371
Views
6
CrossRef citations to date
0
Altmetric
Articles

Olfactory bulbectomy and raphe nucleus relationship: a new vision for well-known depression model

, ORCID Icon, , , , & show all
Pages 194-200 | Received 21 Mar 2019, Accepted 01 Nov 2019, Published online: 14 Nov 2019

References

  • Miro X, Perez-Torres S, Palacios JM, et al. Differential distribution of cAMP-specific phosphodiesterase 7A mRNA in rat brain and peripheral organs. Synapse. 2001;40:201–214.
  • Clepce M, Gossler A, Reich K, et al. The relation between depression, anhedonia and olfactory hedonic estimates – a pilot study in major depression. Neurosci Lett. 2010;471:139–143.
  • Buron E, Bulbena A, Barrada JR, et al. EROL scale: a new behavioural olfactory measure and its relationship with anxiety and depression symptoms. Actas Esp Psiquiatr. 2013;41:2–9.
  • Oral E, Aydin MD, Aydin N, et al. How olfaction disorders can cause depression? The role of habenular degeneration. Neuroscience. 2013;240:63–69.
  • Watanabe A, Tohyama Y, Nguyen KQ, et al. Regional brain serotonin synthesis is increased in the olfactory bulbectomy rat model of depression: an autoradiographic study. J Neurochem. 2003;85:469–475.
  • Tork I. Anatomy of the serotonergic system. Ann N Y Acad Sci. 1990;600:9–35.
  • Albert PR, Benkelfat C. The neurobiology of depression – revisiting the serotonin hypothesis. II. Genetic, epigenetic and clinical studies. Phil Trans R Soc B.. 2013;368:20120535.
  • Almada RC, Borelli KG, Albrechet-Souza L, et al. Serotonergic mechanisms of the median raphe nucleus-dorsal hippocampus in conditioned fear: output circuit involves the prefrontal cortex and amygdala. Behav Brain Res. 2009;203:279–287.
  • Chang B, Daniele CA, Gallagher K, et al. Nicotinic excitation of serotonergic projections from dorsal raphe to the nucleus accumbens. J Neurophysiol. 2011;106:801–808.
  • Leonard BE, Tuite M. Anatomical, physiological, and behavioral aspects of olfactory bulbectomy in the rat. Int Rev Neurobiol. 1981;22:251–286.
  • Leonard BE. The olfactory bulbectomized rat as a model of depression. Pol J Pharmacol Pharm. 1984;36:561–569.
  • Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev. 2005;29:627–647.
  • Lumia AR, Teicher MH, Salchli F, et al. Olfactory bulbectomy as a model for agitated hyposerotonergic depression. Brain Res. 1992;587:181–185.
  • Slotkin TA, Seidler FJ. Cholinergic receptor subtypes in the olfactory bulbectomy model of depression. Brain Res Bull. 2006;68:341–345.
  • Breuer ME, Groenink L, Oosting RS, et al. Long-term behavioral changes after cessation of chronic antidepressant treatment in olfactory bulbectomized rats. Biol Psychiatry. 2007;61:990–995.
  • van der Stelt HM, Breuer ME, Olivier B, et al. Permanent deficits in serotonergic functioning of olfactory bulbectomized rats: an in vivo microdialysis study. Biol Psychiatry. 2005;57:1061–1067.
  • Kelly JP, Wrynn AS, Leonard BE. The olfactory bulbectomized rat as a model of depression: an update. Pharmacol Therapeut. 1997;74:299–316.
  • Wieronska JM, Papp M, Pilc A. Effects of anxiolytic drugs on some behavioral consequences in olfactory bulbectomized rats. Pol J Pharmacol. 2001;3:517–525.
  • Naudin M, El-Hage W, Gomes M, et al. State and trait olfactory markers of major depression. PLoS One. 2012;7:e46938.
  • Seo HS, Jeon KJ, Hummel T, et al. Influences of olfactory impairment on depression, cognitive performance, and quality of life in Korean elderly. Eur Arch Otorhinolaryngol. 2009;266:1739–1745.
  • Negoias S, Croy I, Gerber J, et al. Reduced olfactory bulb volume and olfactory sensitivity in patients with acute major depression. Neuroscience. 2010;169:415–421.
  • Naudin M, Carl T, Surguladze S, et al. Perceptive biases in major depressive episode. PLoS One. 2014;9:e86832.
  • Croy I, Symmank A, Schellong J, et al. Olfaction as a marker for depression in humans. J Affect Disord. 2014;160:80–86.
  • Pause BM, Miranda A, Goder R, et al. Reduced olfactory performance in patients with major depression. J Psychiatr Res. 2001;35:271–277.
  • Asal N, Bayar Muluk N, Inal M, et al. Olfactory bulbus volume and olfactory sulcus depth in psychotic patients and patients with anxiety disorder/depression. Eur Arch Otorhinolaryngol. 2018;275:3017–3024.
  • Rottstaedt F, Weidner K, Strauß T, et al. Size matters – the olfactory bulb as a marker for depression. J Affect Disord. 2018;229:193–198.
  • Wadhwa S. Quantitative stereology: the use of camera lucida for counting neurons by physical dissector method in chick brainstem auditory nuclei. J Postgrad Med. 2003;49:376–378.
  • Mayhew TM, Olsen DR. Magnetic resonance imaging (MRI) and model-free estimates of brain volume determined using the Cavalieri principle. J Anat. 1991;178:133–144.
  • Mahar I, Bambico FR, Mechawar N, et al. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev. 2014;38:173–192.
  • Zangen A, Overstreet DH, Yadid G. High serotonin and 5-hydroxyindoleacetic acid levels in limbic brain regions in a rat model of depression: normalization by chronic antidepressant treatment. J Neurochem. 2002;69:2477–2483.
  • Ruda-Kucerova J, Amchova P, Havlickova T, et al. Reward related neurotransmitter changes in a model of depression: an in vivo microdialysis study. World J Biol Psychiatry. 2015;16:521–535.
  • Hikosaka O, Sesack SR, Lecourtier L, et al. Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci. 2008;28:11825–11829.
  • Becker G, Struck M, Bogdahn U, et al. Echogenicity of the brainstem raphe in patients with major depression. Psychiatry Res. 1994;55:75–84.
  • Berg D, Supprian T, Hofmann E, et al. Depression in Parkinson’s disease: brainstem midline alteration on transcranial sonography and magnetic resonance imaging. J Neurol. 1999;246:1186–1193.
  • Supprian T, Reiche W, Schmitz B, et al. MRI of the brainstem in patients with major depression, bipolar affective disorder and normal controls. Psychiatry Res. 2004;131:269–276.
  • Tsopelas C, Stewart R, Savva GM, et al.; Medical Research Council Cognitive Function and Ageing Study. Neuropathological correlates of late-life depression in older people. Br J Psychiatry. 2011;198:109–114.
  • David DJ, Samuels BA, Rainer Q, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62:479–493.
  • Machado DG, Cunha MP, Neis VB, et al. Fluoxetine reverses depressive-like behaviors and increases hippocampal acetylcholinesterase activity induced by olfactory bulbectomy. Pharmacol Biochem Behav. 2012;103:220–229.
  • Launay JM, Mouillet-Richard S, Baudry A, et al. Raphe-mediated signals control the hippocampal response to SRI antidepressants via miR-16. Transl Psychiatry. 2011;11:56.
  • Manev R, Uz T, Manev H. Fluoxetine increases the content of neurotrophic protein S100beta in the rat hippocampus. Eur J Pharmacol. 2001;420:R1–R2.
  • Hsieh YC, Puche AC. GABA modulation of SVZ-derived progenitor ventral cell migration. Dev Neurobiol. 2015;75:791–804.
  • Salari AA, Bakhtiari A, Homberg JR. Activation of GABA-A receptors during postnatal brain development increases anxiety- and depression-related behaviors in a time- and dose-dependent manner in adult mice. Eur Neuropsychopharmacol. 2015;28:1260–1274.
  • Nocjar C, Alex KD, Sonneborn A, et al. Serotonin-2C and -2A receptor co-expression on cells in the rat medial prefrontal cortex. Neuroscience. 2015;297:22–37.
  • Fischell J, Van Dyke AM, Kvarta MD, et al. Rapid antidepressant action and restoration of excitatory synaptic strength after chronic stress by negative modulators of alpha5-containing GABAA receptors. Neuropsychopharmacology. 2015;40:2499–2509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.