3,041
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Assessment of hypertension-mediated organ damage in children and adolescents with hypertension

ORCID Icon, ORCID Icon, , , & ORCID Icon
Article: 2212085 | Received 07 Mar 2023, Accepted 01 May 2023, Published online: 01 Jun 2023

References

  • Bright R. Reports of medical cases, selected with a view of illustrating the symptoms and cure of diseases, by a reference to morbid anatomy. Medico-Chir Rev. 1831;15(30):1–18.
  • Mohamad F. On chronic Bright’s disease, and its essential symptoms. The Lancet. 1879;113(2899):399–401.
  • Gunn R. Ophthalmoscopic evidence of (1) arterial changes associated with chronic renal diseases and (2) of increased arterial tension. Trans Ophthalmol Soc UK. 1892;12:124–125.
  • Keith NM, Wagener HP, Barker NW. Some different types of essential hypertension: their course and prognosis. Am J Med Sci. 1974;268(6):336–345.
  • Litwin M, Niemirska A, Obrycki Ł, et al. Zalecenia Sekcji Pediatrycznej Polskiego Towarzystwa Nadciśnienia Tętniczego dotyczące postępowania diagnostycznego i terapeutycznego w nadciśnieniu tętniczym u dzieci i młodzieży. Arter Hypertens. 2018;22(2):45–73.
  • Lurbe E, Agabiti-Rosei E, Cruickshank JK, et al. 2016 European society of hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens. 2016;34(10):1887–1920.
  • Tykarski A, Filipiak KJ, Januszewicz A, et al. 2019 Guidelines for the management of hypertension. Arterial Hypertension. 2019;23(2):41–87.
  • Roman MJ, Devereux RB, Kizer JR, et al. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: the strong heart study. Hypertension. 2007;50(1):197–203.
  • Saladini F, Santonastaso M, Mos L, et al. Isolated systolic hypertension of young-to-middle-age individuals implies a relatively low risk of developing hypertension needing treatment when central blood pressure is low. J Hypertens. 2011;29(7):1311–1319.
  • Palatini P, Rosei EA, Avolio A, et al. Isolated systolic hypertension in the young: a position paper endorsed by the European society of hypertension. J Hypertens. 2018;36(6):1222–1236.
  • Kułaga Z, Litwin M, Grajda A, et al. Oscillometric blood pressure percentiles for polish normal-weight school-aged children and adolescents. J Hypertens. 2012;30(10):1942–1954.
  • Song P, Zhang Y, Yu J, et al. Global prevalence of hypertension in children: a systematic review and meta-analysis. JAMA Pediatr. 2019;173(12):1154–1163.
  • Symonides B, Jędrusik P, Artyszuk Ł, et al. Different diagnostic criteria significantly affect the rates of hypertension in 18-year-old high school students. Arch Med Sci. 2010;6(5):689–694.
  • Derezinski T, Kulaga Z, Litwin M. PP.38.15. prevalence of arterial hypertension and anthropometrical predictors of elevated blood pressure in 14 years old adolescents. J Hypertens. 2015;33(Supplement 1):e481.
  • Cheung BMY, Li C. Diabetes and hypertension: is there a common metabolic pathway? Curr Atheroscler Rep. 2012;14(2):160–166.
  • Wei GS, Coady SA, Goff DC, et al. Blood pressure and the risk of developing diabetes in african americans and whites. Diabetes Care. 2011;34(4):873–879.
  • Landsberg L, Molitch M. Diabetes and hypertension: pathogenesis, prevention and treatment. Clin Exp Hypertens. 2004;26(7-8):621–628.
  • Dabelea D, Stafford JM, Mayer-Davis EJ, et al. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA. 2017;317(8):825–835.
  • Cioana M, Deng J, Hou M, et al. Prevalence of hypertension and albuminuria in pediatric type 2 diabetes: a systematic review and meta-analysis. JAMA Netw Open. 2021;4(4):e216069.
  • Litwin M, Kułaga Z. Obesity, metabolic syndrome, and primary hypertension. Pediatr Nephrol. 2021;36(4):825–837.
  • Flynn JT, Kaelber DC, Baker-Smith CM, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3):e20171904.
  • de Simone G, Daniels SR, Devereux RB, et al. Left ventricular mass and body size in normotensive children and adults: assessment of allometric relations and impact of overweight. J Am Coll Cardiol. 1992;20(5):1251–1260.
  • Armstrong AC, Gjesdal O, Almeida A, et al. Left ventricular mass and hypertrophy by echocardiography and cardiac magnetic resonance: the multi-ethnic study of atherosclerosis. Echocardiography. 2014;31(1):12–20.
  • Mendizábal B, Urbina EM, Becker R, et al. SHIP-AHOY (study of high blood pressure in pediatrics: adult hypertension onset in youth): rationale, design, and methods. Hypertension. 2018;72(3):625–631.
  • Sinha MD, Azukaitis K, Sladowska-Kozłowska J, et al. Prevalence of left ventricular hypertrophy in children and young people with primary hypertension: meta-analysis and meta-regression. Front Cardiovasc Med. 2022;9:993513.
  • Litwin M, Niemirska A, Sladowska-Kozlowska J, et al. Regression of target organ damage in children and adolescents with primary hypertension. Pediatr Nephrol. 2010;25(12):2489–2499.
  • Lund-Johansen P. Central haemodynamics in essential hypertension at rest and during exercise: a 20-year follow-up study. J Hypertens Suppl. 1989;7(6):S52–S55.
  • Nardin C, Maki-Petaja KM, Miles KL, et al. Cardiovascular phenotype of elevated blood pressure differs markedly between young males and females: the enigma study. Hypertension. 2018;72(6):1277–1284.
  • Li Y, Gu H, Sinha MD, et al. Hemodynamic characterization of primary hypertension in children and adolescents. J Am Heart Assoc. 2020;9(12):e015097.
  • Julius S, Valentini M, Palatini P. Overweight and Hypertension: A 2-Way Street? Hypertension. 2000;35(3):807–813.
  • Julius S, Jamerson K. Sympathetics, insulin resistance and coronary risk in hypertension: the ‘chicken-and-egg’ question. J Hypertens. 1994;12(5):495–502.
  • Rus RR, Pac M, Obrycki Ł, et al. Systolic and diastolic left ventricular function in children with primary hypertension: a systematic review and meta-analysis. J Hypertens. 2023;41(1):51–62.
  • Obrycki Ł, Feber J, Derezinski T, et al. Hemodynamic patterns and target organ damage in adolescents with ambulatory prehypertension. Hypertension. 2020;75(3):826–834.
  • Bots ML, Hofman A, Grobbee DE. Increased common carotid intima-media thickness: adaptive response or a reflection of atherosclerosis? Findings from the rotterdam study. Stroke. 1997;28(12):2442–2447.
  • Intengan HD, Schiffrin EL. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension. 2001;38(3 Pt 2):581–587.
  • Yeboah J, Burke GL, Crouse JR, et al. Relationship between brachial flow-mediated dilation and carotid intima-media thickness in an elderly cohort: the cardiovascular health study. Atherosclerosis. 2008;197(2):840–845.
  • Yan RT, Anderson TJ, Charbonneau F, et al. Relationship between carotid artery intima-media thickness and brachial artery flow-mediated dilation in middle-aged healthy men. J Am Coll Cardiol. 2005;45(12):1980–1986.
  • Urbina EM, Khoury PR, McCoy C, et al. Cardiac and vascular consequences of pre-hypertension in youth: cardiovascular consequences of pre-hypertension in youth. J Clin Hypertens. 2011;13(5):332–342.
  • Doyon A, Kracht D, Bayazit AK, et al. Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension. 2013;62(3):550–556.
  • Neuhauser HK, Büschges J, Schaffrath Rosario A, et al. Carotid intima-media thickness percentiles in adolescence and young adulthood and their association with obesity and hypertensive blood pressure in a population cohort. Hypertension. 2022;79(6):1167–1176.
  • Zhao M, Caserta CA, Medeiros CCM, et al. Metabolic syndrome, clustering of cardiovascular risk factors and high carotid intima–media thickness in children and adolescents. J Hypertens. 2020;38(4):618–624.
  • Azukaitis K, Sinha MD, Obrycki Ł, et al. Disparities between determinants of impaired vascular structure and function in young people with primary hypertension: a systematic review. J Hypertens. 2022;40(7):1369–1379.
  • Lurbe E, Mancia G, Calpe J et al. Joint statement for assessing and managing high blood pressure in children and adolescents. Front Pediatr. 2023;11:1140357.
  • Wikstrand J, Wendelhag I. Methodological considerations of ultrasound investigation of intima-media thickness and lumen diameter. J Intern Med. 1994;236(5):555–559.
  • Veller MG, Fisher CM, Nicolaides AN, et al. Measurement of the ultrasonic intima-media complex thickness in normal subjects. J Vasc Surg. 1993;17(4):719–725.
  • Jourdan C, Wühl E, Litwin M, et al. Normative values for intima–media thickness and distensibility of large arteries in healthy adolescents. J Hypertens. 2005;23(9):1707–1715.
  • Litwin M, Niemirska A. Intima–media thickness measurements in children with cardiovascular risk factors. Pediatr Nephrol. 2009;24(4):707–719.
  • Sorof JM, Alexandrov AV, Cardwell G, et al. Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics. 2003;111(1):61–66.
  • Litwin M, Niemirska A, Sladowska J, et al. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol. 2006;21(6):811–819.
  • Litwin M, Trelewicz J, Wawer Z, et al. Intima-media thickness and arterial elasticity in hypertensive children: controlled study. Pediatr Nephrol. 2004;19(7):767–774.
  • Yang L, Whincup PH, López-Bermejo A, et al. Use of static cutoffs of hypertension to determine high cIMT in children and adolescents: an international collaboration study. Can J Cardiol. 2020;36(9):1467–1473.
  • Litwin M, Wu E, Jourdan C, et al. Altered morphologic properties of large arteries in children with chronic renal failure and after renal transplantation. J Am Soc Nephrol. 2005;16(5):1494–1500.
  • Niemirska A, Litwin M, Feber J, et al. Blood pressure rhythmicity and visceral fat in children with hypertension. Hypertension. 2013;62(4):782–788.
  • Kollias A, Dafni M, Poulidakis E, et al. Out-of-office blood pressure and target organ damage in children and adolescents: a systematic review and meta-analysis. J Hypertens. 2014;32(12):2315–2331. doi:10.1097/HJH.0000000000000384.
  • Van Bortel LM, Duprez D, Starmans-Kool MJ, et al. Clinical applications of arterial stiffness, task force III: recommendations for user procedures. Am J Hypertens. 2002;15(5):445–452.
  • Kulsum-Mecci N, Goss C, Kozel BA, et al. Effects of obesity and hypertension on pulse wave velocity in children. J Clin Hypertens. 2017;19(3):221–226.
  • Baulmann J, Schillings U, Rickert S, et al. A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens. 2008;26(3):523–528.
  • Kracht D, Shroff R, Baig S, et al. Validating a new oscillometric device for aortic pulse wave velocity measurements in children and adolescents. Am J Hypertens. 2011;24(12):1294–1299.
  • van Leeuwen-Segarceanu EM, Tromp WF, Bos WJW, et al. Comparison of two instruments measuring carotid-femoral pulse wave velocity: vicorder versus SphygmoCor. J Hypertens. 2010;28(8):1687–1691.
  • Pucci G, Cheriyan J, Hubsch A, et al. Evaluation of the vicorder, a novel cuff-based device for the noninvasive estimation of Central blood pressure. J Hypertens. 2013;31(1):77–85.
  • Reusz GS, Cseprekal O, Temmar M, et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010;56(2):217–224.
  • Van Bortel LM, Laurent S, Boutouyrie P, et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens. 2012;30(3):445–448.
  • Fischer DC, Schreiver C, Heimhalt M, et al. Pediatric reference values of carotid-femoral pulse wave velocity determined with an oscillometric device. J Hypertens. 2012;30(11):2159–2167.
  • Weir-McCall JR, Khan F, Cassidy DB, et al. Effects of inaccuracies in arterial path length measurement on differences in MRI and tonometry measured pulse wave velocity. BMC Cardiovasc Disord. 2017;17(1):118.
  • Yano Y, Neeland IJ, Ayers C, et al. Hemodynamic and mechanical properties of the proximal aorta in young and middle-aged adults with isolated systolic hypertension: the dallas heart study. Hypertension. 2017;70(1):158–165.
  • Sarnecki J, Obrycki Ł, Feber J, et al. Isolated systolic hypertension is associated with increased left ventricular mass index and aortic stiffness in adolescents: a cardiac magnetic resonance study. J Hypertens. 2022;40(5):985–995.
  • Downie LE, Hodgson LAB, DSylva C, et al. Hypertensive retinopathy: comparing the Keith–Wagener–Barker to a simplified classification. J Hypertens. 2013;31(5):960–965.
  • Keith NM. Cardiovascular diseases in relation to the retina. Ann Otol Rhinol Laryngol. 1933;42(1):95–111.
  • Iadecola C, Gottesman RF. Neurovascular and cognitive dysfunction in hypertension: epidemiology, pathobiology, and treatment. Circ Res. 2019;124(7):1025–1044.
  • Wong TY, Klein R, Couper DJ, et al. Retinal microvascular abnormalities and incident stroke: the atherosclerosis risk in communities study. Lancet. 2001;358(9288):1134–1140.
  • Ritt M, Harazny JM, Ott C, et al. Analysis of retinal arteriolar structure in never-treated patients with essential hypertension. J Hypertens. 2008;26(7):1427–1434.
  • Lona G, Endes K, Köchli S, et al. Retinal vessel diameters and blood pressure progression in children. Hypertension. 2020;76(2):450–457.
  • Dodson PM, Lip GY, Eames SM, et al. Hypertensive retinopathy: a review of existing classification systems and a suggestion for a simplified grading system. J Hum Hypertens. 1996;10(2):93–98.
  • Rogowska A, Obrycki Ł, Kułaga Z, et al. Remodeling of retinal microcirculation is associated with subclinical arterial injury in hypertensive children. Hypertension. 2021;77(4):1203–1211.
  • Singh RR, Ozyilmaz N, Waller S, et al. A study on clinical and radiological features and outcome in patients with posterior reversible encephalopathy syndrome (PRES). Eur J Pediatr. 2014;173(9):1225–1231.
  • Scheltens P, Blennow K, Breteler MMB, et al. Alzheimer’s disease. Lancet. 2016;388(10043):505–517.
  • Köchli S, Endes K, Steiner R, et al. Obesity, high blood pressure, and physical activity determine vascular phenotype in young children: the examin youth study. Hypertension. 2019;73(1):153–161.
  • Lande MB, Kupferman JC. Blood pressure and cognitive function in children and adolescents. Hypertension. 2019;73(3):532–540.
  • Rovio SP, Pahkala K, Nevalainen J, et al. Cardiovascular risk factors from childhood and midlife cognitive performance. J Am Coll Cardiol. 2017;69(18):2279–2289.
  • Yaffe K, Vittinghoff E, Pletcher MJ, et al. Early adult to midlife cardiovascular risk factors and cognitive function. Circulation. 2014;129(15):1560–1567.
  • Elias PK, Elias MF, Robbins MA, et al. Blood pressure-related cognitive decline: does age make a difference? Hypertension. 2004;44(5):631–636.
  • Waldstein SR, Jennings JR, Ryan CM, et al. Hypertension and neuropsychological performance in men: interactive effects of age. Health Psychol. 1996;15(2):102–109.
  • Waldstein SR. Hypertension and neuropsychological function: a lifespan perspective. Exp Aging Res. 1995;21(4):321–352.
  • Elias MF, Goodell AL, Dore GA. Hypertension and cognitive functioning: a perspective in historical context. Hypertension. 2012;60(2):260–268.
  • Lande MB, Kaczorowski JM, Auinger P, et al. Elevated blood pressure and decreased cognitive function among school-age children and adolescents in the United States. J Pediatr. 2003;143(6):720–724.
  • Lamballais S, Sajjad A, Leening MJG, et al. Association of blood pressure and arterial stiffness with cognition in 2 population-based child and adult cohorts. J Am Heart Assoc. 2018;7(21):e009847.
  • Ditto B, Séguin JR, Tremblay RE. Neuropsychological characteristics of adolescent boys differing in risk for high blood pressure. Ann Behav Med. 2006;31(3):231–237.
  • Lande MB, Adams H, Falkner B, et al. Parental assessments of internalizing and externalizing behavior and executive function in children with primary hypertension. J Pediatr. 2009;154(2):207–212.e1.
  • Lande MB, Batisky DL, Kupferman JC, et al. Neurocognitive function in children with primary hypertension after initiation of antihypertensive therapy. J Pediatr. 2018;195:85–94.e1.
  • Lande MB, Adams HR, Kupferman JC, et al. A multicenter study of neurocognition in children with hypertension: methods, challenges, and solutions. J Am Soc Hypertens. 2013;7(5):353–362.
  • Chrysaidou K, Kotsis V, Chainoglou A, et al. Impact of ambulatory SBP and overweight on executive function performance in children and adolescents. J Hypertens. 2020;38(6):1123–1130.
  • Lucas I, Puteikis K, Sinha MD, et al. Knowledge gaps and future directions in cognitive functions in children and adolescents with primary arterial hypertension: a systematic review. Front Cardiovasc Med. 2022;9:973793.
  • Lande MB, Adams H, Falkner B, et al. Parental assessment of executive function and internalizing and externalizing behavior in primary hypertension after anti-hypertensive therapy. J Pediatr. 2010;157(1):114–119.
  • Filler G, Lepage N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol. 2003;18(10):981–985.
  • Schwartz GJ, Schneider MF, Maier PS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–453.
  • Grubb A, Blirup-Jensen S, Lindström V, et al. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med. 2010;48(11):1619–1621.
  • Pierce CB, Muñoz A, Ng DK, et al. Age- and sex-dependent clinical equations to estimate glomerular filtration rates in children and young adults with chronic kidney disease. Kidney Int. 2021;99(4):948–956.
  • Assadi F. Effect of microalbuminuria lowering on regression of left ventricular hypertrophy in children and adolescents with essential hypertension. Pediatr Cardiol. 2007;28(1):27–33.
  • Hickson SS, Butlin M, Broad J, et al. Validity and repeatability of the vicorder apparatus: a comparison with the SphygmoCor device. Hypertens Res. 2009;32(12):1079–1085.
  • Herbert A, Cruickshank JK, Laurent S, et al. Establishing reference values for central blood pressure and its amplification in a general healthy population and according to cardiovascular risk factors. Eur Heart J. 2014;35(44):3122–3133.
  • Elmenhorst J, Hulpke-Wette M, Barta C, et al. Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis. 2015;238(1):9–16.
  • Kelly R, Hayward C, Avolio A, et al. Noninvasive determination of age-related changes in the human arterial pulse. Circulation. 1989;80(6):1652–1659.
  • Hsieh K-Y, O’Rourke, M, Avolio. A. Pressure wave contour in the ascending aorta of children – paradoxical similarity to the elderly. Aust N Z J Med. 1989;19:555.
  • Gevers L. Arterial pressure waveforms in newborn infants: invasive measurements in clinical practice [PhD thesis]. Utrecht: Elinkwyk BV. Published online 1994.
  • Yano Y, Stamler J, Garside DB, et al. Isolated systolic hypertension in young and middle-aged adults and 31-year risk for cardiovascular mortality. J Am Coll Cardiol. 2015;65(4):327–335.
  • McEniery CM, Wallace S, Maki-Petaja K, et al. Increased stroke volume and aortic stiffness contribute to isolated systolic hypertension in young adults. Hypertension. 2005;46(1):221–226.
  • Gu H, Singh C, Li Y, et al. Early ventricular contraction in children with primary hypertension relates to left ventricular mass. J Hypertens. 2021;39(4):711–717.
  • Eeftinck Schattenkerk DW, van Gorp J, Vogt L, et al. Isolated systolic hypertension of the young and its association with central blood pressure in a large multi-ethnic population. The HELIUS study. Eur J Prev Cardiol. 2018;25(13):1351–1359.
  • Obrycki Ł, Feber J, Brzezińska G, et al. Evolution of isolated systolic hypertension with normal central blood pressure in adolescents—prospective study. Pediatr Nephrol. 2021;36(2):361–371.
  • de Simone G, Devereux RB, Daniels SR, et al. Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol. 1995;25(5):1056–1062.
  • O’Rourke MF, Vlachopoulos C, Graham RM. Spurious systolic hypertension in youth. Vasc Med. 2000;5(3):141–145.
  • Litwin M, Obrycki Ł, Niemirska A, et al. Central systolic blood pressure and central pulse pressure predict left ventricular hypertrophy in hypertensive children. Pediatr Nephrol. 2019;34(4):703–712.
  • Supe-Markovina K, Nielsen JC, Musani M, et al. Assessment of left ventricular mass and hypertrophy by cardiovascular magnetic resonance imaging in pediatric hypertension. J Clin Hypertens (Greenwich). 2016;18(10):976–981.
  • Sladowska-Kozłowska J, Litwin M, Niemirska A, et al. Change in left ventricular geometry during antihypertensive treatment in children with primary hypertension. Pediatr Nephrol. 2011;26(12):2201–2209.