Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 61, 2014 - Issue 5
335
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Coupled asteroid impacts and banded iron-formations, Fortescue and Hamersley Groups, Pilbara, Western Australia

&
Pages 689-701 | Received 07 Jan 2014, Accepted 24 Feb 2014, Published online: 12 May 2014

REFERENCES

  • Alibert C. & McCulloch M. T. 1993. Rare earth element and neodymium composition of the banded iron-formations and associated shales from Hamersley, Western Australia. Geochimica Cosmochimica Acta 57, 187–204.
  • Arndt N. T., Nelson D. R., Compston W., Trendall A. F. & Thorne A. M. 1991. The age of the Fortescue Group, Hamersley Basin, Western Australia, from ion microprobe zircon U–Pb results. Australian Journal of Earth Sciences 38, 261–281.
  • Barley M. E., Pickard A. L. & Sylvester P. J. 1997. Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 385, 55–58.
  • Beard B. L., Johnson C. M., Skulan J. L., Nealson K. H., Cox L. & Dun H. 2003. Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chemical Geology 195, 87–117.
  • Beukes N. J. & Klein C. 1992. Models for iron-formation deposition. In: Schopf J. W. & Klein C. eds. The Proterozoic Biosphere: A Multidisciplinary Study, pp. 147–151. Cambridge University Press, Cambridge.
  • Blake T. S., Buick R., Brown S. J. A. & Barley M. E. 2004. Geochronology of a Late Archaean flood basalt province in the Pilbara Craton, Australia: constraints on basin evolution, volcanic and sedimentary accumulation, and continental drift rates. Precambrian Research 133, 143–173.
  • Byerly G. R., Lowe D. R., Wooden G. L. & Xiagogang X. 2002. A meteorite impact layer 3470 Ma from the Pilbara and Kaapvaal Cratons. Science 297, 1325–1327.
  • Cloud P. 1973. Paleoecological significance of the banded iron formation. Economic Geology 68, 1135–1143.
  • Dimroth E. 1976. Aspects of the sedimentary petrology of cherty iron-formation. In: Wolf K. H. ed. Handbook of Stratabound Ore Deposits, Vol. 7, pp. 83–88. Elsevier, New York.
  • Elkin-Tanton L. T. 2005 Giant meteoroid impacts can cause volcanism. Earth and Planetary Science Letters 239, 219–232.
  • Ewers W. E. & Morris R. C. 1981. Studies of the Dales Gorge Member of the Brockman Iron Formation, Western Australia. Economic Geology 76, 1929–1953.
  • Glikson A. Y. 2004. Early Precambrian asteroid impact-triggered tsunami: excavated seabed, debris flows, exotic boulders, and turbulence features associated with 3.472 Ga-old asteroid impact fallout units, Pilbara Craton, Western Australia. Astrobiology 4, 5–19.
  • Glikson A. Y. 2006. Asteroid impact ejecta units overlain by iron-rich sediments in 3.5–2.4 Ga terrains, Pilbara and Kaapvaal cratons: accidental or cause–effect relationships? Earth and Planetary Science Letters 246, 149–160.
  • Glikson A.Y. 2013. The Asteroid Impact Connection of Planetary Evolution, pp. 67–85. Springer, Dordrecht.
  • Glikson A. Y. & Allen C. 2004. Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Hamersley Basin, Western Australia: evidence for a major asteroid impact in simatic crustal regions of the early Proterozoic Earth. Earth and Planetary Science Letters 220, 247–264.
  • Glikson A. Y. & Vickers J. 2007. Asteroid mega-impacts and Precambrian banded iron formations: 2.63 Ga and 2.56 Ga impact ejecta/fallout at the base of BIF/argillite units, Hamersley Basin, Pilbara Craton, Western Australia. Earth and Planetary Science Letters 254, 214–226.
  • Glikson A.Y. & Vickers J. 2010. The asteroid impact connections of crustal evolution. Australian Journal of Earth Science 57, 79–95.
  • Glikson A. Y., Ivanov B. & Melosh H. J. 2004. Impacts do not initiate volcanic eruptions close to the crater: comment and reply. Geology 32, On-line Forum e47–e48.
  • Griffin W. L., Belousova E. A., She S. R., Pearson N. J. & O'Reilly S. Y. 2004. Archaean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–282.
  • Hall H. C. & Bates M. P. 1990. The evolution of the 2.45 Ga Matachewan dyke swarm. In: Parker A. J., Rickwood P. C. & Tucker D. H. eds. Mafic dykes and emplacement mechanisms, pp. 237–249. A. A. Balkema, Rotterdam.
  • Hamade T., Konhauser K. O., Raiswell R., Goldsmith S. & Morris R. C. 2003. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron-formations. Geology 31, 35–38.
  • Hassler S. W., Robey H. F. & Simonson B. M. 2000. Bedforms produced by impact-generated tsunami, 2.6 Ga Hamersley Basin, Western Australia. Sedimentary Geology 135, 283–294.
  • Hassler S. W., Simonson B. M., Sumner D. Y. & Murphy M. 2005. Neoarchean impact spherule layers in the Fortescue and Hamersley group, Western Australia: stratigraphic and depositional implications of re-correlation. Australian Journal of Earth Science 52, 759–771.
  • Hassler S. W., Simonson B. M., Sumner D. Y. & Bodin L. 2011. Paraburdoo spherule layer, Hamersley Basin, Western Australia: Distal ejecta from a fourth large impact near the Archaean–Proterozoic boundary. Geology 39, 307–310.
  • Heaman L. M. 1997. Global mafic magmatism at 2.45 Ga: remnants of an ancient large igneous province? Geology 25, 299–302.
  • Hickman A. H. 2012. Review of the Pilbara Craton and Fortescue Basin, Western Australia: Crustal evolution providing environments for early life. Island Arc 21, 1–31.
  • Holland H. D. 1973. The oceans: a possible source of iron in iron formations. Economic Geology 68, 1169–1172.
  • Hurst J., Krapež B. & Hawke P. 2013. Stratigraphy of the Marra Mamba Iron Formation within the Chichester Range and its implications for Iron Ore Genesis at Roy Hill – Evidence from Deep Diamond Drill Holes within the East Fortescue Valley. Iron Ore, Aus IMM The Minerals Institute 2013, p. 95
  • Ivanov B. A. & Melosh H. J. 2003. Impacts do not initiate volcanic eruptions: eruptions close to the crater. Geology 31, 869–872.
  • James H. L. & Trendall A. F. 1982. Banded iron-formation: distribution in time and paleo-environmental significance. In: Holland H. D. & Schidlowski M. eds. Mineral Deposits and the Evolution of the Biosphere, pp. 199–218. Springer-Verlag, New York.
  • Klein C. & Beukes N. J 1992. Time distribution, stratigraphy, and sedimentologic setting and geochemistry of banded iron formations. In: Schopf J. W. & Klein C. eds. The Proterozoic Biosphere: A Multidisciplinary Study, pp. 139–146. Cambridge University Press, Cambridge.
  • Krapež B., Barley M. E. & Pickard A. L. 2003. Hydrothermal and resedimented origins for the precursor sediments to banded iron formations: Sedimentological evidence from the early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 50, 979–1011.
  • La Berge G. L. 1966. Altered pyroclastic rocks in iron formation in the Hamersley Range, Western Australia. Economic Geology 61, 147–161.
  • Lowe D. R., Byerly G. R., Kyte F. T., Shukolyukov A., Asaro F. & Krull A. 2003. Spherule beds 3.47–3.34 Ga-old in the Barberton greenstone belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution. Astrobiology 3, 7–48.
  • Margoulis L., Walker J. C. G. & Rambler M. 1976. Reassessment of the roles of oxygen and ultraviolet light in Precambrian evolution. Nature 264, 620–624.
  • Morris R. C. 1993. Genetic modeling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Research 60, 243–286.
  • Morris R. C. & Horwitz R. 1983. The origin of the iron-formation-rich Hamersley Group of Western Australia – deposition on a platform. Precambrian Research 21, 197–273.
  • Nelson D. R., Trendall A. F. & Altermann W. 1999. Chronological correlations between the Pilbara and Kaapvaal cratons. Precambrian Research 97, 165–189.
  • Ohmoto H. & Felder R. P. 1987. Bacterial activity in the warmer, sulphate-bearing Archaean oceans. Nature 328, 244–246.
  • Rasmussen B. & Koeberl C. 2004. Iridium anomalies and shocked quartz in a Late Archean spherule layer from the Pilbara craton: new evidence for a major asteroid impact at 2.63 Ga. Geology 32, 1029–1032.
  • Rasmussen B., Blake T. S. & Fletcher I. R. 2005. U–Pb zircon age constraints on the Hamersley spherule beds: evidence for a single 2.63 Ga Jeerinah-Carawine impact ejecta layer. Geology 33, 725–728.
  • Simonson B. M. 1992. Geological evidence for an early Precambrian microtektite strewn field in the Hamersley Basin of Western Australia. Geological Society America Bulletin 104, 829–839.
  • Simonson B. M., Davies D. & Hassler S. W. 2000. Discovery of a layer of probable impact melt spherules in the late Archaean Jeerinah Formation, Fortescue Group, Western Australia. Australian Journal of Earth Sciences 47, 315–325.
  • Simonson B. M., Cardiff M. & Schubel K. A. 2001. New evidence that a spherule layer in the late Archaean Jeerinah Formation of Western Australia was produced by a major impact. In: 32nd Lunar and Planetary Science Conference Abstracts, Abstract 1141, LPI Contribution No. 1080, Lunar and Planetary Institute, Houston.
  • Thorne A. M. & Trendall A. F. 2001. Geology of the Fortescue Group, Pilbara Craton, Western Australia. Geological Survey Western Australia Bulletin 144, 249.
  • Trendall A. F. 2002. The significance of iron-formation in the Precambrian stratigraphic record. In: Altermann W. & Corcoran P. L. eds. Precambrian Sedimentary Environments: A Modern Approach to Depositional Systems, pp. 33–66. IAS Special Publication 44, Blackwell, Oxford.
  • Trendall A. F. & Blockley J. G. 1970. The iron-formations of the Precambrian Hamersley Group, Western Australia: with special reference to associated crocidolite. Bulletin Geological Survey of Western Australia 119, 336 pp.
  • Trendall A. F. & Blockley J. G. 2004. Precambrian iron-formations. In: Eriksson P. G., Altermann W., Nelson D. R., Mueller W. U. & Catuneanu O. eds. The Precambrian Earth: Tempos and Events in Precambrian Time, pp. 403–421. Developments in Precambrian Geology 12. Elsevier, Amsterdam.
  • Trendall A. F., Nelson D. R., de Laeter J. R. & Hassler S. W. 1998. Precise zircon U–Pb ages from the Marra Mamba Iron Formation and Wittenoom Formation, Hamersley Group, Western Australia. Australian Journal Earth Science 45, 137–142.
  • Trendall A. F., Compston W., Nelson D. R., de Laeter J. R. & Bennett V. C. 2004. SHRIMP zircon ages constraining the depositional chronology of the Hamersley Group, Western Australia. Australian Journal of Earth Sciences 51, 621–644.
  • Williams I. R. 2003. Western Australia. Geological Survey of Western Australia 1.100 000 Map Series: Geology of the Yilgalong 1.100 000 Sheet, Western Australian Government Printer, Perth.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.