238
Views
1
CrossRef citations to date
0
Altmetric
Articles

Elevated serum S100B levels in medication naïve children and adolescents with obsessive-compulsive disorder

, , , &
Pages 502-508 | Received 14 Dec 2020, Accepted 22 Feb 2021, Published online: 22 Mar 2021

References

  • American Psychiatric Association, 2013. Diagnostic and statistical manual of mental disorders. 5th ed. Washington, DC: American Psychiatric Publishing, Inc.
  • Douglass H, Moffitt T, Dar R, et al. Obsessive-compulsive disorder in a birth cohort of 18-year-olds: prevalence and predictors. J Am Acad Child Adolesc Psychiatry. 1995;34(11):1424–1431.
  • Heyman I, Fombonne E, Simmons H, et al. Prevalence of obsessive-compulsive disorder in the British nationwide survey of child mental health. Br J Psychiatry. 2001;179:324–329.
  • Kessler RC, Berglund P, Demler O, et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry. 2005;62(6):593–602.
  • Micali N, Heyman I, Perez M, et al. Long-term outcomes of obsessive-compulsive disorder: follow-up of 142 children and adolescents . Br J Psychiatry. 2010;197(2):128–134.
  • Schwartzman CM, Boisseau CL, Sibrava NJ, et al. Symptom subtype and quality of life in obsessive-compulsive disorder. Psychiatry Res. 2017;249:307–310.
  • Skoog G, Skoog I. A 40-year follow-up of patients with obsessive-compulsive disorder. Arch Gen Psychiatry. 1999;56(2):121–127.
  • Stewart SE, Geller DA, Jenike M, et al. Long-term outcome of pediatric obsessive-compulsive disorder: a meta-analysis and qualitative review of the literature. Acta Psychiatr Scand. 2004;110(1):4–13.
  • Storch EA, Larson MJ, Muroff J, et al. Predictors of functional impairment in pediatric obsessive-compulsive disorder. J Anxiety Disord. 2010;24(2):275–283.
  • Wewetzer C, Jans T, Müller B, et al. Long-term outcome and prognosis of obsessive-compulsive disorder with onset in childhood or adolescence. Eur Child Adolesc Psychiatry. 2001;10(1):37–46.
  • Hirschtritt ME, Bloch MH, Mathews CA. Obsessive-compulsive disorder: advances in diagnosis and treatment. J Am Med Assoc. 2017;317(13):1358–1367.
  • Taylor S, Asmundson GJG, Jang KL. Etiology of obsessions and compulsions: general and specific genetic and environmental factors. Psychiatry Res. 2016;237:17–21.
  • Hazari N, Narayanaswamy JC, Venkatasubramanian G. Neuroimaging findings in obsessive–compulsive disorder: a narrative review to elucidate neurobiological underpinnings. Indian J Psychiatry. 2019;61(7):9–29.
  • Ozcan H, Ozer S, Yagcioglu S. Neuropsychological, electrophysiological and neurological impairments in patients with obsessive compulsive disorder, their healthy siblings and healthy controls: identifying potential endophenotype(s). Psychiatry Res. 2016;240:110–117.
  • Taylor S. Disorder-specific genetic factors in obsessive-compulsive disorder: a comprehensive meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2016;171B(3):325–332.
  • Gerentes M, Pelissolo A, Rajagopal K, et al. Obsessive-compulsive disorder: autoimmunity and neuroinflammation. Curr Psychiatry Rep. 2019;21(8):78.
  • Frick L, Pittenger C. Microglial dysregulation in OCD, tourette syndrome, and PANDAS. J Immunol Res. 2016;2016:8606057–8606058.
  • Bachiller S, Jiménez-Ferrer I, Paulus A, et al. Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci. 2018;12:488–417.
  • Ramirez K, Fornaguera-Trìas J, Sheridan JF. 2017. Stress-induced microglia activation and monocyte trafficking to the brain underlie the development of anxiety and depression. In Current topics in behavioral neurosciences.  Berlin, Germany: Springer Cham. p. 155–172.
  • Stein DJ, Vasconcelos MF, Albrechet-Souza L, et al. Microglial over-activation by social defeat stress contributes to anxiety-and depressive-like behaviors. Front Behav Neurosci. 2017;11:207.
  • Donato R. S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. Int J Biochem Cell Biol. 2001;33(7):637–668.
  • Donato R, Cannon R, Sorci B, et al. Functions of S100 proteins. CMM. 2012;13(1):24–57.
  • Donato R, Sorci G, Riuzzi F, et al. S100B's double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009;1793(6):1008–1022.
  • Alexanian AR, Bamburg JR. Neuronal survival activity of s100betabeta is enhanced by calcineurin inhibitors and requires activation of NF-kappaB. Faseb J. 1999;13(12):1611–1620.
  • Mariggió MA, Fulle S, Calissano P, et al. The brain protein S-100ab induces apoptosis in PC12 cells. Neuroscience. 1994;60(1):29–35.
  • Michetti F, D'Ambrosi N, Toesca A, et al. The S100B story: from biomarker to active factor in neural injury. J Neurochem. 2019;148(2):168–187.
  • Kroksmark H, Vinberg M. Does S100B have a potential role in affective disorders? A literature review. Nord J Psychiatry. 2018;72(7):462–470.
  • Schümberg K, Polyakova M, Steiner J, et al. Serum s100b is related to illness duration and clinical symptoms in Schizophrenia-A meta-regression analysis. Front Cell Neurosci. 2016;10:46.
  • Tomova A, Keményová P, Filčíková D, et al. Plasma levels of glial cell marker S100B in children with autism. Physiol Res. 2019;68:315–323.
  • Foa EB, Coles M, Huppert JD, et al. Development and validation of a child version of the obsessive compulsive inventory. Behav Ther. 2010;41(1):121–132.
  • Seçer I. Adapting the child version of obsessive-compulsive inventory into Turkish: the study of reliability and validity. Educ Sci. 2014;39(176):355–367.
  • Liu L, Li Y, Van Eldik LJ, et al. S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors. J Neurochem. 2005;92(3):546–553.
  • Ponath G, Schettler C, Kaestner F, et al. Autocrine S100B effects on astrocytes are mediated via RAGE. J Neuroimmunol. 2007;184(1–2):214–222.
  • Sheng JG, Ito K, Skinner RD, et al. In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol Aging. 1996;17(5):761–766.
  • Çolak Sivri R, Bilgiç A, Kılınç İ. Cytokine, chemokine and BDNF levels in medication-free pediatric patients with obsessive–compulsive disorder. Eur Child Adolesc Psychiatry. 2018;27(8):977–984.
  • Şimşek Ş, Yüksel T, Çim A, et al. Serum cytokine profiles of children with obsessive-compulsive disorder shows the evidence of autoimmunity. IJNPPY. 2016;19(8):pyw027.
  • Attwells S, Setiawan E, Wilson AA, et al. Inflammation in the neurocircuitry of obsessive-compulsive disorder. JAMA Psychiatry. 2017;74(8):833–840.
  • Behl A, Swami G, Sircar SS, et al. Relationship of possible stress-related biochemical markers to oxidative/antioxidative status in obsessive-compulsive disorder. Neuropsychobiology. 2010;61(4):210–214.
  • Kandemir H, Abuhandan M, Aksoy N, et al. Oxidative imbalance in child and adolescent patients with obsessive compulsive disorder. J Psychiatr Res. 2013;47(11):1831–1834.
  • Shrivastava A, Kar SK, Sharma E, et al. A study of oxidative stress biomarkers in obsessive compulsive disorder. J Obsessive Compuls Relat Disord. 2017;15:52–56.
  • Bilgiç A, Çolak Sivri R, Kılınç İ. 8-F2-isoprostane, thioredoxin and thioredoxin reductase levels in children with obsessive-compulsive disorder. Nord J Psychiatry. 2018;72(7):484–488.
  • Maia A, Oliveira J, Lajnef M, et al. Oxidative and nitrosative stress markers in obsessive-compulsive disorder: a systematic review and meta-analysis. Acta Psychiatr Scand. 2019;139(5):420–433.
  • Tsai MC, Huang TL. Decreased S100B serum levels after treatment in bipolar patients in a manic phase. Compr Psychiatry. 2017;74:27–34.
  • Shapiro LA, Bialowas-McGoey LA, Whitaker-Azmitia PM. Effects of S100B on serotonergic plasticity and neuroinflammation in the hippocampus in down syndrome and Alzheimer’s disease: studies in an S100B overexpressing mouse model. Cardiovasc Psychiatry Neurol. 2010;2010:1–13.
  • Ramos AJ, Rubio MD, Defagot C, et al. The 5HT1A receptor agonist, 8-OH-DPAT, protects neurons and reduces astroglial reaction after ischemic damage caused by cortical devascularization. Brain Res. 2004;1030(2):201–220.
  • Yoon YJ, McKenna MC, Rollins DA, et al. Anxiety-associated alternative polyadenylation of the serotonin transporter mRNA confers translational regulation by hnRNPK. Proc Natl Acad Sci USA. 2013;110(28):11624–11629.
  • Stroth N, Svenningsson P. S100B interacts with the serotonin 5-HT7 receptor to regulate a depressive-like behavior. Eur Neuropsychopharmacol. 2015;25(12):2372–2380.
  • Derksen M, Feenstra M, Willuhn I, et al. 2020. The serotonergic system in obsessive-compulsive disorder. In: Muller C, Cunningham KA, editors. Handbook of behavioral neuroscience. London: Elsevier (Academic Press Inc). p. 865–891.
  • Sinopoli VM, Burton CL, Kronenberg S, et al. A review of the role of serotonin system genes in obsessive-compulsive disorder. Neurosci Biobehav Rev. 2017;80:372–381.
  • Hedlund PB, Sutcliffe JG. The 5-HT7 receptor influences stereotypic behavior in a model of obsessive-compulsive disorder. Neurosci Lett. 2007;414(3):247–251.
  • Lin SH, Lee LT, Yang YK. Serotonin and mental disorders: a concise review on molecular neuroimaging evidence. Clin Psychopharmacol Neurosci. 2014;12(3):196–202.
  • Schroeter ML, Sacher J, Steiner J, et al. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets. 2013;14(11):1237–1248.
  • Schroeter ML, Abdul-Khaliq H, Krebs M, et al. Neuron-specific enolase is unaltered whereas S100B is elevated in serum of patients with schizophrenia-original research and meta-analysis. Psychiatry Res. 2009;167(1–2):66–72.
  • Steiner J, Schiltz K, Walter M, et al. S100B serum levels are closely correlated with body mass index: an important caveat in neuropsychiatric research. Psychoneuroendocrinology. 2010;35(2):321–324.
  • Ferri GL, Probert L, Cocchia D, et al. Evidence for the presence of S-100 protein in the glial component of the human enteric nervous system. Nature. 1982;297(5865):409–410.
  • Hofmann MA, Drury S, Fu C, et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell. 1999;97(7):889–901.
  • Turco F, Sarnelli G, Cirillo C, et al. Enteroglial-derived S100B protein integrates bacteria-induced Toll-like receptor signalling in human enteric glial cells. Gut. 2014;63(1):105–115.
  • Jung TD, Jung PS, Raveendran L, et al. Changes in gut microbiota during development of compulsive checking and locomotor sensitization induced by chronic treatment with the dopamine agonist quinpirole. Behav Pharmacol. 2018;29(2 and 3-Spec Issue):211–224.
  • Macphail EC, Reimer R, Arnold PD. A314 A characterization of nutrition status and gut microbiota in obsessive-compulsive disorder (OCD) in youth. J Can Assoc Gastroenterol. 2018;1(suppl_2):451–452.
  • Scheepers IM, Cryan JF, Bastiaanssen TFS, et al. Natural compulsive-like behaviour in the deer mouse (Peromyscus maniculatus bairdii) is associated with altered gut microbiota composition. Eur J Neurosci. 2020;51(6):1419–1427.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.