 103: 3677–83
  • Werner N., Kosiol S., Schiegl T., Ahlers P., Walenta K., Link A., et al. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 2005; 353: 999–1007
  • Schmidt‐Lucke C., Rossig L., Fichtlscherer S., Vasa M., Britten M., Kamper U., et al. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005; 111: 2981–7
  • Dimmeler S., Aicher A., Vasa M., Mildner‐Rihm C., Adler K., Tiemann M., et al. HMG‐CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3‐kinase/Akt pathway. J Clin Invest 2001; 108: 391–7
  • Boulanger C. M., Scoazec A., Ebrahimian T., Henry P., Mathieu E., Tedgui A., et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 2001; 104: 2649–52
  • Boulanger C. M., Amabile N., Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 2006; 48: 180–6
  • Tramontano A. F., O'Leary J., Black A. D., Muniyappa R., Cutaia M. V., El‐Sherif N. Statin decreases endothelial microparticle release from human coronary artery endothelial cells: implication for the Rho‐kinase pathway. Biochem Biophys Res Commun 2004; 320: 34–8
  • Kerns W., Schwartz L., Blanchard K., Burchiel S., Essayan D., Fung E., et al. Drug‐induced vascular injury—a quest for biomarkers. Toxicol Appl Pharmacol 2005; 203: 62–87
  • Schnabel R., Blankenberg S., Lubos E., Lackner K. J., Rupprecht H. J., Espinola‐Klein C., et al. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study. Circ Res 2000; 97: e53–9
  • Cooke J. P. Does ADMA cause endothelial dysfunction?. Arterioscler Thromb Vasc Biol 2000; 20: 2032–7
  • Sydow K., Munzel T. ADMA and oxidative stress. Atheroscler Suppl 2003; 4: 41–51
  • Deanfield J. E., Halcox J. P., Rabelink T. J. Endothelial function and dysfunction: testing and clinical relevance. Circulation 2007; 115: 1285–95

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.