1,053
Views
4
CrossRef citations to date
0
Altmetric
Review Article

How to measure retinal microperfusion in patients with arterial hypertension

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 4-19 | Received 18 Jul 2020, Accepted 09 Sep 2020, Published online: 24 Sep 2020

References

  • Zhou B, Bentham J, Di Cesare M, et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet. 2017;389:37–55.
  • Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev. 2017;03:7.
  • Kohara K, Hiwada K. End-organ damage in essential hypertension in the elderly. J Hum Hypertens. 1995;9:717–721.
  • Mancia G, Frattola A, Groppelli A, et al. Blood pressure reduction and end-organ damage in hypertension. J Hypertens Suppl. 1994;12:S35–S42.
  • Perloff D. Retrospective and prospective research on hypertension-related end-organ damage. J Cardiovasc Pharmacol. 1994;24:S1–S5.
  • Laurent S, Briet M, Boutouyrie P. Large and small artery cross-talk and recent morbidity-mortality trials in hypertension. Hypertension. 2009;54:388–392.
  • Schmieder RE. End organ damage in hypertension. Dtsch Arztebl Int. 2010;107:866–873.
  • Schiffrin EL, Hayoz D. How to assess vascular remodelling in small and medium-sized muscular arteries in humans. J Hypertens. 1997;15:571–584.
  • Rizzoni D, Agabiti Rosei C, De Ciuceis C, et al. New methods to study the microcirculation. Am J Hypertens. 2018;31:265–273.
  • Mancia G, Fagard R, Narkiewicz K, et al. 2013 Practice guidelines for the management of arterial hypertension of the European Society ofHypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESCTask Force for the Management of Arterial Hypertension. J. Hypertens. 2013;31:1925–1938.
  • Lee WH, Park JH, Won Y, et al. Retinal microvascular change in hypertension as measured by optical coherence tomography angiography. Sci Rep. 2019;9:156.
  • Dąbrowska E, Harazny JM, Miszkowska-Nagórna E, et al. Lumen narrowing and increased wall to lumen ratio of retinal microcirculation are valuable biomarkers of hypertension-mediated cardiac damage. Blood Press. 2019. Forthcoming.
  • Dąbrowska E, Harazny JM, Miszkowska-Nagórna E, et al. Aortic stiffness is not only associated with structural but also functional parameters of retinal microcirculation. Microvasc Res. 2020;129:103974.
  • Dąbrowska EE, Harazny JM, Wolf J, et al. The eye – a window to cardiovascular diseases. Arter Hypertens. 2020;24:56–60.
  • Levin L, Nilsson S, Ver Hoeve J, et al. Adler’s physiology of the eye. 11th ed. Edinburg (UK): Elsevier Saunders; 2011.
  • Wu DM, Kawamura H, Sakagami K, et al. Cholinergic regulation of pericyte-containing retinal microvessels. Am J Physiol Heart Circ Physiol. 2003;284:H2083–H2090.
  • Hardarson SH. Retinal oximetry. Acta Ophthalmol. 2013;91:1–47.
  • Michelson G, Scibor M. Intravascular oxygen saturation in retinal vessels in normal subjects and open-angle glaucoma subjects. Acta Ophthalmol Scand. 2006;84:289–295.
  • Januszewicz A, Więcek A, Hoffman P, et al. Nadciśnienie tętnicze: współczesna diagnostyka i podstawy terapii. 1st ed. Cracow (Poland): Medycyna Praktyczna; 2014.
  • Hughes AD, Falaschetti E, Witt N, et al. Association of retinopathy and retinal microvascular abnormalities with stroke and cerebrovascular disease. Stroke. 2016;47:2862–2864.
  • Yatsuya H, Folsom AR, Wong TY, et al.; ARIC Study Investigators. Retinal microvascular abnormalities and risk of lacunar stroke: Atherosclerosis Risk in Communities Study. Stroke. 2010;41:1349–1355.
  • Doubal FN, MacGillivray TJ, Patton N, et al. Fractal analysis of retinal vessels suggests that a distinct vasculopathy causes lacunar stroke. Neurology. 2010;74:1102–1107.
  • Baker ML, Hand PJ, Wang JJ, et al. Retinal signs and stroke: revisiting the link between the eye and brain. Stroke. 2008;39:1371–1379.
  • Wong TY, Klein R, Couper DJ, et al. Retinal microvascular abnormalities and incident stroke: The Atherosclerosis Risk in Communities Study. Lancet. 2001;358:1134–1140.
  • Liew G, Wang JJ. Retinal vascular signs: a window to the heart? Rev Española Cardiol English Ed. 2011;64:515–521.
  • Krill AE. Fluoreszenzangiographie der retina. Lehrbuch und atlas. Am J Ophthalmol. 1969;67:160–161.
  • Hodge JV, Clemett RS. Improved method for fluorescence angiography of the retina. Am J Ophthalmol. 1966;61:1400–1404.
  • Jung F, Kiesewetter H, Körber N, et al. Quantification of characteristic blood-flow parameters in the vessels of the retina with a picture analysis system for video-fluorescence angiograms: initial findings. Graefes Arch Clin Exp Ophthalmol. 1983;221:133–136.
  • Wolf S, Jung F, Kiesewetter H, et al. Video fluorescein angiography: Method and clinical application. Graefes Arch Clin Exp Ophthalmol. 1989;227:145–151.
  • Wei X, Balne PK, Meissner KE, et al. Assessment of flow dynamics in retinal and choroidal microcirculation. Surv Ophthalmol. 2018;63:646–664.
  • Khoobehi B, Peyman GA. Fluorescent labeling of blood cells for evaluation of retinal and choroidal circulation. Ophthalmic Surg Lasers. 1999;30:140–145.
  • Riva CE, Sinclair SH, Grunwald JE. Autoregulation of retinal circulation in response to decrease of perfusion pressure. Investig Ophthalmol Vis Sci. 1981;21:34–38.
  • Riva CE, Petrig B. Blue field entoptic phenomenon and blood velocity in the retinal capillaries. J Opt Soc Am. 1980;70:1234–1238.
  • Loebl M, Riva CE. Macular Circulation and the Flying Corpuscles Phenomenon. Ophthalmology. 1978;85:911–917.
  • Shinohara S, Mochizuki A, Yoshida H, et al. Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode. Appl Opt. 1986;25:1417.
  • Riva CE, Feke GT, Eberli B, et al. Bidirectional LDV system for absolute measurement of blood speed in retinal vessels. Appl Opt. 1979;18:2301–2306.
  • Fujii H. Visualisation of retinal blood flow by laser speckle flow-graphy. Med Biol Eng Comput. 1994;32:302–304.
  • Riva CE, Harino S, Petrig BL, et al. Laser Doppler flowmetry in the optic nerve. Exp Eye Res. 1992;55:499–506.
  • Riva C, Cranstoun S, Grunwald J, et al. Local choroidal blood flow in the cat by laser Doppler flowmetry. Investig Ophthalmol Vis Sci. 1994;35:608–618.
  • Riva CE, Cranstoun SD, Grunwald JE, et al. Choroidal blood flow in the foveal region of the human ocular fundus. Investig Ophthalmol Vis Sci. 1994;35:4273–4281.
  • Bender D, Tweer S, Werdin F, et al. The acute impact of local cooling versus local heating on human skin microcirculation using laser Doppler flowmetry and tissue spectrophotometry. Burns. 2020;46:104–109.
  • Mowla A, Taimre T, Lim Y, et al. Concurrent reflectance confocal microscopy and laser Doppler flowmetry to improve skin cancer imaging: a monte carlo model and experimental validation. Sensors. 2016;16:1411.
  • Sommer B, Kreuzer M, Bischoff B, et al. Combined laser-Doppler flowmetry and spectrophotometry: feasibility study of a novel device for monitoring local cortical microcirculation during aneurysm surgery. J Neurol Surg A Cent Eur Neurosurg. 2016;78:1–11.
  • Barry O, Wang Y, Wahl G. Determination of baseline alveolar mucosa perfusion parameters using laser Doppler flowmetry and tissue spectrophotometry in healthy adults. Acta Odontol Scand. 2020;78:31–37.
  • Ghouth N, Duggal MS, BaniHani A, et al. The diagnostic accuracy of laser Doppler flowmetry in assessing pulp blood flow in permanent teeth: a systematic review. Dent Traumatol. 2018;34:311–319.
  • Abdulhameed YA, Lancaster G, McClintock PVE, et al. On the suitability of laser-Doppler flowmetry for capturing microvascular blood flow dynamics from darkly pigmented skin. Physiol Meas. 2019;40:074005.
  • Rajan V, Varghese B, Van Leeuwen TG, et al. Review of methodological developments in laser Doppler flowmetry. Lasers Med Sci. 2009;24:269–283.
  • Michelson G, Schmauss B, Langhans MJ, et al. Principle, validity, and reliability of scanning laser Doppler flowmetry. J Glaucoma. 1996;5:99–105.
  • Michelson G, Welzenbach J, Pal I, et al. Automatic full field analysis of perfusion images gained by scanning laser Doppler flowmetry. Br J Ophthalmol. 1998;82:1294–1300.
  • Harazny JM, Ritt M, Baleanu D, et al. Increased wall:lumen ratio of retinal arterioles in male patients with a history of a cerebrovascular event. Hypertension. 2007;50:623–629.
  • Kreis AJ, Nguyen T, Rogers S, et al. Reliability of different image analysis methods for scanning laser Doppler flowmetry. Curr Eye Res. 2008;33:493–499.
  • Harazny JM, Raff U, Welzenbach J, et al. New software analyses increase the reliability of measurements of retinal arterioles morphology by scanning laser Doppler flowmetry in humans. J Hypertens. 2011;29:777–782.
  • Harazny JM, Ott C, Raff U, et al. First experience in analysing pulsatile retinal capillary flow and arteriolar structural parameters measured noninvasively in hypertensive patients. J Hypertens. 2014;32:2246–2252.
  • Schiffrin EL. Effect of antihypertensive treatment on small artery remodeling in hypertension. Can J Physiol Pharmacol. 2003;81:168–176.
  • Koch E, Rosenbaum D, Brolly A, et al. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens. 2014;32:890–898.
  • Rosenbaum D, Kachenoura N, Koch E, et al. Relationships between retinal arteriole anatomy and aortic geometry and function and peripheral resistance in hypertensives. Hypertens Res. 2016;39:536–542.
  • Rosenbaum D, Mattina A, Koch E, et al. Effects of age, blood pressure and antihypertensive treatments on retinal arterioles remodeling assessed by adaptive optics. J Hypertens. 2016;34:1115–1122.
  • Rosenbaum D, Koch E, Girerd X, et al. Imagerie des artérioles rétiniennes par optique adaptative, faisabilité et reproductibilité. Ann Cardiol Angeiol (Paris). 2013;62:184–188.
  • De Ciuceis C, Coschignano MA, Caletti S, et al. Reproducibility of the evaluation of the wall to lumen ratio of retinal arterioles with two different non-invasive approaches. J Hypertens. 2017;35:e153–e154.
  • Babcock HW. Adaptive optics revisited. Science. 1990;249:253–257.
  • Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997;14:2884–2892.
  • de Carlo TE, Romano A, Waheed NK, et al. A review of optical coherence tomography angiography (OCTA). Int J Retin Vitr. 2015;1:1–15.
  • Yannuzzi NA, Gregori NZ, Roisman L, et al. Fluorescein angiography versus optical coherence tomography angiography in macular telangiectasia type i treated with bevacizumab therapy. Ophthalmic Surg Lasers Imaging Retina. 2017;48:263–266.
  • Kiyota N, Kunikata H, Shiga Y, et al. Relationship between laser speckle flowgraphy and optical coherence tomography angiography measurements of ocular microcirculation. Graefes Arch Clin Exp Ophthalmol. 2017;255:1633–1642.
  • Endersid C, Lang GE, Dreyhaupt J, et al. Quantity and quality of image artifacts in optical coherence tomography angiography. PLos One. 2019;14:e0210505.
  • Holmen IC, Konda MS, Pak JW, et al. Prevalence and severity of artifacts in optical coherence tomographic angiograms. JAMA Ophthalmol. 2020;138:119–126.
  • Say EAT, Ferenczy S, Magrath GN, et al. Image quality and artifacts on optical coherence tomography angiography. Retina. 2017;37:1660–1673.
  • Leitgeb RA, Werkmeister RM, Blatter C, et al. Doppler optical coherence tomography. Prog Retin Eye Res. 2014;41:26–43.
  • Wang Y, Bower BA, Izatt JA, et al. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J Biomed Opt. 2007;12:041215.
  • Sugiyama T, Araie M, Riva CE, et al. Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol. 2010;88:723–729.
  • Aizawa N, Nitta F, Kunikata H, et al. Laser speckle and hydrogen gas clearance measurements of optic nerve circulation in albino and pigmented rabbits with or without optic disc atrophy. Investig Ophthalmol Vis Sci. 2014;55:7991–7996.
  • Wang L, Cull GA, Piper C, et al. Anterior and posterior optic nerve head blood flow in nonhuman primate experimental glaucoma model measured by laser speckle imaging technique and microsphere method. Investig Ophthalmol Vis Sci. 2012;53:8303–8309.
  • Tsuda S, Kunikata H, Shimura M, et al. Pulse-waveform analysis of normal population using laser speckle flowgraphy. Curr Eye Res. 2014;39:1207–1215.
  • Luft N, Wozniak PA, Aschinger GC, et al. Ocular blood flow measurements in healthy White subjects using laser speckle flowgraphy. PLoS One. 2016;11:e0168190.
  • Shiba T, Takahashi M, Matsumoto T, et al. Pulse waveform analysis in ocular microcirculation by laser speckle flowgraphy in patients with left ventricular systolic and diastolic dysfunction. J Vasc Res. 2018;55:329–337.
  • Landa G, Rosen RB. New patterns of retinal collateral circulation are exposed by a retinal functional imager (RFI). Br J Ophthalmol. 2010;94:54–58.
  • Landa G, Jangi AA, Garcia PMT, et al. Initial report of quantification of retinal blood flow velocity in normal human subjects using the Retinal Functional Imager (RFI). Int Ophthalmol. 2012;32:211–215.
  • Jiang H, DeBuc DC, Rundek T, et al. Automated segmentation and fractal analysis of high-resolution non-invasive capillary perfusion maps of the human retina. Microvasc Res. 2013;89:172–175.
  • Lopes De Faria JM, Duarte DA, Larico Chavez RF, et al. Reliability and validity of digital assessment of perifoveal capillary network measurement using high-resolution imaging. Br J Ophthalmol. 2014;98:726–729.
  • Landa G, Garcia PMT, Rosen RB. Correlation between Retina Blood Flow Velocity Assessed by Retinal Function Imager and Retina Thickness Estimated by Scanning Laser Ophthalmoscopy/Optical Coherence Tomography. Ophthalmologica. 2009;223:155–161.
  • Hickam JB, Frayser R, Ross JC. A study of retinal venous blood oxygen saturation in human subjects by photographic means. Circulation. 1963;27:375–385.
  • Hickam JB, Sieker HO, Frayser R. Studies of retinal circulation and A-V oxygen difference in man. Trans Am Clin Climatol Assoc. 1959;71:34–44.
  • Stefánsson E, Olafsdottir OB, Eliasdottir TS, et al. Retinal oximetry: metabolic imaging for diseases of the retina and brain. Prog Retin Eye Res. 2019;70:1–22.
  • Linsenmeier RA, Zhang HF. Retinal oxygen: from animals to humans. Prog Retin Eye Res. 2017;58:115–151.
  • Told R, Boltz A, Schmetterer L, et al. Method comparison of two non-invasive dual-wavelength spectrophotometric retinal oximeters in healthy young subjects during normoxia. Acta Ophthalmol. 2018;96:e614–e618.
  • Geirsdottir A, Palsson O, Hardarson SH, et al. Retinal vessel oxygen saturation in healthy individuals. Investig Ophthalmol Vis Sci. 2012;53:5433–5442.
  • Man REK, Sasongko MB, Kawasaki R, et al. Associations of retinal oximetry in healthy young adults. Investig Ophthalmol Vis Sci. 2014;55:1763–1769.
  • O’Connell RA, Anderson AJ, Hosking SL, et al. Test-retest reliability of retinal oxygen saturation measurement. Optom Vis Sci. 2014;91:608–614.
  • Goharian I, Iverson SM, Ruiz RC, et al. Reproducibility of retinal oxygen saturation in normal and treated glaucomatous eyes. Br J Ophthalmol. 2015;99:318–322.
  • Blondal R, Sturludottir MK, Hardarson SH, et al. Reliability of vessel diameter measurements with a retinal oximeter. Graefes Arch Clin Exp Ophthalmol. 2011;249:1311–1317.
  • Bek T, Stefánsson E, Hardarson SH. Retinal oxygen saturation is an independent risk factor for the severity of diabetic retinopathy. Br J Ophthalmol. 2019;103:1167–1172.
  • Eliasdottir TS. Retinal oximetry and systemic arterial oxygen levels. Acta Ophthalmol. 2018;96:1–44.
  • Shughoury A, Mathew S, Arciero J, et al. Retinal oximetry in glaucoma: investigations and findings reviewed. Acta Ophthalmol. 2020;98:559–571.
  • Stefánsson E, Olafsdottir OB, Einarsdottir AB, et al. Retinal oximetry discovers novel biomarkers in retinal and brain diseases. Investig Ophthalmol Vis Sci. 2017;58:BIO227–BIO233.
  • Michelson G, Harazny J. Relationship between ocular pulse pressures and retinal vessel velocities. Ophthalmology. 1997;104:664–671.
  • Lieb WE, Cohen SM, Merton DA, et al. Color Doppler imaging of the eye and orbit. Technique and normal vascular anatomy. Arch Ophthalmol. 1991;109:527–531.
  • Williamson TH, Harris A. Color Doppler ultrasound imaging of the eye and orbit. Surv Ophthalmol. 1996;40:255–267.
  • Wang JJ, Mitchell P, Leung H, et al. Hypertensive retinal vessel wall signs in a general older population: the Blue Mountains Eye Study. Hypertension. 2003;42:534–541.
  • Kan H, Stevens J, Heiss G, et al. Dietary fiber intake and retinal vascular caliber in the Atherosclerosis Risk in Communities Study. Am J Clin Nutr. 2007;86:1626–1632.
  • Ikram MK, De Jong FJ, Vingerling JR, et al. Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The Rotterdam study. Investig Ophthalmol Vis Sci. 2004;45:2129–2134.
  • Polak K, Dorner G, Kiss B, et al. Evaluation of the Zeiss retinal vessel analyser. Br J Ophthalmol. 2000;84:1285–1290.
  • Yip W, Tham YC, Hsu W, et al. Comparison of common retinal vessel caliber measurement software and a conversion algorithm. Transl Vis Sci Technol. 2016;5:11.
  • Aliahmad B, Kumar DK. Retinal image vasculature analysis software (RIVAS). In: Yang XS, Papa JP, editors. Bio-inspired computation and applications in image processing. Amsterdam (The Netherlands): Elsevier; 2016. p. 323–345.
  • Kohler J, White RJ, Divani AA, et al. Comparison of IVAN and VAMPIRE: two free retinal vascular measurement software packages. Investig Ophthalmol Vis Sci. 2016;57:5959.
  • Vilser W, Nagel E, Lanzl I. Retinal vessel analysis – new possibilities. Biomed Tech (Berl). 2002;47 Suppl 1 Pt 2:682–685.
  • Leung H, Wang JJ, Rochtchina E, et al. Computer-assisted retinal vessel measurement in an older population: correlation between right and left eyes. Clin Experiment Ophthalmol. 2003;31:326–330.
  • Muiesan ML, Salvetti M, Paini A, et al. Ocular fundus photography with a smartphone device in acute hypertension. J Hypertens. 2017;35:1660–1665.
  • Adam MK, Brady CJ, Flowers AM, et al. Quality and diagnostic utility of mydriatic smartphone photography: the smartphone ophthalmoscopy reliability trial. Ophthalmic Surg Lasers Imaging Retina. 2015;46:631–637.
  • Panwar N, Huang P, Lee J, et al. Fundus photography in the 21st century – a review of recent technological advances and their implications for worldwide healthcare. Telemed. e-Health. 2016;22:198–208.
  • Xu X, Ding W, Wang X, et al. Smartphone-based accurate analysis of retinal vasculature towards point-of-care diagnostics. Sci Rep. 2016;6:9.
  • Bongard O, Bounameaux H. Clinical investigation of skin microcirculation. Dermatology (Basel). 1993;186:6–11.
  • Neubauer-Geryk J, Hoffmann M, Wielicka M, et al. Current methods for the assessment of skin microcirculation: Part 1. Postepy Dermatol Alergol. 2019;36:247–254.
  • Bonacci E, Santacroce N, D'Amico N, et al. Nail-fold capillaroscopy in the study of microcirculation in elderly hypertensive patients. Arch Gerontol Geriatr. 1996;22:79–83.
  • Turner TA. Diagnostic thermography. Vet Clin North Am Equine Pract. 2001;17:95–114.
  • Harazny JM, Schmieder RE, Welzenbach J, et al. Local application of tropicamide 0.5% reduces retinal capillary blood flow. Blood Press. 2013;22:371–376.
  • Harazny J, Michelson G. Retinale zirkulation und lokale applikation von phenylephrin. 2004 [accessed 2020 Mar 24]. Available from: https://2006.archiv.dog.org/poster2.html
  • Hohberger B, Müller M, Hosari S, et al. OCT-angiography: Mydriatic phenylephrine and tropicamide do not influence retinal microvasculature in macula and peripapillary region. PLoS One. 2019;14:e0221395.
  • Cheng J, Yu J, Jiang C, et al. Phenylephrine affects peripapillary retinal vasculature-an optic coherence tomography angiography study. Front Physiol. 2017;8:996.
  • Mayama C, Ishii K, Saeki T, et al. Effects of topical phenylephrine and tafluprost on optic nerve head circulation in monkeys with unilateral experimental glaucoma. Investig Ophthalmol Vis Sci. 2010;51:4117–4124.
  • Tsui E, Sehi M, Cheng RWF, et al. The impact of topical mydriatic ophthalmic solutions on retinal vascular reactivity and blood flow. Exp Eye Res. 2013;112:134–138.
  • Robinson F, Petrig BL, Sinclair SH, et al. Does topical phenylephrine, tropicamide, or proparacaine affect macular blood flow? Ophthalmology. 1985;92:1130–1132.
  • Takayama J, Mayama C, Mishima A, et al. Topical phenylephrine decreases blood velocity in the optic nerve head and increases resistive index in the retinal arteries. Eye (Lond). 2009;23:827–834.
  • Takayama J, Mishima A, Ishii K. Effects of topical phenylephrine on blood flow in the posterior segments of monkey and aged human eyes. Jpn J Ophthalmol. 2004;48:243–248.
  • Komar K, Stremplewski P, Motoczyńska M, et al. Multimodal instrument for high-sensitivity autofluorescence and spectral optical coherence tomography of the human eye fundus. Biomed Opt Express. 2013;4:2683–2695.
  • McDougall SR, Watson MG, Devlin AH, et al. A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature. Bull Math Biol. 2012;74:2272–2314.
  • Spaide RF. Volume-rendered optical coherence tomography of retinal vein occlusion pilot study. Am J Ophthalmol. 2016;165:133–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.