398
Views
13
CrossRef citations to date
0
Altmetric
Articles

Experimental influence of pH on the early life-stages of sea urchins I: different rates of introduction give rise to different responses

, , &
Pages 148-159 | Received 02 Aug 2013, Accepted 12 Dec 2013, Published online: 09 Jan 2014

References

  • Abramoff MD, Magelhaes PJ, Ram SJ. 2004. Image processing with image. Journal of Biophotonics International. 11:36–42.
  • Anger K. 1996. Salinity tolerance of the larvae and first juveniles of a semiterrestrial grapsid crab, Armases miersii (Rathbun). Journal of experimental Marine Biology and Ecology. 202:205–223.
  • Barry JP, Tyrell T, Hansson L, Plattner G, Gattuso J. 2010. Atmospheric CO2 targets for ocean acidification pertubation experiments. Luxembourg: Publications Office of the European Union.
  • Byrne M, Ho M, Wong E, Soars NA, Selvakumaraswamy P, Shepard-Brennand H, Dworjanyn SA, Davis AR. 2011. Unshelled abalone and corrupted urchins: development of marine calcifiers in a changing ocean. Proceedings of the Royal Society of London Series B – Biological Society. 278:2376–2383.
  • Caldeira K, Wickett ME. 2003. Oceanography: anthropogenic carbon and ocean pH. Nature. 425:365–365.
  • Caldeira K, Wickett ME. 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research 110:c09S04. doi:10.1029/2004JC002671
  • Caldwell GS, Fitzer S, Gillespie CS, Pickavance G, Turnbull E, Bentley MG. 2011. Ocean acidification takes sperm back in time. Invertebrate Reproduction and Development. 55:217–221.
  • Canadell JG, Le Quere C, Raupach MR, Field CB, Buitenhuis ET, Ciais P, Conway TJ, Gillett NP, Houghton RA, Marland G. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences. 104:18866–18870.
  • Crim RN, Sunday JM, Harley CDG. 2011. Elevated seawater CO2 concentrations impair larval development and reduce larval survival in endangered northern abalone (Haliotis kamtschatkana). Journal of Experimental Marine Biology and Ecology. 400:272–277.
  • Dam HG. 2013. Evolutionary adaptation of marine zooplankton to global change. Annual Review of Marine Science. 5:349–370.
  • Dickson AG, Millero FJ. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Research. 34:1733–1743.
  • Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science. 1:169–192.
  • Doo SS, Dworjanyn SA, Foo SA, Soars NA, Byrne M. 2011. Impacts of ocean acidification on development of the meroplanktonic larval stage of the sea urchin Centrostephanus rodgersii. ICES Journal of Marine Science69:460–464. doi: 10.1093/icesjms/fsr123
  • Dupont S, Dorey N, Stumpp M, Melzner F, Throndyke M. 2013. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Marine Biology. 160: 1835–1843. doi:10.1007/s00227-012-1921-x
  • Dupont S, Havenhand J, Thorndyke W, Peck LS, Thorndyke M. 2008. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology Progress Series. 373:285–294.
  • Dupont S, Thorndyke M. 2012. Relationship between CO2-driven changes in extracellular acid-base balance and cellular immune response in two polar echinoderm species. Journal of Experimental Marine Biology and Ecology. 424–425:32–37.
  • Fitzer SC, Caldwell GS, Close AJ, Clare AS, Upstill-Goddard RC, Bentley MG. 2012. Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. Journal of Experimental Marine Biology and Ecology. 418–419:30–36.
  • Gazeau F, Gattuso J-P, Dawber C, Pronker AE, Peene F, Peene J, Heip CHR, Middelburg JJ. 2010. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences. 7:2051–2060.
  • Guinotte JM, Fabry VJ. 2008. Ocean acidification and its potential effects on marine ecosystems. Annals of the New York Academy of Sciences. 1134:320–342.
  • Hinegardner RT. 1969. Growth and development of the laboratory cultured sea urchin. Biological Bulletin. 137:465–475.
  • Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA. 2001. Climate change 2001: the scientific basis. Cambridge: Cambridge University Press.
  • IPCC. 2013. Climate change 2013: the physical science basis. Summary for policymakers. Working Group I Contribution to the IPCC Fifth Assessment Report; [cited 2013 Nov 9]. Available from: http://www.ipcc.ch/
  • Kelly MS, Hunter AJ, Scholfield CL, McKenzie JD. 2000. Morphology and survivorship of larval Psammechinus miliaris (Gmelin) (Echinodermata: Echinoidea) in response to varying food quantity and quality. Aquaculture. 183:223–240.
  • Kurihara H. 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series. 373:275–284.
  • Kurihara H, Shimode S, Shirayama Y. 2004. Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. Journal of Oceanography. 60:743–750.
  • Kurihara H, Shirayama Y. 2004. Effects of increased atmospheric CO2 on sea urchin early development. Marine Ecology Progress Series. 274:161–169.
  • Kurihara H, Matsui M, Furukawa H, Hayashi M, Ishimatsu A. 2008. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. Journal of Experimental Marine Biology and Ecology. 367:41–46.
  • Lane CE, Mayes C, Druehl LD, Saunders GW. 2006. A multi-gene molecular investigation of the kelp (laminariales, phaeophyceae) supports substantial taxonomic re-organization1. Journal of Phycology. 42:493–512.
  • Levitan DR. 2006. The relationship between egg size and fertilization success in broadcast-spawning marine invertebrates. Integrative and Comparative Biology. 46:298–311.
  • Lewis E, Wallace DWR. 1998. Carbon dioxide information analysis center. Oak Ridge (TN): Oak Ridge National Laboratory, US Department of Energy.
  • Liu H, Kelly MS, Cook EJ, Black K, Orr H, Zhu JX, Dong SL. 2007. The effect of diet type on growth and fatty acid composition of the sea urchin larvae, II. Psammechinus miliaris (Gmelin). Aquaculture. 264:263–278.
  • Martin S, Richier S, Pedrotti ML, Dupont S, Castejon C, Gerakis Y, Kerros ME, Oberhansli F, Teyssie JL, Jeffree R, et al. 2011. Early development and molecular plasticity in the Mediterranean sea urchin Paracentrotus lividus exposed to CO2-driven acidification. Journal of Experimental Biology. 214:1357–1368.
  • Matranga V, Toia G, Bonaventura R, Müller WG. 2000. Cellular and biochemical responses to environmental and experimentally induced stress in sea urchin coelomocytes. Cell Stress Chaperon. 5:113–120.
  • McEdward LR. 1984. Morphometric and metabolic analysis of the growth and form of an echinopluteus. Journal of Experimental Marine Biology and Ecology. 82:259–287.
  • McEdward LR, Herrera JC. 1999. Body form and skeletal morphometrics during larval development of the sea urchin Lytechinus variegatus Lamarck. Journal of Experimental Marine Biology and Ecology. 232:151–176.
  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography. 18:897–907.
  • Miles H, Widdicombe S, Spicer JI, Hall-Spencer J. 2007. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Marine Pollution Bulletin. 54:89–96.
  • Miller AW, Reynolds AC, Sobrino C, Riedel GF. 2009. Shellfish face uncertain future in high Co2 world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS ONE. 4:e5661. doi:10.1371/journal.pone.0005661
  • Munday PL, Donelson JM, Dixson DL, Endo GK. 2009. Effects of ocean acidification on the early life history of a tropical marine fish. Proceedings of the Royal Society B: Biological Sciences. 276:3275–3283.
  • Nickell LA, Black KD, Hughes DJ, Overnell J, Brand T, Nickell TD, Breuer E, Martyn Harvey S. 2003. Bioturbation, sediment fluxes and benthic community structure around a salmon cage farm in Loch Creran, Scotland. Journal of Experimental Marine Biology and Ecology. 285–286:221–233.
  • O’Donnell MJ, Todgham AE, Sewell MA, Hammond LM, Ruggiero K, Fangue NA, Zippay ML, Hofmann GE. 2010. Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Marine Ecology Progress Series. 398:157–171.
  • Parker LM, Ross PM, O’Connor WA, Borysko L, Raftos DA, Pörtner H-O. 2012. Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology. 18:82–92.
  • Peck LS, Clark MS, Morley SA, Massey A, Rossetti H. 2009. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Functional Ecology. 23:248–256.
  • Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD, Jaris HK, LaVigne M, Lenz EA, Russell AD, Young MK, et al. 2013. Evolutionary change during experimental ocean acidification. Proceedings of the National Academy of Sciences. 110:6937–6942.
  • Riebesell U, Fabry VJ, Hansson L, Gattuso J-P, editors. 2010. Guide to best practices for ocean acidification research and data reporting. Luxembourg: Publications Office of the European Union; p. 260.
  • Ries JB, Cohen AL, McCorkle DC. 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology. 37:1131–1134.
  • Royal Society. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. London: Royal Society; p. 223.
  • Ruppert EE, Barnes RD. 1996. Invertebrate zoology. Fortsworth: Thomson Learning.
  • Sheppard-Brennand H, Soars N, Dworjanyn SA, Davis AR, Byrne M. 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE. 5:e11372. doi:10.1371/journal.pone.0011372
  • Sokal RR, Rohlf FJ. 1995. Biometry: the principles and practice of statistics in biological research. New York (NY): Freeman.
  • Spicer JI, Taylor AC, Hill AD. 1988. Acid-base status in the sea urchins Psammechinus miliaris and Echinus esculentus (Echinodermata: Echinoidea) during emersion. Marine Biology. 99:527–534.
  • Spicer JI, Widdicombe S, Needham HR, Berge JA. 2011. Impact of CO2-acidified seawater on the extracellular acid–base balance of the northern sea urchin Strongylocentrotus dröebachiensis. Journal of Experimental Marine Biology and Ecology. 407:19–25.
  • Stumpp M, Wren J, Melzner F, Thorndyke MC, Dupont ST. 2011. CO2 induced seawater acidification impacts sea urchin larval development I: elevated metabolic rates decrease scope for growth and induce developmental delay. Comparative Biochemistry and Physiology A: Moloecular and Integrative Physiology. 160:331–340.
  • Suckling CC. 2012. Calcified marine invertebrates: the effects of ocean acidification [Phd thesis]. Cambridge: University of Cambridge.
  • Suckling CC, Clark MS, Beveridge C, Brunner L, Hughes AD, Harper EM, Cook EJ, Davies AJ, Peck MS. Forthcoming. Experimental influence of pH on the early life-stages of sea urchins II: increasing parental exposure gives rise to different responses. Invertebrate Reproduction and. Development. doi:10.1080/07924259.2013.875951
  • Suckling CC, Symonds RC, Kelly MS, Young AJ. 2011. The effect of artificial diets on gonad colour and biomass in the edible sea urchin Psammechinus miliaris. Aquaculture. 318:335–342.
  • Symonds RS, Kelly MS, Suckling CC, Young AJ. 2009. Carotenoids in the gonad and gut of the edible sea urchin Psammechinus miliaris. Aquaculture. 288:120–125.
  • Talmage SC, Gobler CJ. 2010. Effects of past, present, and future ocean carbon dioxide concentrations on the growth and survival of larval shellfish. Proceedings of the National Academy of Sciences. 107: 17246–17251doi:10.1073/pnas.0913804107
  • Uthicke S, Soars N, Foo S, Byrne M. 2013. Effects of elevated CO2 and the effect of parent acclimation on development in the tropical Pacific sea urchin Echinometra mathaei. Marine Biology. 160:1913–1926. doi:10.1007/s00227-012-2023-5
  • Watson SA, Southgate PC, Tyler PA, Peck LS. 2009. Early larval development of the sydney rock oyster Saccostrea glomerata under near-future predictions of CO2-driven ocean acidification. Journal of Shellfish Research. 28:431–437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.