217
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Small-scale desalination and atmospheric water provisioning systems in water-scarce vulnerable communities: status and perspectives

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 686-717 | Received 07 Feb 2023, Accepted 14 Oct 2023, Published online: 05 Dec 2023

References

  • Abdallah, S., & Badran, O. O. (2008). Sun tracking system for productivity enhancement of solar still. Desalination, 220(1–3), 669–676. https://doi.org/10.1016/j.desal.2007.02.047
  • Abdallah, S., Badran, O., & Abu-Khader, M. M. (2008). Performance evaluation of a modified design of a single slope solar still. Desalination, 219(1–3), 222–230. https://doi.org/10.1016/j.desal.2007.05.015
  • Abdel-Rehim, Z. S., & Lasheen, A. (2007). Experimental and theoretical study of a solar desalination system located in Cairo, Egypt. Desalination, 217(1–3), 52–64.https://doi.org/10.1016/j.desal.2007.01.012
  • Abdul Ghani, L., Ali, N., Nazaran, I. S., & Hanafiah, M. M. (2021). Environmental performance of small-scale seawater reverse osmosis plant for rural area water supply. Membranes, 11(1), 40. https://doi.org/10.3390/membranes11010040
  • Aboud, F. E., & Singla, D. R. (2012). Challenges to changing health behaviours in developing countries: A critical overview. Social Science & Medicine, 75(4), 589–594. https://doi.org/10.1016/j.socscimed.2012.04.009
  • Aboul-Enein, S., El-Sebaii, A. A., & El-Bialy, E. (1998). Investigation of a single-basin solar still with deep basins. Renewable Energy, 11(1–4), 299–305. https://doi.org/10.1016/s0960-1481(98)00081-0
  • Abualhamayel, H. I., & Gandhidasan, P. (1997). A method of obtaining fresh water from the humid atmosphere. Desalination, 113(1), 51–63. https://doi.org/10.1016/s0011-9164(97)00114-8
  • Abu-Hijleh, B. A., & Rababa’h, H. M. (2003). Experimental study of a solar still with sponge cubes in basin. Energy Conversion and Management, 44(9), 1411–1418.https://doi.org/10.1016/s0196-8904(02)00162-0
  • Aende, A., Gardy, J., & Hassanpour, A. (2020). Seawater desalination: A review of forward osmosis technique, its challenges, and future prospects. Processes, 8(8), 901. https://doi.org/10.3390/pr8080901
  • Ahsan, A., Imteaz, M., Rahman, A., Yusuf, B., & Fukuhara, T. (2012). Design, fabrication and performance analysis of an improved solar still. Desalination, 292, 105–112. https://doi.org/10.1016/j.desal.2010.04.044
  • Ahsan, A., Islam, K. M. S., Fukuhara, T., & Ghazali, A. H. (2010). Experimental study on evaporation, condensation and production of a new tubular solar still. Desalination, 26(1–3), 172–179. https://doi.org/10.1016/j.desal.2012.02.013
  • Al-Duais, H. S., Ismail, M. A., Awad, Z. A. M., & Al-Obaidi, K. M. (2022). Performance evaluation of solar-powered atmospheric water harvesting using different glazing materials in the tropical built environment: an experimental study. Energies, 15(9), 3026. https://doi.org/10.3390/en15093026
  • Al-Harahsheh, M., Abu-Arabi, M., Mousa, H., & Alzghoul, Z. (2018). Solar desalination using solar still enhanced by external solar collector and PCM. Applied Thermal Engineering, 128, 1030–1040. https://doi.org/10.1016/j.applthermaleng.2017.09.073
  • Al-Hinai, H., Al-Nassri, M. S., & Jubran, B. A. (2002). Effect of climatic, design and operational parameters on the yield of a simple solar still. Energy Conversion and Management, 43(13), 1639–1650. https://doi.org/10.1016/s0196-8904(01)00120-0
  • Ali, M. D. I., Ali, S. M., & Siddhartha, T. R. (2012). Analysis of double slope single basin solar-still using photocatalysts. International Journal of Advancements in Research and Technology, 1(5), 200–205. https://ui.adsabs.harvard.edu/abs/2012IJART…1e.200A/abstract
  • Ali Samee, M., Mirza, U. K., Majeed, T., & Ahmad, N. (2007). Design and performance of a simple single basin solar still. Renewable and Sustainable Energy Reviews, 11(3), 543–549. https://doi.org/10.1016/j.rser.2005.03.003
  • Aliyu, U. M., Rathilal, S., & Isa, Y. M. (2018). Membrane desalination technologies in water treatment: A review. Water Practice and Technology, 13(4), 738–752. https://doi.org/10.2166/wpt.2018.084
  • Al-Karaghouli, A. A., & Kazmerski, L. L. (2011). Renewable energy opportunities in water desalination. Desalination, Trends and Technologies. https://doi.org/10.5772/14779
  • Amy, G., Ghaffour, N., Li, Z., Francis, L., Linares, R. V., Missimer, T., & Lattemann, S. (2017). Membrane-based seawater desalination: Present and future prospects. Desalination, 401, 16–21. https://doi.org/10.1016/j.desal.2016.10.002
  • Anbarasu, T., & Pavithra, S. (2011). Vapour compression refrigeration system generating fresh water from humidity In the air. In International conference on sustainable energy and intelligent systems (SEISCON 2011). The Institution of Engineering and Technology (IET). https://doi.org/10.1049/cp.2011.0338
  • Annala, L., Sarin, A., & Green, J. L. (2018). Co-production of frugal innovation: Case of low cost reverse osmosis water filters in India. Journal of Cleaner Production, 171, S110–S118. https://doi.org/10.1016/j.jclepro.2016.07.065
  • Ansari, E., Ferber, N. L., Milošević, T., Barron, J., Karanikolos, G. N., AlMarzooqi, F., Dumée, L. F., & Calvet, N. (2022). Atmospheric water generation in arid regions – A perspective on deployment challenges for the Middle East. Journal of Water Process Engineering, 49, 103163. https://doi.org/10.1016/j.jwpe.2022.103163
  • Arasio, R. L., Kaufmann, B., Wasonga, O. V., & Otieno, D. J. (2020). Socio-cultural and governance foundations of successful income-generating groups in pastoral societies: Evidence from northern Kenya. Community Development, 51(4), 361–386. https://doi.org/10.1080/15575330.2020.1767168
  • Arimoro, A. E., & Musa, H. (2020). Towards sustainable water resource management in rural Nigeria: The role of communities. Journal of Sustainable Development Law and Policy, 11(1), 1–17. https://doi.org/10.4314/jsdlp.v11i1
  • Arunkumar, T., Denkenberger, D., Ahsan, A., & Jayaprakash, R. (2013). The augmentation of distillate yield by using concentrator coupled solar still with phase change material. Desalination, 314, 189–192https://doi.org/10.1016/j.desal.2013.01.018
  • Ashraf, H. M., Al-Sobhi, S. A., & El-Naas, M. H. (2022). Mapping the desalination journal: A systematic bibliometric study over 54 years. Desalination, 526, 115535. https://doi.org/10.1016/j.desal.2021.115535
  • Badran, A. A., Al-Hallaq, I. A., Eyal Salman, I. A., & Odat, M. Z. (2005). A solar still augmented with a flat-plate collector. Desalination, 172(3), 227–234. https://doi.org/10.1016/j.jup.2016.04.013
  • Badran, O. O., & Al-Tahaineh, H. A. (2005). The effect of coupling a flat-plate collector on the solar still productivity. Desalination, 183(1–3), 137–142. https://doi.org/10.1016/j.desal.2005.02.046
  • Berg, S. V. (2016). Seven elements affecting governance and performance in the water sector. Utilities Policy, 43, 4–13. https://doi.org/10.1016/j.jup.2016.04.013
  • Beysens, D., Milimouk, I., Nikolayev, V., Muselli, M., & Marcillat, J. (2003). Using radiative cooling to condense atmospheric vapor: A study to improve water yield. Journal of Hydrology, 276(1–4), 1–11. https://doi.org/10.1016/s0022-1694(03)00025-8
  • Bhushan, B. (2019). Bioinspired water collection methods to supplement water supply. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2150), 20190119. https://doi.org/10.1098/rsta.2019.0119
  • Bilton, A. M., Wiesman, R., Arif, A. F. M., Zubair, S. M., & Dubowsky, S. (2011). On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote locations. Renewable Energy, 36(12), 3246–3256. https://doi.org/10.1016/j.renene.2011.03.040
  • Boretti, A., Al-Zubaidy, S., Vaclavikova, M., Al-Abri, M., Castelletto, S., & Mikhalovsky, S. (2018). Outlook for graphene-based desalination membranes. Npj Clean Water, 1(1). https://doi.org/10.1038/s41545-018-0004-z
  • Breuer, A., Janetschek, H., & Malerba, D. (2019). Translating sustainable development goal (SDG) interdependencies into policy advice. Sustainability, 11(7), 2092.
  • Cattani, L., Cattani, P., & Magrini, A. (2023). Air to water generator integrated system real application: A study case in a worker village in United Arab Emirates. Applied Sciences, 13(5), 3094. https://doi.org/10.3390/su11072092
  • Chafidz, A., Al-Zahrani, S., Al-Otaibi, M. N., Hoong, C. F., Lai, T. F., & Prabu, M. (2014). Portable and integrated solar-driven desalination system using membrane distillation for arid remote areas in Saudi Arabia. Desalination, 345, 36–49. https://doi.org/10.1016/j.desal.2014.04.017
  • Chandra, P. H., Shankhar, R. S., Pranesh, S., Degaonkar, S., Kaya, S., Kiwan, O., Mohan, R., & Sowndaram, C. S. (2021). Design and development of air to water generator for the village in Kerala, India. In IEEE global humanitarian technology conference (GHTC). IEEE. https://doi.org/10.1109/ghtc53159.2021.9612480
  • Chen, Z., Song, S., Ma, B., Li, Y., Shao, Y., Shi, J., Liu, M., Jin, H., & Jing, D. (2021). Recent progress on sorption/desorption-based atmospheric water harvesting powered by solar energy. Solar Energy Materials and Solar Cells, 230, 111233. https://doi.org/10.1016/j.solmat.2021.111233
  • Colciaghi, R., Simonetti, R., Molinaroli, L., Binotti, M., & Manzolini, G. (2022). Levelized cost of water assessment for small-scale desalination plant based on forward osmosis process. Energy Conversion and Management, 271, 116336. https://doi.org/10.1016/j.enconman.2022.116336
  • Colmenar-Santos, A., Palomo-Torrejón, E., Mur-Pérez, F., & Rosales-Asensio, E. (2020). Thermal desalination potential with parabolic trough collectors and geothermal energy in the Spanish southeast. Applied Energy, 262, 114433. https://doi.org/10.1016/j.apenergy.2019.114433
  • Crosby, S., Younie, S., Williamson, I., & Laird, K. (2020). Evaluating approaches to designing effective co-created hand-hygiene interventions for children in India, Sierra Leone and the UK. PLoS ONE, 15(9), e0239234. https://doi.org/10.1371/journal.pone.0239234
  • da Silva, G. D., & Sharqawy, M. H. (2020). Techno-economic analysis of low impact solar brackish water desalination system in the Brazilian Semiarid region. Journal of Cleaner Production, 248, 119255. https://doi.org/10.1016/j.jclepro.2019.119255
  • Dehghan, A. A., Afshari, A., & Rahbar, N. (2015). Thermal modeling and exergetic analysis of a thermoelectric assisted solar still. Solar Energy, 115, 277–288. https://doi.org/10.1016/j.solener.2015.02.038
  • Delyannis, E.-E., & Belessiotis, V. (1995). Solar application in desalination: The Greek Islands experiment. Desalination, 100(1–3), 27–34. https://doi.org/10.1016/0011-9164(96)00006-9
  • Dodson, L. L., & Bargach, J. (2015). Harvesting fresh water from fog in rural Morocco. Research and impact. Dar Si Hmad’s fog water project in Aït Baamrane. Procedia Engineering, 107, 186–193. https://doi.org/10.1016/j.proeng.2015.06.073
  • Drechsel, P., Mahjoub, O., & Keraita, B. (2015). Social and cultural dimensions in wastewater use. In P. Drechsel, M. Qadir, & D. Wichelns. (Eds.), Wastewater. Springer. https://doi.org/10.1007/978-94-017-9545-6_5
  • Dsilva Winfred Rufuss, D., Iniyan, S., Suganthi, L., & Davies, P. A. (2016). Solar stills: A comprehensive review of designs, performance and material advances. Renewable and Sustainable Energy Reviews, 63, 464–496. https://doi.org/10.1016/j.rser.2016.05.068
  • Eke, J., Yusuf, A., Giwa, A., & Sodiq, A. (2020). The global status of desalination: An assessment of current desalination technologies, plants and capacity. Desalination, 495, 114633. https://doi.org/10.1016/j.desal.2020.114633
  • Elashmawy, M. (2020). Experimental study on water extraction from atmospheric air using tubular solar still. Journal of Cleaner Production, 249, 119322. https://doi.org/10.1016/j.jclepro.2019.119322
  • Elashmawy, M., & Alatawi, I. (2020). Atmospheric water harvesting from low-humid regions of Hail City in Saudi Arabia. Natural Resources Research, 29(6), 3689–3700. https://doi.org/10.1007/s11053-020-09662-y
  • Elashmawy, M., & Alshammari, F. (2020). Atmospheric water harvesting from low humid regions using tubular solar still powered by a parabolic concentrator system. Journal of Cleaner Production, 256, 120329. https://doi.org/10.1016/j.jclepro.2020.120329
  • El-Bahi, A., & Inan, D. (1999). Analysis of a parallel double glass solar still with separate condenser. Renewable Energy, 17(4), 509–521. https://doi.org/10.1016/s0960-1481(98)00768-x
  • Elemental Watermakers. (n.d.-a). Mozambique. Community water supply by solar desalination. Retrieved December 20, 2022, from https://www.elementalwatermakers.com/projects/desalination-mozambique-2/
  • Elemental Watermakers. (n.d.-b). Clean water for a community in a dry and conflicted region. Retrieved December 20, 2022, from https://www.elementalwatermakers.com/projects/desalination-yemen/
  • Elemental Watermakers. (n.d.-c). Kenya. Fresh water for resort. Retrieved December 20, 2022, from https://www.elementalwatermakers.com/projects/desalination-kenya/
  • El-Nashar, A. M. (2001). The economic feasibility of small solar MED seawater desalination plants for remote arid areas. Desalination, 134(1–3), 173–186. https://doi.org/10.1016/s0011-9164(01)00124-2
  • El-Sebaii, A. A. (2000). Effect of wind speed on some designs of solar stills. Energy Conversion and Management, 4(6), 523–538. https://doi.org/10.1016/s0196-8904(99)00119-3
  • El-Sebaii, A. A., Ramadan, M. R. I., Aboul-Enein, S., & Salem, N. (2008). Thermal performance of a single-basin solar still integrated with a shallow solar pond. Energy Conversion and Management, 49(10), 2839–2848. https://doi.org/10.1016/j.desal.2009.02.060
  • El-Sebaii, A. A., Yaghmour, S. J., Al-Hazmi, F. S., Faidah, A. S., Al-Marzouki, F. M., & Al-Ghamdi, A. A. (2009). Active single basin solar still with a sensible storage medium. Desalination, 249(2), 699–706. https://doi.org/10.1016/j.desal.2009.02.060
  • El-Swify, M. E., & Metias, M. Z. (2002). Performance of double exposure solar still. Renewable Energy, 26(4), 531–547. https://doi.org/10.1016/s0960-1481(01)00160-4
  • Eltawil, M. A., Zhengming, Z., & Yuan, L. (2009). A review of renewable energy technologies integrated with desalination systems. Renewable and Sustainable Energy Reviews, 13(9), 2245–2262. https://doi.org/10.1016/j.rser.2009.06.011
  • Entezari, A., Ejeian, M., & Wang, R. (2020). Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts. ACS Materials Letters, 2(5), 471–477. https://doi.org/10.1021/acsmaterialslett.9b00315
  • Esfahani, J. A., Rahbar, N., & Lavvaf, M. (2011). Utilization of thermoelectric cooling in a portable active solar still – An experimental study on winter days. Desalination, 269(1–3), 198–205. https://doi.org/10.1016/j.desal.2010.10.062
  • Essa, F. A., Abdullah, A., Majdi, H., Sh. Basem, A., Dhahad, H. A., Omara, Z. M., Mohammed, S. A., Alawee, W. H., Ezzi, A. A., & Yusaf, T. (2022). Parameters affecting the efficiency of solar stills – Recent review. Sustainability, 14(17), 10668. https://doi.org/10.3390/su141710668
  • Essa, F. A., Elsheikh, A. H., Sathyamurthy, R., Muthu Manokar, A., Kandeal, A. W., Shanmugan, S., Kabeel, A. E., Sharshir, S. W., Panchal, H., & Younes, M. M. (2020). Extracting water content from the ambient air in a double-slope half-cylindrical basin solar still using silica gel under Egyptian conditions. Sustainable Energy Technologies and Assessments, 39, 100712. https://doi.org/10.1016/j.seta.2020.100712
  • Fath, H. E. S., El-Samanoudy, M., Fahmy, K., & Hassabou, A. (2003). Thermal–economic analysis and comparison between pyramid-shaped and single-slope solar still configurations. Desalination, 159(1), 69–79. https://doi.org/10.1016/s0011-9164(03)90046-4
  • Fath, H. E. S., El-Shall, F. M., Vogt, G., & Seibert, U. (2005). A stand alone complex for the production of water, food, electrical power and salts for the sustainable development of small communities in remote areas. Desalination, 183(1–3), 13–22. https://doi.org/10.1016/j.desal.2005.03.028
  • Fathieh, F., Kalmutzki, M. J., Kapustin, E. A., Waller, P. J., Yang, J., & Yaghi, O. M. (2018). Practical water production from desert air. Science Advances, 4(6). https://doi.org/10.1126/sciadv.aat3198
  • Fathy, M. H., Awad, M. M., Zeidan, E.-S. B., & Hamed, A. M. (2020). Solar powered foldable apparatus for extracting water from atmospheric air. Renewable Energy, 162, 1462–1489. https://doi.org/10.1016/j.renene.2020.07.020
  • Feng, A., Akther, N., Duan, X., Peng, S., Onggowarsito, C., Mao, S., Fu, Q., & Kolev, S. D. (2022). Recent development of atmospheric water harvesting materials: A review. ACS Materials Au, 2(5), 576–595. https://doi.org/10.1021/acsmaterialsau.2c00027
  • Ferwati, M. S. (2019). Water harvesting cube. SN Applied Sciences, 1(7). https://doi.org/10.1016/j.rser.2013.08.063
  • Fessehaye, M., Abdul-Wahab, S. A., Savage, M. J., Kohler, T., Gherezghiher, T., & Hurni, H. (2014). Fog–water collection for community use. Renewable and Sustainable Energy Reviews, 29, 52–62. https://doi.org/10.1016/j.rser.2013.08.063
  • Finnerty, C. T. K., Karimah, M. M., Conway, K. M., Turkatte, C. K., Eskafi, A., & Mi, B. (2023). Demand for off-grid desalination technology in small-island communities – Can interfacial solar vapor generation be the answer? Desalination, 553, 116454. https://doi.org/10.1016/j.desal.2023.116454
  • Gad, H. E., Hamed, A. M., & El-Sharkawy, I. I. (2001). Application of a solar desiccant/collector system for water recovery from atmospheric air. Renewable Energy, 22(4), 541–556. https://doi.org/10.1016/s0960-1481(00)00112-9
  • Galeano-Caro, D., Ríos, A. A., Chejne, F., Moreno-Castilla, C., Pérez-Cadenas, A., Carrasco-Marín, F., Maya, J. C., Gómez, C. A., Franco, C. A., & Cortés, F. B. (2022). Freshwater production from air dehumidification using novel SiO-based supported material and solar energy: Colombia case study. Energy Reports, 8(2), 3115–3126. https://doi.org/10.1016/j.egyr.2022.02.010
  • García, R., Naves, A., Anta, J., Ron, M., & Molinero, J. (2021). Drinking water provision and quality at the Sahrawi refugee camps in Tindouf (Algeria) from 2006 to 2016. Science of the Total Environment, 780, 146504. https://doi.org/10.1016/j.scitotenv.2021.146504
  • Gorji, T. B., Mousavi, S. J., Ghadi, M. S., & Gorji-Bandpy, M. (2022). Experimental evaluation of a solar still-assisted TEC-AWG system for atmospheric water generation. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(8). https://doi.org/10.1007/s40430-022-03592-x
  • Grant, M. J., & Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
  • Haechler, I., Park, H., Schnoering, G., Gulich, T., Rohner, M., Tripathy, A., Milionis, A., Schutzius, T. M., & Poulikakos, D. (2021). Exploiting radiative cooling for uninterrupted 24-hour water harvesting from the atmosphere. Science Advances, 7(26). https://doi.org/10.1126/sciadv.abf3978
  • Hamed, A. M., Aly, A. A., & Zeidan, E.-S. B. (2011). Application of solar energy for recovery of water from atmospheric air in climatic zones of saudi arabia. Natural Resources, 2(1), 8–17. https://doi.org/10.4236/nr.2011.21002
  • Hanson, A., Zachritz, W., Stevens, K., Mimbela, L., Polka, R., & Cisneros, L. (2004). Distillate water quality of a single-basin solar still: Laboratory and field studies. Solar Energy, 76(5), 635–645. https://doi.org/10.1016/j.solener.2003.11.010
  • Hassenforder, E., Barreteau, O., Daniell, K. A., Ferrand, N., Kabaseke, C., Muhumuza, M., & Tibasiima, T. (2020). The effects of public participation on multi-level water governance, lessons from Uganda. Environmental Management, 66(5), 770–784. https://doi.org/10.1007/s00267-020-01348-8
  • Henfrey, T., Feola, G., Penha‐Lopes, G., Sekulova, F., & Esteves, A. M. (2022). Rethinking the sustainable development goals: Learning with and from community‐led initiatives. Sustainable Development. https://doi.org/10.1002/sd.2384
  • He, W., Yu, P., Hu, Z., Lv, S., Qin, M., & Yu, C. (2019). Experimental study and performance analysis of a portable atmospheric water generator. Energies, 13(1), 73. https://doi.org/10.3390/en13010073
  • Hovden, L., Paasche, T., Nyanza, E. C., & Bastien, S. (2020). Water scarcity and water quality: identifying potential unintended harms and mitigation strategies in the implementation of the biosand filter in rural tanzania. Qualitative Health Research, 30(11), 1647–1661. https://doi.org/10.1177/1049732320918860
  • Huntjens, P., Lebel, L., Pahl-Wostl, C., Camkin, J., Schulze, R., & Kranz, N. (2012). Institutional design propositions for the governance of adaptation to climate change in the water sector. Global Environmental Change, 22(1), 67–81. https://doi.org/10.1016/j.gloenvcha.2011.09.015
  • Hutchings, P., Chan, M. Y., Cuadrado, L., Ezbakhe, F., Mesa, B., Tamekawa, C., & Franceys, R. (2015). A systematic review of success factors in the community management of rural water supplies over the past 30 years. Water Policy, 17(5), 963–983. https://doi.org/10.2166/wp.2015.128
  • Hutton, G., & Chase, C. (2017). Water supply, sanitation, and hygiene. In Disease control priorities, third edition (Volume 7): Injury prevention and environmental health (pp. 171–198). The World Bank. https://doi.org/10.1596/978-1-4648-0522-6_ch9
  • International Council for Science. (2017). A Guide to SDG interactions: From science to implementation. https://council.science/cms/2017/05/SDGs-Guide-to-Interactions.pdf
  • Irshad, M. S., Wang, X., Abbasi, M. S., Arshad, N., Chen, Z., Guo, Z., Yu, L., Qian, J., You, J., & Mei, T. (2021). Semiconductive, flexible MnO2 NWs/Chitosan hydrogels for efficient solar steam generation. ACS Sustainable Chemistry & Engineering, 9(10), 3887–3900. https://doi.org/10.1021/acssuschemeng.0c08981
  • Ismail, B. I. (2009). Design and performance of a transportable hemispherical solar still. Renewable Energy, 34(1), 145–150. https://doi.org/10.1016/j.renene.2008.03.013
  • Itoh, Y., Chen, S., Hirahara, R., Konda, T., Aoki, T., Ueda, T., Shimada, I., Cannon, J. J., Shao, C., Shiomi, J., Tabata, K. V., Noji, H., Sato, K., & Aida, T. (2022). Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science, 376(6594), 738–743. https://doi.org/10.1126/science.abd0966
  • Jacobs, A. F. G., Heusinkveld, B. G., & Berkowicz, S. M. (2008). Passive dew collection in a grassland area, The Netherlands. Atmospheric Research, 87(3–4), 377–385. https://doi.org/10.1016/j.atmosres.2007.06.007
  • Jamil, F., & Ali, H. M. (2019). Sustainable desalination using portable devices: A concise review. Solar Energy, 194, 815–839. https://doi.org/10.1016/j.solener.2019.10.085
  • Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V., & Kang, S. (2019). The state of desalination and brine production: A global outlook. Science of the Total Environment, 657, 1343–1356. https://doi.org/10.1016/j.scitotenv.2018.12.076
  • Joshi, V. P., Joshi, V. S., Kothari, H. A., Mahajan, M. D., Chaudhari, M. B., & Sant, K. D. (2017). Experimental investigations on a portable fresh water generator using a thermoelectric cooler. Energy Procedia, 109, 161–166. https://doi.org/10.1016/j.egypro.2017.03.085
  • Kabeel, A. E. (2007). Water production from air using multi-shelves solar glass pyramid system. Renewable Energy, 32(1), 157–172. https://doi.org/10.1016/j.renene.2006.01.015
  • Kabeel, A. E., & El-Agouz, S. A. (2011). Review of researches and developments on solar stills. Desalination, 276(1–3), 1–12. https://doi.org/10.1016/j.desal.2011.03.042
  • Kabeel, A. E., Hamed, A. M., & El-Agouz, S. A. (2010). Cost analysis of different solar still configurations. Energy, 35(7), 2901–2908. https://doi.org/10.1016/j.energy.2010.03.021
  • Kadhim, T. J., Abbas, A. K., & Kadhim, H. J. (2020). Experimental study of atmospheric water collection powered by solar energy using the Peltier effect. IOP Conference Series: Materials Science and Engineering, 671(1), 012155. https://doi.org/10.1088/1757-899x/671/1/012155
  • Kandeal, A. W., Joseph, A., Elsharkawy, M., Elkadeem, M. R., Hamada, M. A., Khalil, A., Eid Moustapha, M., & Sharshir, S. W. (2022). Research progress on recent technologies of water harvesting from atmospheric air: A detailed review. Sustainable Energy Technologies and Assessments, 52(102000), 102000. https://doi.org/10.1016/j.seta.2022.102000
  • Kariuki, J. G., Magambo, K. J., Njeruh, M. F., Muchiri, E. M., Nzioka, S. M., & Kariuki, S. (2012). Changing mother’s hygiene and sanitation practices in resource constrained communities: Case study of Turkana District, Kenya. Journal of Community Health, 37(6), 1185–1191. https://doi.org/10.1007/s10900-012-9561-0
  • Khalil, B., Adamowski, J., Shabbir, A., Jang, C., Rojas, M., Reilly, K., & Ozga-Zielinski, B. (2015). A review: Dew water collection from radiative passive collectors to recent developments of active collectors. Sustainable Water Resources Management, 2(1), 71–86. https://doi.org/10.1007/s40899-015-0038-z
  • Kim, H., Rao, S. R., Kapustin, E. A., Zhao, L., Yang, S., Yaghi, O. M., & Wang, E. N. (2018). Adsorption-based atmospheric water harvesting device for arid climates. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-03162-7
  • Klemm, O., Schemenauer, R. S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., van Heerden, J., Reinhard, D., Gherezghiher, T., Olivier, J., Osses, P., Sarsour, J., Frost, E., Estrela, M. J., Valiente, J. A., & Fessehaye, G. M. (2012). Fog as a fresh-water resource: Overview and perspectives. AMBIO, 41(3), 221–234. https://doi.org/10.1007/s13280-012-0247-8
  • Klug, T., Shields, K. F., Cronk, R., Kelly, E., Behnke, N., Lee, K., & Bartram, J. (2017). Water system hardware and management rehabilitation: Qualitative evidence from Ghana, Kenya, and Zambia. International Journal of Hygiene and Environmental Health, 220(3), 531–538.https://doi.org/10.1016/j.ijheh.2017.02.009
  • Koolwal, G., & van de Walle, D. (2013). Access to water, women’s work, and child outcomes. Economic Development and Cultural Change, 61(2), 369–405. https://doi.org/10.1086/668280
  • Koschikowski, J., Wieghaus, M., Rommel, M., Ortin, V. S., Suarez, B. P., & Betancort Rodríguez, J. R. (2009). Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination, 248(1–3), 125–131. https://doi.org/10.1016/j.desal.2008.05.047
  • Kumar, P. M., Arunthathi, S., Jeevan Prasanth, S., Aswin, T., Anish Antony, A., Daniel, D., Mohankumar, D., & Nikhil Babu, P. (2021). Investigation on a desiccant based solar water recuperator for generating water from atmospheric air. Materials Today: Proceedings, 45, 7881–7884. https://doi.org/10.1016/j.matpr.2020.12.506
  • Kumar, S., & Tiwari, G. N. (2009). Life cycle cost analysis of single slope hybrid (PV/T) active solar still. Applied Energy, 86(10), 1995–2004. https://doi.org/10.1016/j.apenergy.2009.03.005
  • Kumar, S., Tiwari, G. N., & Singh, H. N. (2000). Annual performance of an active solar distillation system. Desalination, 127(1), 79–88. https://doi.org/10.1016/s0011-9164(99)00194-0
  • Kumar, M., & Yadav, A. (2015). Experimental investigation of solar powered water production from atmospheric air by using composite desiccant material CaCl2/saw wood. Desalination, 367, 216–222. https://doi.org/10.1016/j.desal.2015.04.009
  • Kumar, M., & Yadav, A. (2016). Comparative study of solar-powered water production from atmospheric air using different desiccant materials. International Journal of Sustainable Engineering, 9(6), 390–400. https://doi.org/10.1080/19397038.2016.1200692
  • Kumar, M., Yadav, A., & Mehla, N. (2017). Water generation from atmospheric air by using different composite desiccant materials. International Journal of Ambient Energy, 40(4), 343–349. https://doi.org/10.1080/01430750.2017.1392350
  • Kwangware, J., Mayo, A., & Hoko, Z. (2014). Sustainability of donor-funded rural water supply and sanitation projects in Mbire district, Zimbabwe. Physics and Chemistry of the Earth, 76–78, 134–139. https://doi.org/10.1016/j.pce.2014.10.001
  • LaPotin, A., Zhong, Y., Zhang, L., Zhao, L., Leroy, A., Kim, H., Rao, S. R., & Wang, E. N. (2021). Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule, 5(1), 166–182. https://doi.org/10.1016/j.joule.2020.09.008
  • Lekouch, I., Lekouch, K., Muselli, M., Mongruel, A., Kabbachi, B., & Beysens, D. (2012). Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks. Journal of Hydrology, 448–449, 60–72. https://doi.org/10.1016/j.jhydrol.2012.04.004
  • Libey, A., Adank, M., & Thomas, E. (2020). Who pays for water? Comparing life cycle costs of water services among several low, medium and high-income utilities. World Development, 136, 105155. https://doi.org/10.1016/j.worlddev.2020.105155
  • Liponi, A., Tempesti, C., Baccioli, A., & Ferrari, L. (2020). Small-scale desalination plant driven by solar energy for isolated communities. Energies, 13(15), 3864. https://doi.org/10.3390/en13153864
  • Li, R., Shi, Y., Wu, M., Hong, S., & Wang, P. (2020). Improving atmospheric water production yield: Enabling multiple water harvesting cycles with nano sorbent. Nano Energy, 67, 104255https://doi.org/10.1016/j.nanoen.2019.104255
  • Liu, S., He, W., Hu, D., Lv, S., Chen, D., Wu, X., Xu, F., & Li, S. (2017). Experimental analysis of a portable atmospheric water generator by thermoelectric cooling method. Energy Procedia, 142, 1609–1614. https://doi.org/10.1016/j.egypro.2017.12.538
  • Li, R., Wu, M., Aleid, S., Zhang, C., Wang, W., & Wang, P. (2022). An integrated solar-driven system produces electricity with fresh water and crops in arid regions. Cell Reports Physical Science, 3(3), 100781. https://doi.org/10.1016/j.xcrp.2022.100781
  • Loo, S.-L., Fane, A. G., Krantz, W. B., & Lim, T.-T. (2012). Emergency water supply: A review of potential technologies and selection criteria. Water Research, 46(10), 3125–3151. https://doi.org/10.1016/j.watres.2012.03.030
  • Lord, J., Thomas, A., Treat, N., Forkin, M., Bain, R., Dulac, P., Behroozi, C. H., Mamutov, T., Fongheiser, J., Kobilansky, N., Washburn, S., Truesdell, C., Lee, C., & Schmaelzle, P. H. (2021). Global potential for harvesting drinking water from air using solar energy. Nature, 598(7882), 611–617. https://doi.org/10.1038/s41586-021-03900-w
  • Lucier, K. J., & Qadir, M. (2018). Gender and community mainstreaming in fog water collection systems. Water, 10(10), 1472.
  • Maestre-Valero, J. F., Martínez-Alvarez, V., Baille, A., Martín-Górriz, B., & Gallego-Elvira, B. (2011). Comparative analysis of two polyethylene foil materials for dew harvesting in a semi-arid climate. Journal of Hydrology, 410(1–2), 84–91. https://doi.org/10.1016/j.jhydrol.2011.09.012
  • Majuru, B., Suhrcke, M., & Hunter, P. (2016). How do households respond to unreliable water supplies? A systematic review. International Journal of Environmental Research and Public Health, 13(12), 1222. https://doi.org/10.3390/ijerph13121222
  • Mashaly, A. F., Alazba, A. A., & Al-Awaadh, A. M. (2015). Assessing the performance of solar desalination system to approach near-ZLD under hyper arid environment. Desalination and Water Treatment, 57(26), 12019–12036. https://doi.org/10.1080/19443994.2015.1048738
  • Masuda, H., Okitasari, M., Morita, K., Katramiz, T., Shimizu, H., Kawakubo, S., & Kataoka, Y. (2021). SDGs mainstreaming at the local level: Case studies from Japan. Sustainability Science, 16(5), 1539–1562. https://doi.org/10.1007/s11625-021-00977-0
  • Mathew, K., Dallas, S., Ho, G. E., & Anda, M. (2000). A solar-powered village water supply system from brackish water. World Renewable Energy Congress VI, 2061–2064. https://doi.org/10.1016/b978-008043865-8/50439-6
  • McEvoy, J. (2014). Desalination and water security: The promise and perils of a technological fix to the water crisis in Baja California Sur, Mexico. Water Alternatives, 7, 518–541. https://www.water-alternatives.org/index.php/alldoc/articles/vol7/v7issue2/262-a7-3-5/file
  • Mendoza-Escamilla, J., Hernandez-Rangel, F., Cruz-Alcántar, P., Saavedra-Leos, M., Morales-Morales, J., Figueroa-Diaz, R., Valencia-Castillo, C., & Martinez-Lopez, F. (2019). A feasibility study on the use of an atmospheric water generator (AWG) for the harvesting of fresh water in a semi-arid region affected by mining pollution. Applied Sciences, 9(16), 3278. https://doi.org/10.3390/app9163278
  • Moallemi, E. A., Malekpour, S., Hadjikakou, M., Raven, R., Szetey, K., Ningrum, D., Dhiaulhaq, A., & Bryan, B. A. (2020). Achieving the sustainable development goals requires transdisciplinary innovation at the local scale. One Earth, 3(3), 300–313. https://doi.org/10.1007/s43615-021-00018-z
  • Morris, J. C., Georgiou, I., Guenther, E., & Caucci, S. (2021). Barriers in implementation of wastewater reuse: Identifying the way forward in closing the loop. Circular Economy and Sustainability, 1(1), 413–433. https://doi.org/10.1007/s43615-021-00018-z
  • Muselli, M., Beysens, D., Mileta, M., & Milimouk, I. (2009). Dew and rain water collection in the Dalmatian Coast, Croatia. Atmospheric Research, 92(4), 455–463. https://doi.org/10.1016/j.atmosres.2009.01.004
  • Mvulirwenande, S., & Wehn, U. (2020). Dynamics of water innovation in African cities: Insights from Kenya, Ghana and Mozambique. Environmental Science & Policy, 114, 96–108. https://doi.org/10.1016/j.envsci.2020.07.024
  • Nandakumar, D. K., Zhang, Y., Ravi, S. K., Guo, N., Zhang, C., & Tan, S. C. (2019). Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Advanced Materials, 31(10), 1806730. https://doi.org/10.1002/adma.201806730
  • Narayan, G. P., Sharqawy, M. H., Summers, E. K., Lienhard, J. H., Zubair, S. M., & Antar, M. A. (2010). The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renewable and Sustainable Energy Reviews, 14(4), 1187–1201. https://doi.org/10.1016/j.rser.2009.11.014
  • Nastar, M., Abbas, S., Aponte Rivero, C., Jenkins, S., & Kooy, M. (2018). The emancipatory promise of participatory water governance for the urban poor: Reflections on the transition management approach in the cities of Dodowa, Ghana and Arusha, Tanzania. African Studies, 77(4), 504–525. https://doi.org/10.1080/00020184.2018.1459287
  • Nelson, S., Drabarek, D., Jenkins, A., Negin, J., & Abimbola, S. (2021). How community participation in water and sanitation interventions impacts human health, WASH infrastructure and service longevity in low-income and middle-income countries: A realist review. BMJ Open, 11(12), e053320. https://doi.org/10.1136/bmjopen-2021-053320
  • Nilsson, M., & Persson, Å. (2017). Policy note: Lessons from environmental policy integration for the implementation of the 2030 Agenda. Environmental Science & Policy, 78, 36–39. https://doi.org/10.1016/j.envsci.2017.09.003
  • Nyam, Y. S., Kotir, J. H., Jordaan, A. J., Ogundeji, A. A., & Turton, A. R. (2020). Drivers of change in sustainable water management and agricultural development in South Africa: A participatory approach. Sustainable Water Resources Management, 6(4). https://doi.org/10.1007/s40899-020-00420-9
  • Nyanchoka, L., Tudur-Smith, C., Thu, V. N., Iversen, V., Tricco, A. C., & Porcher, R. (2019). A scoping review describes methods used to identify, prioritize and display gaps in health research. Journal of Clinical Epidemiology, 109, 99–110. https://doi.org/10.1007/s40899-020-00420-9
  • O’Donovan, J., Thompson, A., Stiles, C., Opintan, J. A., Kabali, K., Willis, I., Mutimba, M. E., Nalweyiso, E., Mugabi, H., Kateete, D. P., Ameniko, M., Govina, G., Weberman, R., O’Neil, E., Winters, N., & Mutreja, A. (2020). Participatory approaches, local stakeholders and cultural relevance facilitate an impactful community-based project in Uganda. Health Promotion International, 35(6), 1353–1368. https://doi.org/10.1093/heapro/daz127
  • OECD. (2018). OECD water governance indicator framework. https://www.oecd.org/regional/OECD-Water-Governance-Indicator-Framework.pdf
  • Omara, Z. M., Kabeel, A. E., & Younes, M. M. (2014). Enhancing the stepped solar still performnce using internal and external reflectors. Energy Conversion and Management, 78, 876–881. https://doi.org/10.1016/j.enconman.2013.07.092
  • Opare, S. (2011). Rainwater harvesting: An option for sustainable rural water supply in Ghana. GeoJournal, 77(5), 695–705. https://doi.org/10.1007/s10708-011-9418-6
  • Orfi, J., Galanis, N., & Laplante, M. (2007). Air humidification–dehumidification for a water desalination system using solar energy. Desalination, 203(1–3), 471–481. https://doi.org/10.1016/j.desal.2006.04.022
  • Park, H., Haechler, I., Schnoering, G., Ponte, M. D., Schutzius, T. M., & Poulikakos, D. (2022). Enhanced atmospheric water harvesting with sunlight-activated sorption ratcheting. ACS Applied Materials & Interfaces, 14(1), 2237–2245. https://doi.org/10.1021/acsami.1c18852
  • Phadatare, M. K., & Verma, S. K. (2007). Influence of water depth on internal heat and mass transfer in a plastic solar still. Desalination, 217(1–3), 267–275. https://doi.org/10.1016/j.desal.2007.03.006
  • Pontious, K., Weidner, B., Guerin, N., Dates, A., Pierrakos, O., & Altaii, K. (2016). Design of an atmospheric water generator: Harvesting water out of thin air. 2016 IEEE Systems and Information Engineering Design Symposium (SIEDS). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/sieds.2016.7489327
  • Qadir, M., Jiménez, G., Farnum, R., Dodson, L., & Smakhtin, V. (2018). Fog water collection: Challenges beyond technology. Water, 10(4), 372. https://doi.org/10.3390/w10040372
  • Qadir, M., Jiménez, G. C., Farnum, R. L., & Trautwein, P. (2021). Research history and functional systems of fog water harvesting. Frontiers in Water, 3. https://doi.org/10.3389/frwa.2021.675269
  • Quenchsea. (n.d.). How quenchsea works. Retrieved December 20, 2022, from https://www.quenchsea.world/pages/technology
  • Rahbar, N., & Esfahani, J. A. (2012). Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module. Desalination, 284, 55–61. https://doi.org/10.1016/j.desal.2011.08.036
  • Rahbar, N., Esfahani, J. A., & Asadi, A. (2016). An experimental investigation on productivity and performance of a new improved design portable asymmetrical solar still utilizing thermoelectric modules. Energy Conversion and Management, 118, 55–62. https://doi.org/10.1016/j.enconman.2016.03.052
  • Rahimi-Ahar, Z., Hatamipour, M. S., & Ahar, L. R. (2020). Air humidification–dehumidification process for desalination: A review. Progress in Energy and Combustion Science, 80, 100850. https://doi.org/10.1016/j.pecs.2020.100850
  • Rainmaker. (n.d.). Air-to-water: Creating fresh water where none exist. Retrieved December 20, 2022, from https://rainmakerww.com/technology-air-to-water/
  • Rajaseenivasan, T., Murugavel, K. K., Elango, T., & Hansen, R. S. (2013). A review of different methods to enhance the productivity of the multi-effect solar still. Renewable and Sustainable Energy Reviews, 17, 248–259. https://doi.org/10.1016/j.rser.2012.09.035c
  • Richards, B. S., & Schäfer, A. I. (2003). Photovoltaic-powered desalination system for remote Australian communities. Renewable Energy, 28(13), 2013–2022. https://doi.org/10.1016/s0960-1481(03)00081-8
  • Robinson, R., Ho, G., & Mathew, K. (1992). Development of a reliable low-cost reverse osmosis desalination unit for remote communities. Desalination, 86(1), 9–26. https://doi.org/10.2166/wrd.2020.048
  • Runze, D., Qingfen, M., Hui, L., Gaoping, W., Wei, Y., Guangfu, C., & Yifan, C. (2020). Experimental investigations on a portable atmospheric water generator for maritime rescue. Journal of Water Reuse and Desalination, 10(1), 30–44. https://doi.org/10.2166/wrd.2020.048
  • RussKap. (n.d.). Disaster relief. Retrieved December 20, 2022, from https://russkapwater.com/pages/disaster-relief
  • Sadineni, S. B., Hurt, R., Halford, C. K., & Boehm, R. F. (2008). Theory and experimental investigation of a weir-type inclined solar still. Energy, 33(1), 71–80. https://doi.org/10.1016/j.energy.2007.08.003
  • Saidam, M., Epp, C., & Papapetrou, M. (2009). Appraisal of institutional and policy framework conditions for the use of autonomous desalination units in Jordan. Desalination and Water Treatment, 5(1–3), 111–118. https://doi.org/10.5004/dwt.2009.571
  • Sathyamurthy, R., El-Agouz, S. A., & Dharmaraj, V. (2015). Experimental analysis of a portable solar still with evaporation and condensation chambers. Desalination, 367, 180–185. https://doi.org/10.1016/j.desal.2015.04.012
  • Shafeian, N., Ranjbar, A. A., & Gorji, T. B. (2022). Progress in atmospheric water generation systems: A review. Renewable and Sustainable Energy Reviews, 161, 112325. https://doi.org/10.1016/j.rser.2022.112325
  • Shalaby, S. M., El-Bialy, E., & El-Sebaii, A. A. (2016). An experimental investigation of a v-corrugated absorber single-basin solar still using PCM. Desalination, 398, 247–255. https://doi.org/10.1016/j.desal.2016.07.042
  • Shan, H., Li, C., Chen, Z., Ying, W., Poredoš, P., Ye, Z., Pan, Q., Wang, J., & Wang, R. (2022). Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate. Nature Communications, 13(1). https://doi.org/10.1016/j.desal.2016.07.042
  • Shatat, M., & Riffat, S. B. (2012). Water desalination technologies utilizing conventional and renewable energy sources. International Journal of Low-Carbon Technologies, 9(1), 1–19. https://doi.org/10.1093/ijlct/cts025
  • Shimamura, Y., Shimizutani, S., Taguchi, S., & Yamada, H. (2022). The impact of better access to improved water sources on health, schooling, and water collection of girls and boys in Rural Zambia. The Journal of Development Studies, 58(9), 1750–1771. https://doi.org/10.1080/00220388.2022.2048650
  • Shourideh, A. H., Bou Ajram, W., Al Lami, J., Haggag, S., & Mansouri, A. (2018). A comprehensive study of an atmospheric water generator using Peltier effect. Thermal Science and Engineering Progress, 6, 14–26. https://doi.org/10.1016/j.tsep.2018.02.015
  • Silvestri, G., Wittmayer, J., Schipper, K., Kulabako, R., Oduro-Kwarteng, S., Nyenje, P., Komakech, H., & van Raak, R. (2018). Transition management for improving the sustainability of WASH services in informal settlements in Sub-Saharan Africa – An exploration. Sustainability, 10(11), 4052. https://doi.org/10.3390/su10114052
  • Source. (n.d.-a). Clean, drought-resistant drinking water to the Zilla Parishad primary school. Retrieved December 20, 2022, from https://www.source.co/resources/case-studies/zilla-parishad-primary-school-kolpimpri/
  • Source. (n.d.-b). Advancing a commitment to a healthy, resilient, and sustainable lifestyle in Whisper Valley. Retrieved December 20, 2022, from https://www.source.co/resources/case-studies/whisper-valley/
  • Spectra Watermakers. (n.d.). Village water supplies. Retrieved December 20, 2022, from https://www.spectrawatermakers.com/us/us/about/projects/village-water-supplies
  • Srivastava, S., & Yadav, A. (2018). Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power. Solar Energy, 169, 302–315. https://doi.org/10.1016/j.solener.2018.03.089
  • Stefanelli, R. D., Castleden, H., Harper, S. L., Martin, D., Cunsolo, A., & Hart, C. (2017). Experiences with integrative indigenous and western knowledge in water research and management: A systematic realist review of literature from Canada, Australia, New Zealand, and the United States. Environmental Reviews, 25(3), 323–333. https://doi.org/10.1139/er-2016-0114
  • Su, H., Krol, M. S., & Hogeboom, R. J. (2022). The role of context in identifying linkages between SDG 2 (food) and SDG 6 (water). Sustainability Science, 17(4), 1605–1618. https://doi.org/10.1007/s11625-022-01158-3
  • Talaat, M. A., Awad, M. M., Zeidan, E. B., & Hamed, A. M. (2018). Solar-powered portable apparatus for extracting water from air using desiccant solution. Renewable Energy, 119, 662–674. https://doi.org/10.1016/j.renene.2017.12.050
  • Tanaka, H., & Nakatake, Y. (2009a). Increase in distillate productivity by inclining the flat plate external reflector of a tilted-wick solar still in winter. Solar Energy, 83(6), 785–789. https://doi.org/10.1016/j.solener.2008.12.001
  • Tanaka, H., & Nakatake, Y. (2009b). One step azimuth tracking tilted-wick solar still with a vertical flat plate reflector. Desalination, 235(1–3), 1–8. https://doi.org/10.1016/j.desal.2008.01.011
  • Tantoh, H. B., Simatele, D. M., Ebhuoma, E., Donkor, K., & McKay, T. J. M. (2019). Towards a pro-community-based water resource management system in Northwest Cameroon: Practical evidence and lessons of best practices. GeoJournal, 86(2), 943–961. https://doi.org/10.1007/s10708-019-10085-3
  • Tsekleves, E., Fonseca Braga, M., Abonge, C., Santana, M., Pickup, R., Yongabi Anchang, K., de Pippo, T., Semple, K., & Roy, M. (2022). Community engagement in water, sanitation and hygiene in sub-Saharan Africa: Does it WASH? Journal of Water, Sanitation and Hygiene for Development, 12(2), 143–156. https://doi.org/10.2166/washdev.2022.136
  • Tu, Y., Wang, R., Zhang, Y., & Wang, J. (2018). Progress and expectation of atmospheric water harvesting. Joule, 2(8), 1452–1475. https://doi.org/10.1016/j.joule.2018.07.015
  • UN-Water. (2016). Water and sanitation interlinkages across the 2030 agenda for sustainable development. https://www.unwater.org/sites/default/files/app/uploads/2016/08/Water-and-Sanitation-Interlinkages.pdf
  • UN-Water. (2020). UN-Water analytical brief on unconventional water resources. https://www.unwater.org/sites/default/files/app/uploads/2020/08/UN-Water-Analytical-Brief-on-Unconventional-Water-Resources.pdf
  • Velmurugan, V., Deenadayalan, C. K., Vinod, H., & Srithar, K. (2008). Desalination of effluent using fin type solar still. Energy, 33(11), 1719–1727. https://doi.org/10.1016/j.energy.2008.07.001
  • Velmurugan, V., & Srithar, K. (2007). Solar stills integrated with a mini solar pond – Analytical simulation and experimental validation. Desalination, 216(1–3), 232–241. https://doi.org/10.1016/j.desal.2006.12.012
  • Velmurugan, V., & Srithar, K. (2011). Performance analysis of solar stills based on various factors affecting the productivity – A review. Renewable and Sustainable Energy Reviews, 15(2), 1294–1304. https://doi.org/10.1016/j.rser.2010.10.012
  • Vo Nguyen Xuan, Q., Tuan, D. V., Huy, N. N., & Phu, V. L. (2021). Design and performance of small-scale reverse osmosis desalination for brackish water powered by photovoltaic units: A review. IOP Conference Series: Earth and Environmental Science, 652(1), 012024. https://doi.org/10.1088/1755-1315/652/1/012024
  • Wang, Y., Danook, S. H., Al-Bonsrulah, H. A. Z., Veeman, D., & Wang, F. (2022). A recent and systematic review on water extraction from the atmosphere for arid zones. Energies, 15(2), 421. https://doi.org/10.3390/en15020421
  • Wang, W., Shi, Y., Zhang, C., Li, R., Wu, M., Zhuo, S., Aleid, S., & Wang, P. (2021). Solar seawater distillation by flexible and fully passive multistage membrane distillation. Nano Letters, 21(12), 5068–5074. https://doi.org/10.1021/acs.nanolett.1c00910
  • Wassouf, P., Peska, T., Singh, R., & Akbarzadeh, A. (2011). Novel and low cost designs of portable solar stills. Desalination, 276(1–3), 294–302. https://doi.org/10.1016/j.desal.2011.03.069
  • Watergen. (n.d.-a). Watergen brings water from air solution to Costa Rica. Retrieved December 20, 2022, from https://www.watergen.com/case-studies/costa-rica-may-2019/
  • Watergen. (n.d.-b). Watergen devices incorporated into Cambodian’s National health structure. Retrieved December 20, 2022, from https://www.watergen.com/case-studies/connaught-place-new-delhi-india-aug-2017/
  • Watergen. (n.d.-c). Watergen helps Gaza deal with its growing water problem. Retrieved December 20, 2022, from https://www.watergen.com/case-studies/costa-rica-may-2019/
  • Watergen. (n.d.-d). Watergen works with American red cross and FEMA in United States. Retrieved December 20, 2022, from https://www.watergen.com/case-studies/humanitarian-and-disaster-relief-aid-usa-2017-2018/
  • Wehn, U., & Montalvo, C. (2018). Exploring the dynamics of water innovation: Foundations for water innovation studies. Journal of Cleaner Production, 171, S1–S19. https://doi.org/10.1016/j.jclepro.2017.10.118
  • Werner, M., & Schäfer, A. I. (2007). Social aspects of a solar-powered desalination unit for remote Australian communities. Desalination, 203(1–3), 75–393. https://doi.org/10.1016/j.desal.2006.05.008
  • WHO & UNICEF. (2021). Progress on household drinking water, sanitation and hygiene 2000–2020: Five years into the SDGs. https://washdata.org/sites/default/files/2022-01/jmp-2021-wash-households-highlights.pdf
  • William, G. E., Mohamed, M. H., & Fatouh, M. (2015). Desiccant system for water production from humid air using solar energy. Energy, 90, 1707–1720. https://doi.org/10.1016/j.energy.2015.06.125
  • Winter, J. C., Darmstadt, G. L., & Davis, J. (2021). The role of piped water supplies in advancing health, economic development, and gender equality in rural communities. Social Science & Medicine, 270, 113599. https://doi.org/10.1016/j.socscimed.2020.113599
  • Wodon, Q., & Blackdenm, C. M. (2006). Gender, time use, and poverty in Sub-Saharan Africa. World Bank Working Papers. https://doi.org/10.1596/978-0-8213-6561-8
  • Wolf, J., Hubbard, S., Brauer, M., Ambelu, A., Arnold, B. F., Bain, R., Bauza, V., Brown, J., Caruso, B. A., Clasen, T., Colford, J. M., Freeman, M. C., Gordon, B., Johnston, R. B., Mertens, A., Prüss-Ustün, A., Ross, I., Stanaway, J., Zhao, J. T., … Boisson, S. (2022). Effectiveness of interventions to improve drinking water, sanitation, and handwashing with soap on risk of diarrhoeal disease in children in low-income and middle-income settings: A systematic review and meta-analysis. The Lancet, 400(10345), 48–59. https://doi.org/10.1016/s0140-6736(22)00937-0
  • World Bank. (2019).The role of desalination in an increasingly water-scarce world. https://openknowledge.worldbank.org/bitstream/handle/10986/31416/W18059.pdf?sequence=5&isAllowed=y
  • World Bank. (2022). Water supply and sanitation policies, institutions, and regulation: Adapting to a changing world: Synthesis report http://documents.worldbank.org/curated/en/099015208242275252/P165586002283004a086e105a00d8430696
  • Xiao, G., Wang, X., Ni, M., Wang, F., Zhu, W., Luo, Z., & Cen, K.2013. A review on solar stills for brine desalination. Applied Energy, 103, 642–652. https://doi.org/10.1016/j.apenergy.2012.10.029
  • Xu, J., Li, T., Chao, J., Wu, S., Yan, T., Li, W., Cao, B., & Wang, R. (2020). Efficient solar‐driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt. Angewandte Chemie International Edition, 59(13), 5202–5210. https://doi.org/10.1002/anie.201915170
  • Yang, K., Pan, T., Pinnau, I., Shi, Z., & Han, Y. (2020). Simultaneous generation of atmospheric water and electricity using a hygroscopic aerogel with fast sorption kinetics. Nano Energy, 78, 105326. https://doi.org/10.3390/w11102168
  • Yannopoulos, S., Giannopoulou, I., & Kaiafa-Saropoulou, M. (2019). Investigation of the current situation and prospects for the development of rainwater harvesting as a tool to confront water scarcity worldwide. Water, 11(10), 2168. https://doi.org/10.3390/w11102168
  • Yao, H., Zhang, P., Huang, Y., Cheng, H., Li, C., & Qu, L. (2019). Highly efficient clean water production from contaminated air with a wide humidity range. Advanced Materials, 32(6), 1905875. https://doi.org/10.1002/adma.201905875
  • Yildirim, C., Soylu, S. K., Atmaca, İ., & Solmuş, İ. (2014). Experimental investigation of a portable desalination unit configured by a thermoelectric cooler. Energy Conversion and Management, 85, 140–145. https://doi.org/10.1016/j.enconman.2014.05.071
  • Yoon, J., Kwon, H. J., Kang, S., Brack, E., & Han, J. (2022). Portable seawater desalination system for generating drinkable water in remote locations. Environmental Science & Technology, 56(10), 6733–6743. https://doi.org/10.1021/acs.est.1c08466
  • Zhou, X., Lu, H., Zhao, F., & Yu, G. (2020). Atmospheric water harvesting: A review of material and structural designs. ACS Materials Letters, 2(7), 671–684. https://doi.org/10.1021/acsmaterialslett.0c00130

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.