Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 66, 2019 - Issue 7
257
Views
14
CrossRef citations to date
0
Altmetric
Articles

Pore-structure characterisation of tectonically deformed shales: a case study of Wufeng-Longmaxi Formation in western Hunan Province, southern China

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1075-1084 | Received 25 Dec 2018, Accepted 26 Jan 2019, Published online: 07 Apr 2019

References

  • Bernard, S., Horsfield, B., Schulz, H. M., Wirth, R., Schreiber, A., & Sherwood, N. (2012a). Geochemical evolution of organic-rich shales with increasing maturity: A STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Marine and Petroleum Geology, 31(1), 70–89. doi:10.1016/j.marpetgeo.2011.05.010
  • Bernard, S., Wirth, R., Schreiber, A., Schulz, H. M., & Horsfield, B. (2012b). Formation of nanoporous pyrobitumen residues during maturation of the Barnett Shale (Fort Worth Basin). International Journal of Coal Geology, 103(23), 3–11. doi:10.1016/j.coal.2012.04.010
  • Chalmers, G. R., Bustin, R. M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bulletin, 96, 1099–1119. doi:10.1306/10171111052
  • Chen, J., & Xiao, X. M. (2014). Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel, 129, 173–181. doi:10.1016/j.fuel.2014.03.058
  • Clarkson, C. R., Solano, N., Bustin, R. M., Bustin, A. M. M., Chalmers, G. R. L., He, L., … Blach, T. P. (2013). Pore structure characterization of North American shale gas reservoirs: Using USANS/SANS, gas adsorption, and mercury intrusion. Fuel, 103, 606–616. doi:10.1016/j.fuel.2012.06.119
  • Curtis, M. E., Cardott, B. J., Sondergeld, C. H., & Rai, C. S. (2012). Development of organic porosity in the Woodford shale with increasing thermal maturity. International Journal of Coal Geology, 103(23), 26–31. doi:10.1016/j.coal.2012.08.004
  • Gale, J. F., Reed, R. H., & Holder, J. (2007). Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bulletin, 91(4), 603–622. doi:10.1306/11010606061
  • Guo, X., Hu, D., Li, Y. P., & Wang, Q. (2014). Geological features and reservoiring mode of shale gas reservoirs in Longmaxi formation of the Jiaoshiba area. Acta Geologica Sinica, 88(6), 1811–1821. doi:10.1111/1755-6724.12347
  • Heath, J. E., Dewers, T. A., Mcpherson, B. J. O. L., Petrusak, R., Chidsey, T. C., Rinehart, A. J., & Mozley, P. S. (2015). Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior. Geosphere, 7(2), 429–454. doi:10.1111/1755-6724.12347
  • Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of northcentral Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499. doi:10.1306/12190606068
  • Jennings, D. S., Antia, J., Camp, W. K., Diaz, E., & Wawak, B. (2013). Petrographic characterization of the Eagle Ford Shale, South Texas: Mineralogy, common constituents, and distribution of nanometer-scale pore types. In W. K. Camp, E. Diaz & B. Wawak (Eds.), Electron microscopy of shale hydrocarbon reservoirs (pp. 101–113). Tulsa, OK: AAPG Memoir, 102.
  • Ji, W. M., Song, Y., Jiang, Z. X., Chen, L., Li, Z., Yang, X., & Meng, M. M. (2015). Estimation of marine shale methane adsorption capacity based on experimental investigations of lower Silurian Longmaxi formation in the upper Yangtze platform, south China. Marine and Petroleum Geology, 68, 94–106. doi:10.1016/j.marpetgeo.2015.08.012
  • Ji, W. M., Song, Y., Rui, Z. H., Meng, M. M., & Huang, H. X. (2017). Pore characterization of isolated organic matter from high matured gas shale reservoir. International Journal of Coal Geology, 174, 31–40. doi:10.1016/j.coal.2017.03.005
  • Ju, Y. W., Sun, Y., Tan, J. Q., Bu, H. L., Han, K., Li, X. S., & Fang, L. Z. (2018). The composition, pore structure characterization and deformation mechanism of coal-bearing shales from tectonically altered coalfields in eastern China. Fuel, 234, 626–642. doi:10.1016/j.fuel.2018.06.116
  • Kinley, T. J., Cook, L. W., Breyer, J. A., Jarvie, D. M., & Busbey, A. B. (2008). Hydrocarbon potential of the Barnett Shale (Mississippian), Delaware Basin, west Texas and southeastern New Mexico. AAPG Bulletin, 92(8), 967–991. doi:10.1306/03240807121
  • Liang, M. L., Wang, Z. X., Gao, L., Li, C. L., & Li, H. J. (2017). Evolution of pore structure in gas shale related to structural deformation. Fuel, 197, 310–319. doi:10.1016/j.fuel.2017.02.035
  • Liu, Y., Xiong, Y., Li, Y., & Peng, P. A. (2017). Effects of oil expulsion and pressure on nanopore development in highly mature shale: Evidence from a pyrolysis study of the Eocene Maoming oil shale, south China. Marine and Petroleum Geology, 86, 526–536. doi:10.1016/j.marpetgeo.2017.06.012
  • Long, Y. K. (2011). Lower Paleozoic shale gas exploration potential in the central Yangtze area, China. Geological Bulletin of China, 30, 344–348. doi:10.1007/s12182-011-0118-0
  • Loucks, R. G., & Reed, R. M. (2014). Scanning-electron microscope petrographic evidence for distinguishing organic-matter pores associated with depositional organic matter versus migrated organic matter in mudrock. GCAGS Transactions, 3, 51–60.
  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Jarvie, D. M. (2009). Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12), 848–861. doi:10.2110/jsr.2009.092
  • Loucks, R. G., Reed, R. M., Ruppel, S. C., & Hammes, U. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96(6), 1071–1098. doi:10.1306/08171111061
  • Ma, Y., Zhong, N. N., Li, D. H., Pan, Z. J., Cheng, L. J., & Liu, K. Y. (2015). Organic matter/clay mineral intergranular pores in the lower Cambrian Lujiaping shale in the north-eastern part of the upper Yangtze area, China: A possible microscopic mechanism for gas preservation. International Journal of Coal Geology, 137, 38–54. doi:10.1016/j.coal.2014.11.001
  • Mastalerz, M., Schimmelmann, A., Drobniak, A., & Chen, Y. (2013). Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bulletin, 97(10), 1621–1643. doi:10.1306/04011312194
  • Morley, C. K., von Hagke, C., Hansberry, R. L., Collins, A. S., Kanitpanyacharoen, W., & King, R. (2017). Review of major shale-dominated detachment and thrust characteristics in the diagenetic zone: Part I, meso- and macro-scopic scale. Earth-Sci Reviews, 173, 168–228. doi:10.1016/j.earscirev.2017.07.019
  • Mullen, M. J., & Enderlin, M. B. (2012). Fracability index – more than rock properties. SPE Annual Technical Conference and Exhibition, San Antonio, USA (pp. 10). Richardson, TX: Society of Petroleum Engineers.
  • Nygard, R., Gutierrez, M., Bratli, R., & Høeg, K. (2006). Brittle–ductile transition, shear failure and leakage in shales and mudrocks. Marine and Petroleum Geology, 23(2), 201–212. doi:10.1016/j.marpetgeo.2005.10.001
  • Pan, J. N., Hou, Q. L., Ju, Y. W., Bai, H. L., & Zhao, Y. Q. (2012). Coalbed methane sorption related to coal deformation structures at different temperatures and pressures. Fuel, 102, 760–765. doi:10.1016/j.fuel.2012.07.023
  • Pan, J. N., Zhu, H. T., Hou, Q. L., Wang, H. C., & Wang, S. (2015). Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy. Fuel, 139, 94–101. doi:10.1016/j.fuel.2014.08.039
  • Pommer, M., & Milliken, K. (2015). Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas. AAPG Bulletin, 99(09), 1713–1744. doi:10.1306/03051514151
  • Rickman, R., Mullen, M. J., Petre, J. E., Grieser, W. V., & Kundert, D. (2008). A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett Shale. In SPE Annual Technical Conference and Exhibition, Denver, USA. Richardson, TX: Society of Petroleum Engineers.
  • Ross, D. J. K., & Bustin, M. (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Marine and Petroleum Geology, 26(6), 916–927. doi:10.1016/j.marpetgeo.2008.06.004
  • Rybacki, E., Meier, T., & Dresen, G. (2016). What controls the mechanical properties of shale rocks? – Part II: Brittleness. Journal of Petroleum Science and Engineering, 144, 39–58. doi:10.1016/j.petrol.2016.02.022
  • Schieber, J. (2010). Common themes in the formation and preservation of intrinsic porosity in shales and mudstones-illustrated with examples across the Phanerozoic. In SPE Unconventional Gas Conference, Florence, Italy. Richardson, TX: Society of Petroleum Engineers.
  • Sing, K. S., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewsha, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57(4), 603–619. doi:10.1351/pac198254112201
  • Sun, L., Tuo, J. C., Zhang, M. F., Wu, C. J., Wang, Z. X., & Zheng, Y. W. (2015). Formation and development of the pore structure in Chang 7 Member oil-shale from Ordos Basin during organic matter evolution induced by hydrous pyrolysis. Fuel, 158(1), 549–557. doi:10.1016/j.fuel.2015.05.061
  • Sun, M. D., Yu, B. S., Hu, Q. H., Yang, R., Zhang, Y. F., & Li, B. (2017). Pore connectivity and tracer migration of typical shales in south China. Fuel, 203, 32–46. doi:10.1016/j.fuel.2017.04.086
  • Tan, J., Weniger, P., Krooss, B., Merkel, A., Horsfield, B., Zhang, J., … Tocher, B. A. (2014). Shale gas potential of the major marine shale formations in the upper Yangtze platform, south China, Part III: Mineralogical, lithofacial, petrophysical, and rock mechanical properties. Energy and Fuel, 129(4), 204–218. doi:10.1021/ef4022703
  • Tang, X. L., Jiang, Z. X., Jiang, S., & Li, Z. (2016). Heterogeneous nanoporosity of the Silurian Longmaxi formation shale gas reservoir in the Sichuan Basin using the QEMSCAN, FIB-SEM, and nano-CT methods. Marine and Petroleum Geology, 78, 99–109. doi:10.1016/j.marpetgeo.2016.09.010
  • Wang, G. C., Ju, Y. W., Yan, Z. F., & Li, Q. G. (2015). Pore structure characteristics of coal-bearing shale using fluid invasion methods: A case study in the Huainan–Huaibei Coalfield in China. Marine and Petroleum Geology, 62, 1–13. doi:10.1016/j.marpetgeo.2015.01.001
  • Wang, X.-L., Zhou, J.-C., Griffin, W. L., Zhao, G., Yu, J.-H., Qiu, J.-S., … Xing, G.-F. (2014). Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan Orogen, China. Precambrian Research, 242(2), 154–171. doi:10.1016/j.precamres.2013.12.023
  • Wang, P. F., Jiang, Z. X., Ji, W. M., Zhang, C., Yuan, Y., Chen, L., & Yin, L. S. (2016). Heterogeneity of intergranular, intraparticle and organic pores in Longmaxi shale in Sichuan Basin, south China: Evidence from SEM digital images and fractal and multifractal geometries. Marine and Petroleum Geology, 72, 122–138. 2016.01.020 doi:10.1016/j.marpetgeo.2016.01.020
  • Wang, Y., Zhu, Y., Liu, S., & Zhang, R. (2016). Pore characterization and its impact on methane adsorption capacity for organic-rich marine shales. Fuel, 181, 227–237. doi:10.1016/j.fuel.2016.04.082
  • Yang, F., Ning, Z. F., & Liu, H. Q. (2013). Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 115(1), 378–384. fuel.2013.07.040 doi:10.1016/j.fuel.2013.07.040
  • Yang, R., He, S., Hu, Q. H., Hu, D. F., Zhang, S. W., & Yi, J. Z. (2016). Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the southeast Sichuan Basin, China. Marine and Petroleum Geology, 77, 247–261. doi:10.1016/j.marpetgeo.2016.06.001
  • Zeng, W. T., Zhang, J. C., Ding, W. L., Song, Z., Zhang, Y. Q., Liu, Z., & Jiu, K. (2013). Fracture development in Paleozoic shale of Chongqing area (south china). Part one: Fracture characteristics and comparative analysis of main controlling factors. Journal of Asian Earth Sciences, 75(8), 251–266. doi:10.1016/j.jseaes.2013.07.014
  • Zhao, W. Z., Li, J. Z., Yang, T., Wang, S. F., & Huang, J. L. (2016). Geological difference and its significance of marine shale gases in south china. Petroleum Exploration and Development, 43(4), 547–559. doi:10.1016/S1876-3804(16)30065-9
  • Zhu, H. J., Ju, Y. W., Qi, Y., Huang, C., & Zhang, L. (2018). Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks. Fuel, 228, 272–289. doi:10.1016/j.fuel.2018.04.137

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.