Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 67, 2020 - Issue 1
359
Views
11
CrossRef citations to date
0
Altmetric
Articles

Geochemistry and sedimentology of the Upper Ordovician–lower Silurian black shale in the northern margin of the Upper Yangtze Platform, South China: implications for depositional controls on organic-matter accumulation

ORCID Icon, ORCID Icon, &
Pages 129-150 | Received 13 Oct 2018, Accepted 23 May 2019, Published online: 17 Jul 2019

References

  • Abouelresh, M. O., & Slatt, R. M. (2012). Lithofacies and sequence stratigraphy of the Barnett Shale in east-central Fort Worth Basin, Texas. AAPG Bulletin, 96(1), 1–22. doi:10.1306/04261110116
  • Algeo, T. J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., … Maynard, J. B. (2011). Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian–Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1–2), 65–83. doi:10.1016/j.palaeo.2010.07.007
  • Algeo, T. J., & Lyons, T. W. (2006). Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography and Paleoclimatology, 21(1), PA1016. doi:10.1029/2004PA001112
  • Algeo, T. J., & Maynard, J. B. (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206(3–4), 289–318. doi:10.1016/j.chemgeo.2003.12.009
  • Algeo, T. J., & Rowe, H. (2012). Paleoceanographic applications of trace-metal concentration data. Chemical Geology, 324–325, 6–18. doi:10.1016/j.chemgeo.2011.09.002
  • Bohacs, K. M., Grabowski, G. J., Carroll, A. R., Mankiewicz, P. J., Miskellgerhardt, K. J., Schwalbach, J. R., … Simo, J. A. (2005). Production, destruction, and dilution: the many paths to source-rock development. In N. B. Harris (Ed.), The Deposition of Organic Carbon-rich Sediments (pp. 61–101). Tulsa, OK: Society for Sedimentary Geology, Special Publication 82. (SEPM)
  • Bond, D., Wignall, P. B., & Racki, G. (2004). Extent and duration of marine anoxia during the Frasnian–Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France. Geological Magazine, 141(2), 173–193. doi:10.1017/S0016756804008866
  • Bowker, K. A. (2007). Barnett Shale gas production, Fort Worth Basin: Issues and discussion. AAPG Bulletin, 91(4), 523–533. doi:10.1306/06190606018
  • Calvert, S., & Pedersen, T. (1993). Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 113(1–2), 67–88. doi:10.1016/0025-3227(93)90150-T
  • Camp, W. K., Egenhoff, S., Schieber, J., & Slatt, R. M. (2016). A compositional classification for grain assemblages in fine-grained sediments and sedimentary rocks—discussion. Journal of Sedimentary Research, 86(1), 1–5. doi:10.2110/jsr.2015.100
  • Caplan, M. L., & Bustin, R. (2001). Palaeoenvironmental and palaeoceanographic controls on black, laminated mudrock deposition: Example from Devonian–Carboniferous strata, Alberta, Canada. Sedimentary Geology, 145(1–2), 45–72. doi:10.1016/S0037-0738(01)00116-6
  • Carballo, J. D., Land, L. S., & Miser, D. E. (1987). Holocene dolomitization of supratidal sediments by active tidal pumping, Sugarloaf Key, Florida. Journal of Sedimentary Research, 57, 153–165. doi:10.1306/212F8AD0-2B24-11D7-8648000102C1865D
  • Cattaneo, A., Correggiari, A., Langone, L., & Trincardi, F. (2003). The late-Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations. Marine Geology, 193(1–2), 61–91. doi:10.1016/S0025-3227(02)00614-X
  • Chen, X. (1984). Influence of the Late Ordovician glaciation on basin configuration of the Yangtze Platform in China. Lethaia, 17, 51–59. doi:10.1111/j.1502-3931.1984.tb00665.x
  • Chen, X., Bergström, S. M., Zhang, Y. D., & Wang, Z. H. (2013). A regional tectonic event of Katian (Late Ordovician) age across three major blocks of China. Chinese Science Bulletin, 58(34), 4292–4299. doi:10.1007/s11434-013-5990-0
  • Chen, X., Fan, J., Wang, W., Wang, H., Nie, H., Shi, X., … Li, W. (2017). Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China. Science China Earth Sciences, 60(6), 1133–1146. doi:10.1007/s11430-016-9031-9
  • Chen, X., Fan, J. X., Zhang, Y. D., Wang, H. Y., Chen, Q., Wang, W. H., … Sun, Z. Y. (2015). Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform. Journal of Stratigraphy, 39(4), 351–358. In Chinese with English abstract).
  • Chen, C., Mu, C.-L., Zhou, K.-K., Liang, W., Ge, X.-Y., Wang, X.-P., … Zheng, B.-S. (2016). The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician–Early Silurian black shale in the Upper Yangtze Basin, South China. Marine and Petroleum Geology, 76, 159–175. doi:10.1016/j.marpetgeo.2016.04.022
  • Chen, X., Rong, J., & Fan, J. (2006). A final report on the global stratotype section and point (GSSP) for the Hirnantian Stage (Upper Ordovician). Journal of Stratigraphy, 30(4), 289–305.
  • Chen, H., Xie, X. N., Hu, C. Y., Huang, J. H., & Li, H. J. (2012). Geochemical characteristics of Late Permian sediments in the Dalong Formation of the Shangsi Section, Northwest Sichuan Basin in South China: Implications for organic carbon-rich siliceous rocks formation. Journal of Geochemical Exploration, 112, 35–53. doi:10.1016/j.gexplo.2011.06.011
  • Chen, S. B., Zhu, Y. M., Wang, H. Y., Liu, H. L., Wei, W., & Fang, J. H. (2011). Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China. Energy, 36(11), 6609–6616. doi:10.1016/j.energy.2011.09.001
  • Crusius, J., Calvert, S., Pedersen, T., & Sage, D. (1996). Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth and Planetary Science Letters, 145(1–4), 65–78. doi:10.1016/S0012-821X(96)00204-X
  • Dabard, M., & Paris, F. (1986). Palaeontological and geochemical characteristics of Silurian black shale formations from the Central Brittany Domain of the Armorican Massif (northwest France). Chemical Geology, 55(1–2), 17–29. doi:10.1016/0009-2541(86)90124-5
  • Dai, J., Zou, C., Liao, S., Dong, D., Ni, Y., Huang, J., … Hu, G. (2014). Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Organic Geochemistry, 74, 3–12. doi:10.1016/j.orggeochem.2014.01.018
  • Dean, W. E., Gardner, J. V., & Piper, D. Z. (1997). Inorganic geochemical indicators of glacial–interglacial changes in productivity and anoxia on the California continental margin. Geochimica et Cosmochimica Acta, 61(21), 4507–4518. doi:10.1016/S0016-7037(97)00237-8
  • Demaison, G. J., & Moore, G. T. (1980). Anoxic environments and oil source bed genesis. Organic Geochemistry, 2(1), 9–31. doi:10.1016/0146-6380(80)90017-0
  • Dymond, J., & Collier, R. (1996). Particulate barium fluxes and their relationships to biological productivity. Deep Sea Res. Part II Top. Stud. Oceanogr, 43(4–6), 1283–1308. doi:10.1016/0967-0645(96)00011-2
  • Dymond, J., Suess, E., & Lyle, M. (1992). Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography, 7(2), 163–181. doi:10.1029/92PA00181
  • Egenhoff, S. O., & Fishman, N. S. (2013). Traces in the dark – sedimentary processes and facies gradients in the Upper Shale Member of the Upper Devonian–Lower Mississippian Bakken Formation, Williston Basin, North Dakota, U.S.A. Journal of Sedimentary Research, 83(9), 803–824. doi:10.2110/jsr.2013.60
  • Fishman, N. S., Egenhoff, S. O., Boehlke, A. R., & Lowers, H. A. (2015). Petrology and diagenetic history of the upper shale member of the Late Devonian – Early Mississippian Bakken Formation, Williston Basin, North Dakota. Geological Society of America Special Paper, 515, 125–151. doi:10.1130/2015.2515(07)
  • Folk, R. L., & Land, L. S. (1975). Mg/Ca ratio and salinity: Two controls over crystallization of dolomite: Reply. AAPG Bulletin, 59, 60–68. doi:10.1306/83D921F4-16C7-11D7-8645000102C1865D
  • Gingele, F., & Dahmke, A. (1994). Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments. Paleoceanography and Paleoclimatology, 9(1), 151–168. doi:10.1029/93PA02559
  • Guo, T. L. (2013). Evaluation of highly thermally mature shale-gas reservoirs in complex structural parts of the Sichuan Basin. Journal of Earth Science, 24, 863–873. doi:10.1007/s12583-013-0384-4
  • Hao, F., Zou, H., & Lu, Y. (2013). Mechanisms of shale gas storage: Implications for shale gas exploration in China. AAPG Bulletin, 97(8), 1325–1346. doi:10.1306/02141312091
  • Hart, B. S., Macquaker, J. H. S., & Taylor, K. G. (2013). Mudstone (“shale”) depositional and diagenetic processes: Implications for seismic analyses of source-rock reservoirs. Interpretation, 1(1), B7–B26. doi:10.1190/INT-2013-0003.1
  • Hatch, J. R., & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99(1–3), 65–82. doi:10.1016/0009-2541(92)90031-Y
  • He, W., Wang, X., & Bu, J. (2002). The eustatic cycles and the depth of water mass of the Latest Ordovician Wufengian in the Yangtse Basin. Acta Sedimentologica Sinica, 20, 367–375. In Chinese with English abstract).
  • Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Pattrick, R. A. D., Garner, C. D., & Vaughan, D. J. (1996). Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60(19), 3631–3642. doi:10.1016/0016-7037(96)00195-0
  • Hickey, J. J., & Henk, B. (2007). Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 T.P. Sims well, Wise County, Texas. AAPG Bulletin, 91(4), 437–443. doi:10.1306/12040606053
  • Hou, Q., Mou, C. L., Wang, Q. Y., Tan, Z. Y., Ge, X. Y., & Wang, X. P. (2018). Geochemistry of sandstones from the Silurian Hanxia Formation, north Qilian Belt, China: implication for provenance, weathering and tectonic setting. Geochemistry International, 56(4), 362–377. doi:10.1134/S0016702918040092
  • Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499. doi:10.1306/12190606068
  • Jiang, Z., Guo, L., & Liang, C. (2013). Lithofacies and sedimentary characteristics of the Silurian Longmaxi Shale in the southeastern Sichuan Basin, China. Journal of Palaeogeography, 2, 238–251. doi:10.3724/SP.J.1261.2013.00029
  • Jones, B., & Manning, D. A. C. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1–4), 111–129. doi:10.1016/0009-2541(94)90085-X
  • Kametaka, M., Takebe, M., Nagai, H., Zhu, S., & Takayanagi, Y. (2005). Sedimentary environments of the Middle Permian phosphorite-chert complex from the northeastern Yangtze platform, China; the Gufeng Formation: A continental shelf radiolarian chert. Sedimentary Geology, 174(3–4), 197–222. doi:10.1016/j.sedgeo.2004.12.005
  • Katz, B. J. (2005). Controlling factors on source rock development: a review of productivity, preservation, and sedimentation rate. In N. B. Harris (Ed.), The Deposition of Organic Carbon-rich Sediments: Models, Mechanisms, and Consequences (pp. 7–16). Tulsa, Ok: Society for Sedimentary Geology, Special Publication 82. (SEPM).
  • Konitzer, S. F., Davies, S. J., Stephenson, M. H., & Leng, M. J. (2014). Depositional controls on mudstone lithofacies in a basinal setting: Implications for the delivery of sedimentary organic matter. Journal of Sedimentary Research, 84(3), 198–214. doi:10.2110/jsr.2014.18
  • Kwon, Y. K., Chough, S. K., Choi, D. K., & Lee, D. J. (2006). Sequence stratigraphy of the Taebaek Group (Cambrian–Ordovician), mideast Korea. Sedimentary Geology, 192(1–2), 19–55. doi:10.1016/j.sedgeo.2006.03.024
  • Latimer, J. C., & Filippelli, G. M. (2002). Eocene to Miocene terrigenous inputs and export production: geochemical evidence from ODP Leg 177, Site 1090. Palaeogeography, Palaeoclimatology, Palaeoecology, 182(3–4), 151–164. doi:10.1016/S0031-0182(01)00493-X
  • Lazar, O. R., Bohacs, K. M., Macquaker, J. H. S., Schieber, J., & Demko, T. M. (2015). Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and description guidelines. Journal of Sedimentary Research, 85(3), 230–246. doi:10.2110/jsr.2015.11
  • Lazarus, D. (2005). A brief review of radiolarian research. Paläontologische Zeitschrift, 79(1), 183–200. doi:10.1007/BF03021761
  • Leggett, J. K. (1980). British Lower Palaeozoic black shales and their palaeo-oceanographic significance. Journal of the Geological Society of London, 137(2), 139–156. doi:10.1144/gsjgs.137.2.0139
  • Lézin, C., Andreu, B., Pellenard, P., Bouchez, J. L., Emmanuel, L., Fauré, P., & Landrein, P. (2013). Geochemical disturbance and paleoenvironmental changes during the early Toarcian in NW Europe. Chemical Geology, 341, 1–15. doi:10.1016/j.chemgeo.2013.01.003
  • Li, Y., Zhang, T., Ellis, G. S., & Shao, D. (2017). Depositional environment and organic matter accumulation of Upper Ordovician–Lower Silurian marine shale in the Upper Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 466, 252–264. doi:10.1016/j.palaeo.2016.11.037
  • Liang, F., Bai, W., Zou, C., Wang, H., Wu, J., Ma, C., … Liu, D. (2016a). Shale gas enrichment pattern and exploration significance of Well Wuxi-2 in northeast Chongqing, NE Sichuan Basin. Petroleum Exploration and Development, 43(3), 386–394. doi:10.1016/S1876-3804(16)30045-3
  • Liang, C., Jiang, Z. X., Cao, Y. C., Wu, M. H., Guo, L., & Zhang, C. M. (2016b). Deep-water depositional mechanisms and significance for unconventional hydrocarbon exploration: A case study from the lower Silurian Longmaxi shale in the southeastern Sichuan Basin. AAPG Bulletin, 100(05), 773–794. doi:10.1306/02031615002
  • Liang, C., Jiang, Z., Yang, Y., & Wei, X. (2012). Shale lithofacies and reservoir space of the Wufeng-Longmaxi Formation, Sichuan Basin, China. Petroleum Exploration and Development, 39(6), 736–743. doi:10.1016/S1876-3804(12)60098-6
  • Liu, S. X., Wu, C. F., Li, T., & Wang, H. C. (2018). Multiple geochemical proxies controlling the organic matter accumulation of the marine–continental transitional shale: A case study of the Upper Permian Longtan Formation, western Guizhou, China. Journal of Natural Gas Science and Engineering, 56, 152–165. doi:10.1016/j.jngse.2018.06.007
  • Loucks, R. G., & Ruppel, S. C. (2007). Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4), 579–601. doi:10.1306/11020606059
  • Lüning, S., Craig, J., Loydell, D. K., Štorch, P., & Fitches, B. (2000). Lower Silurian “hot shales” in North Africa and Arabia: Regional distribution and depositional model. Earth Science Reviews, 49(1–4), 121–200. doi:10.1016/S0012-8252(99)00060-4
  • Macquaker, J. H. S. (1994). A lithofacies study of the Peterborough Member, Oxford Clay Formation (Jurassic), UK: an example of sediment bypass in a mudstone succession. Journal of the Geological Society of London, 151(1), 161–172. doi:10.1144/gsjgs.151.1.0161
  • Macquaker, J. H. S., Keller, M. A., & Davies, S. J. (2010). Algal blooms and “marine snow”: Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments. Journal of Sedimentary Research, 80(11), 934–942. doi:10.2110/jsr.2010.085
  • Ma, Y., Fan, M., Lu, Y., Guo, X., Hu, H., Chen, L., … Liu, X. (2016). Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: Implications for depositional controls on organic matter accumulation. Marine and Petroleum Geology, 75, 291–309. doi:10.1016/j.marpetgeo.2016.04.024
  • Ma, Z. W., Hu, C. Y., Yan, J. X., & Xie, X. N. (2008). Biogeochemical records at Shangsi Section, northeast Sichuan in China: The Permian paleoproductivity proxies. Journal of China University of Geoscience, 19, 461–470. doi:10.1016/S1002-0705(08)60051-5
  • Mao, G. Z., Hua, R. M., Gao, J. F., Zhao, K. D., Long, G. M., Lu, H. J., & Yao, J. M. (2010). Rare earth element and trace element features of gold-bearing pyrite in the jinshan gold deposit, jiangxi province. Acta Geologica Sinica - English Edition, 84(3), 614–623. doi:10.1111/j.1755-6724.2010.00077.x
  • Markhand, A. H. (2017). Elemental geochemistry and zircon U–Pb Dating of the rocks Nagar Parkar Igneous Complex, Sindh, Pakistan (Doctoral dissertation). Hefei, Anhui: University of Science and Technology of China.
  • McManus, J., Berelson, W. M., Klinkhammer, G. P., Hammond, D. E., & Holm, C. (2005). Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain. Geochimica et Cosmochimica Acta, 69(1), 95–108. doi:10.1016/j.gca.2004.06.023
  • Melchin, M. J., & Holmden, C. (2006). Carbon isotope chemostratigraphy in Arctic Canada: Sea-level forcing of carbonate platform weathering and implications for Hirnantian global correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(2–4), 186–200. doi:10.1016/j.palaeo.2005.10.009
  • Metcalfe, I. (1994). Late Palaeozoic and Mesozoic palaeogeography of eastern Pangaea and Tethys. Canadian Society of Petroleum Geology Memoir, 17, 97–111.
  • Mu, C. L., Zhou, K. K., & Liang, W. (2011). Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle–Upper Yangtze Region and petroleum and gas exploration. Acta Geologica Sinica, 85, 526–532.
  • Mulder, T., & Alexander, J. (2001). The physical character of subaqueous sedimentary density flow and their deposits. Sedimentology, 48(2), 269–299. doi:10.1046/j.1365-3091.2001.00360.x
  • Murray, R. W., & Leinen, M. (1996). Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean. Geochimica et Cosmochimica Acta, 60(20), 3869–3878. doi:10.1016/0016-7037(96)00236-0
  • Nance, W. B., & Taylor, S. R. (1976). Rare earth element patterns and crustal evolution – I Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta, 40(12), 1539–1551. doi:10.1016/0016-7037(76)90093-4
  • Nie, S. Q., Huang, J. S., & Li, S. Z. (2015). Global plate reconstruction from Ordovician to Silurian: kinematics test of their locations of three China’s continents and ocean–continent configuration. Marine Geology and Quaternary Geology, 35 (4), 177–188.
  • Nie, H. K., Jin, Z. J., Ma, X., Liu, Z. B., Lin, T., & Yang, Z. H. (2017). Graptolites zone and sedimentary characteristics of Upper Ordovician Wufeng Formation–Lower Silurian Longmaxi Formation in Sichuan Basin and its adjacent areas. Acta Petrolei Sinica, 38(2), 160–174. In Chinese with English abstract). doi:10.7623/syxb201702004
  • O’Brien, N. R. (1996). Shale lamination and sedimentary processes. Geological Society of London, Special Publication, 116, 23–36. doi:10.1144/GSL.SP.1996.116.01.04
  • Paytan, A., Kastner, M., & Chavez, F. P. (1996). Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274 (5291), 1355–1357. doi:10.1126/science.274.5291.1355
  • Pedersen, G. K. (1985). Thin, fine-grained storm layers in a muddy shelf sequence: an example from the Lower Jurassic in the Stenlille 1 well, Denmark. Journal of the Geological Society of London, 142(2), 357–374. doi:10.1144/gsjgs.142.2.0357
  • Ran, B., Liu, S., Jansa, L., Sun, W., Yang, D., Ye, Y., … Zhang, C. (2015). Origin of the Upper Ordovician–lower Silurian cherts of the Yangtze block, South China, and their palaeogeographic significance. Journal of Asian Earth Sciences, 108, 1–17. doi:10.1016/j.jseaes.2015.04.007
  • Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Science, 46 (3), 205–221. Retrieved from http://www.jstor.org/stable/27827150
  • Robertson, A. H. F. (2012). Late Palaeozoic–Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. International Geology Review, 54, 373–454. doi:10.1080/00206814.2010.543791
  • Romero-Sarmiento, M.-F., Ducros, M., Carpentier, B., Lorant, F., Cacas, M.-C., Pegaz-Fiornet, S., … Moretti, I. (2013). Quantitative evaluation of TOC, organic porosity and gas retention distribution in a gas shale play using petroleum system modeling: Application to the Mississippian Barnett Shale. Marine and Petroleum Geology, 45, 315–330. doi:10.1016/j.marpetgeo.2013.04.003
  • Rong, J. Y., Zhan, R. B., & Harper, D. A. T. (1999). Late Ordovician (Caradoc–Ashgill) brachiopod faunas with foliomena based on data from China. Palaios, 14 (5), 412–431. doi:10.2307/3515394
  • Ross, D. J. K., & Bustin, R. M. (2008). Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation. AAPG Bulletin, 92(1), 87–125. doi:10.1306/09040707048
  • Schieber, J. (2011). Marcasite in black shales – a mineral proxy for oxygenated bottom waters and intermittent oxidation of carbonaceous muds. Journal of Sedimentary Research, 81(7), 447–458. doi:10.2110/jsr.2011.41
  • Schieber, J., Southard, J. B., & Schimmelmann, A. (2010). Lenticular shale fabrics resulting from intermittent erosion of water-rich muds – interpreting the rock record in the light of recent flume experiments. Journal of Sedimentary Research, 80(1), 119–128. doi:10.2110/jsr.2010.005
  • Singh, P. (2008). Lithofacies and Sequence-stratigraphic Framework of the Barnett Shale, Northeast Texas. Ph.D. thesis. Norman, OK: University of Oklahoma, Norman.
  • Su, W., Huff, W. D., Ettensohn, F. R., Liu, X., Zhang, J., & Li, Z. (2009). K-bentonite, black-shale and flysch successions at the Ordovician–Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Research, 15(1), 111–130. doi:10.1016/j.gr.2008.06.004
  • Sweere, T., Sander, V. D. B., Dickson, A. J., & Reichart, G. J. (2016). Definition of new trace-metal proxies for the controls on organic matter enrichment in marine sediments based on Mn, Co, Mo and Cd concentrations. Chemical Geology, 441, 235–245. doi:10.1016/j.chemgeo.2016.08.028
  • Tan, J., Weniger, P., Krooss, B., Merkel, A., Horsfield, B., Zhang, J., … Tocher, B. A. (2014). Shale gas potential of the major marine shale formations in the Upper Yangtze Platform, South China, Part II: Methane sorption capacity. Fuel, 129, 204–218. doi:10.1016/j.fuel.2014.03.064
  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. London UK: Blackwell Scientific Publications.
  • Thickpenny, A., & Leggett, J. K. (1987). Stratigraphic distribution and palaeo-oceanographic significance of European early Palaeozoic organic-rich sediments. Geological Society of London, Special Publication, 26(1), 231–247. doi:10.1144/GSL.SP.1987.026.01.15
  • Tian, L., Tong, J., Algeo, T. J., Song, H., Song, H., Chu, D., … Bottjer, D. J. (2014). Reconstruction of Early Triassic ocean redox conditions based on framboidal pyrite from the Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 412, 68–79. doi:10.1016/j.palaeo.2014.07.018
  • Timothy, D. A., & Calvert, S. E. (1998). Systematics of variations in excess Al and Al/Ti in sediments from the central equatorial Pacific. Paleoceanography and Paleoclimatology, 13(2), 127–130. doi:10.1029/97PA03646
  • Tissot, B., Demaison, G., Masson, P., Delteil, J. R., & Combaz, A. (1980). Paleoenvironment and petroleum potential of Middle Cretaceous black shales in Atlantic basins. AAPG Bulletin, 64(12), 2051–2063. doi:10.1306/2f919738-16ce-11d7-8645000102c1865d
  • Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1–2), 12–32. doi:10.1016/j.chemgeo.2006.02.012
  • Tribovillard, N., Riboulleau, A., Lyons, T., & Baudin, F. (2004). Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales. Chemical Geology, 213(4), 385–401. doi:10.1016/j.chemgeo.2004.08.011
  • Tyrrell, T. (1999). The relative influences of nitrogen and phosphorus on oceanic primary production. Nature, 400(6744), 525–531. doi:10.1038/22941
  • Vecoli, M., Riboulleau, A., & Versteegh, G. J. M. (2009). Palynology, organic geochemistry and carbon isotope analysis of a latest Ordovician through Silurian clastic succession from borehole Tt1, Ghadamis Basin, southern Tunisia, North Africa: Palaeoenvironmental interpretation. Palaeogeography, Palaeoclimatology, Palaeoecology, 273(3–4), 378–394. doi:10.1016/j.palaeo.2008.05.015
  • Wang, G., & Carr, T. R. (2013). Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin. AAPG Bulletin, 97(12), 2173–2205. doi:10.1306/05141312135
  • Wang, H. Y., Guo, W., Liang, F., Zhao, Q., Liu, D. X., Zhou, J., … Pi, S. H. (2017). Black shale biostratigraphic characteristics and stratigraphic correlation in the Wufeng and Longmaxi Fms of the Xuanhan–Wuxi areas. Natural Gas Industry, 37(7), 27–33. In Chinese with English abstract).
  • Wignall, P. B. (1989). Sedimentary dynamics of the Kimmeridge Clay: tempests and earthquakes. Journal of the Geological Society of London, 146(2), 273–284. doi:10.1144/gsjgs.146.2.0273
  • Wignall, P. B., & Myers, K. J. (1988). Interpreting benthic oxygen levels in mudrocks: A new approach. Geology, 16(5), 452. doi:10.1130/0091-7613(1988)016<0452:IBOLIM>2.3.CO;2
  • Wilkin, R. T., Arthur, M. A., & Dean, W. E. (1997). History of water-column anoxia in the Black Sea indicated pyrite framboid size distributions. Earth and Planetary Science Letters, 148, 17–525. doi:10.1016/S0012-821X(97)00053-8
  • Wilkin, R. T., Barnes, H. L., & Brantley, S. L. (1996). The size distribution of framboidal pyrite: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20), 3897–3912. doi:10.1016/0016-7037(96)00209-8
  • Wu, L. Y., Lu, Y. C., Jiang, S., Liu, X. F., & He, G. S. (2018). Effects of volcanic activities in Ordovician Wufeng–Silurian Longmaxi period on organic-rich shale in the Upper Yangtze area, South China. Petroleum Exploration and Development, 45(5), 806–816.
  • Yan, X., Li, J., Liu, G., Tao, Q., & Lian, W. (2018). A new numerical investigation of cement sheath integrity during multistage hydraulic fracturing shale gas wells. Journal of Natural Gas Science and Engineering, 49, 331–341. doi:10.1016/j.jngse.2017.11.027
  • Yan, D., Wang, H., Fu, Q., Chen, Z., He, J., & Gao, Z. (2015). Geochemical characteristics in the Longmaxi Formation (Early Silurian) of South China: Implications for organic matter accumulation. Marine and Petroleum Geology, 65, 290–301. doi:10.1016/j.marpetgeo.2015.04.016
  • Ye, Y.-H., Liu, S.-G., Ran, B., Luba, J., Wang, S.-Y., Sun, W., … Luo, C. (2017). Characteristics of black shale in the Upper Ordovician Wufeng and lower Silurian Longmaxi formations in the Sichuan Basin and its periphery, China. Australian Journal of Earth Sciences, 64(5), 667–687. doi:10.1080/08120099.2017.1321581
  • Zhang, J., Fan, T., Algeo, T. J., Li, Y., & Zhang, J. (2016). Paleo-marine environments of the Early Cambrian Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 443, 66–79. doi:10.1016/j.palaeo.2015.11.029
  • Zhang, G., Guo, A., Wang, Y., Li, S., Dong, Y., Liu, S., … Yao, A. (2013). Tectonics of South China continent and its implications. Science China Earth Sciences, 56(11), 1804–1828. doi:10.1007/s11430-013-4679-1
  • Zhao, J., Jin, Z., Jin, Z., Geng, Y., Wen, X., & Yan, C. (2016). Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China. International Journal of Coal Geology, 163, 52–71. doi:10.1016/j.coal.2016.06.015
  • Zhou, C., & Jiang, S. Y. (2009). Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3–4), 279–286. doi:10.1016/j.palaeo.2008.10.024
  • Zhou, K. K., Mou, C. L., Xu, X. S., Ge, X. Y., & Liang, W. (2014). Early Silurian paleogeography and source-reservoir-cap rocks of the middle-upper Yangtze region in South China. Petroleum Exploration and Development, 41(5), 684–694. doi:10.1016/S1876-3804(14)60082-3
  • Zou, C., Dong, D., Wang, S., Li, J., Li, X., Wang, Y., … Cheng, K. (2010). Geological characteristics and resource potential of shale gas in China. Petroleum Exploration and Development, 37(6), 641–653. doi:10.1016/S1876-3804(11)60001-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.