Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 68, 2021 - Issue 4
361
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Airborne hyperspectral characterisation of hydrothermal alteration in a regolith-dominated terrain, southern Gawler Ranges, South Australia

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 590-608 | Received 04 Jul 2019, Accepted 04 Sep 2020, Published online: 18 Oct 2020

References

  • Agangi, A. (2011). Magmatic and volcanic evolution of a silicic large igneous province (SLIP): the Gawler Range Volcanics and Hiltaba Suite, South Australia [Unpublished PhD Thesis]. ARC Centre of Excellence in Ore Deposits, School of Earth Sciences, University of Tasmania.
  • Allen, S. R., & McPhie, J. (2002). The Eucarro Rhyolite, Gawler Range Volcanics, South Australia: A >675 km3, compositionally zoned lava of Mesoproterozoic age. Geological Society of America Bulletin, 114(12), 1592–1609. https://doi.org/10.1130/0016-7606(2002)114<1592:TERGRV>2.0.CO;2
  • Allen, S. R., McPhie, J., Ferris, G., & Simpson, C. (2008). Evolution and architecture of a large felsic Igneous Province in western Laurentia: The 1.6 Ga Gawler Range Volcanics, South Australia. Journal of Volcanology and Geothermal Research, 172(1-2), 132–147. https://doi.org/10.1016/j.jvolgeores.2005.09.027
  • Anand, R. R. (2005). Weathering history, landscape evolution and implications for exploration. In R. R. Anand & P. De Broekert (Eds.), Regolith landscape evolution across Australia: A compilation of regolith landscape case studies with regolith landscape evolution models (pp. 2–40). CRC LEME. ISBN: 978-1-92-103928-7
  • Anand, R. R., & Butt, C. R. M. (2010). A guide for mineral exploration through the regolith in the Yilgarn Craton, Western Australia. Australian Journal of Earth Sciences, 57(8), 1015–1114. https://doi.org/10.1080/08120099.2010.522823
  • Andrew, M. E., & Ustin, S. L. (2008). The role of environmental context in mapping invasive plants with hyperspectral image data. Remote Sensing of Environment, 112(12), 4301–4317. https://doi.org/10.1016/j.rse.2008.07.016
  • AusSpec International Ltd (2008). GMEX spectral analysis guides for mineral exploration (3rd ed.). AusSpec International.
  • Bierwirth, P., Huston, D., & Blewett, R. (2002). Hyperspectral mapping of mineral assemblages associated with gold mineralization in the Central Pilbara. Economic Geology, 97(4), 819–826. https://doi.org/10.2113/97.4.819
  • Blissett, A. H., Creaser, R. A., Daly, S. J., Flint, R. B., & Parker, A. J. (1993). Gawler Range Volcanics. In J. F. Drexel, W. V. Preiss, & A. J. Parker (Eds.), The Geology of South Australia; Volume 1: The Precambrian (Vol. 1, pp. 107–124). Geological Survey of South Australia Bulletin 54. ISBN: 978-0-73-084146-3
  • Brigatti, M. F., Malferrari, D., Laurora, A., & Elmi, C. (2011). Structure and mineralogy of layer silicates: recent perspectives and new trends. In M. F. Brigatti & A. Mottana (Eds.), Layered mineral structures and their application in advanced technologies (Vol. 11, pp. 1–71). Mineralogical Society of Great Britain and Ireland. ISBN: 978-0-90-305645-8 https://doi.org/10.1180/EMU-notes.11
  • Brown, A. J., Cudahy, T. J., & Walter, M. R. (2006). Hydrothermal alteration at the Panorama Formation, North Pole Dome, Pilbara Craton, Western Australia. Precambrian Research, 151(3-4), 211–223. https://doi.org/10.1016/j.precamres.2006.08.014
  • Bureau of Meteorology (2018). Climate Data Online. Australian Government. Retrieved August, 2018, from http://www.bom.gov.au/climate/data/
  • Butt, C. R. M., Lintern, M. J., & Anand, R. R. (2000). Evolution of regoliths and landscapes in deeply weathered terrain—implications for geochemical exploration. Ore Geology Reviews, 16(3-4), 167–183. https://doi.org/10.1016/S0169-1368(99)00029-3
  • Carranza, E. J. M., & Hale, M. (2002). Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily vegetated terrane. International Journal of Remote Sensing, 23(22), 4827–4852. https://doi.org/10.1080/01431160110115014
  • Caruso, A. S., Clarke, K. D., Tiddy, C. J., Delean, S., & Lewis, M. M. (2018). Objective regolith-landform mapping in a regolith dominated terrain to inform mineral exploration. Geosciences, 8(9), 318. https://doi.org/10.3390/geosciences8090318
  • Clark, R. N. (1999). Chapter 1: Spectroscopy of rocks and minerals, and principles of spectroscopy. In A. N. Rencz (Ed.), Manual of Remote Sensing (Vol. 3, pp. 3–58). John Wiley and Sons.
  • Clark, R. N., Gallagher, A. J., Swayze, G. A. (1990). Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, USA.
  • Clark, R. N., Swayze, G. A., Gallagher, A., Gorelick, N., Kruse, F. A. (1991). Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials. Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, USA.
  • Cocks, T., Jenssen, R., Stewart, A., Wilson, I., & Shields, T. (1998). The HyMap™ airborne hyperspectral sensor: The system, calibration and performance. In 1st EARSeL Workshop on Imaging Spectroscopy, Zurich, Switzerland.
  • Corbett, G. J. (2018). Chapter 2—alteration. In Epithermal gold–silver and porphyry copper–gold exploration– short course manual (p. 51). Corbett Geological Services.
  • Cudahy, T. (2012). Satellite ASTER Geoscience Product Notes for Australia. EP-30-07-12-44. CSIRO.
  • Cudahy, T. (2016). Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration. Geosciences, 6(4), 52. https://doi.org/10.3390/geosciences6040052
  • Daly, S. J., Fanning, G. M., & Fairclough, M. C. (1998). Tectonic evolution and exploration potential of the Gawler Craton, South Australia. AGSO Journal of Australian Geology and Geophysics, 17, 145–168.
  • Department of the Environment and Energy (2012). Interim biogeographic regionalisation for Australia, Version 7. Department of the Environment and Energy.
  • Dering, G. M., Micklethwaite, S., Thiele, S. T., Vollgger, S. A., & Cruden, A. R. (2019). Review of drones, photogrammetry and emerging sensor technology for the study of dykes: Best practises and future potential. Journal of Volcanology and Geothermal Research, 373, 148–166. https://doi.org/10.1016/j.jvolgeores.2019.01.018
  • Drown, C. G., Gerakiteys, C., Ashley, P. M., Joyce, R. M., Mackay, C. R., & Standish, T. R. (2000). Open File Envelope No. 8811, Mount Ive Gate. Adelaide, Australia.
  • Duuring, P., Hagemann, S. G., Novikova, Y., Cudahy, T., & Laukamp, C. (2012). Targeting iron ore in Banded Iron Formations using ASTER data: Weld Range Greenstone Belt, Yilgarn Craton, Western Australia. Economic Geology, 107(4), 585–597. https://doi.org/10.2113/econgeo.107.4.585
  • Eberl, D. D. (2003). User’s Guide to RockJock—A program for determining quantitative mineralogy from powder X-Ray Diffraction data. Open File Report 03-78. United States Geological Survey.
  • Elvidge, C. D. (1990). Visible and near infrared reflectance characteristics of dry plant materials. International Journal of Remote Sensing, 11(10), 1775–1795. https://doi.org/10.1080/01431169008955129
  • Exelis Visual Information Solutions. ENVI 5.3. Harris Geospatial Solutions.
  • Fanning, C. M., Reid, A. J., & Teale, G. S. (Eds.). (2007). A geochronological framework for the Gawler Craton, South Australia. South Australian Department of Primary Industries and Resources. ISBN: 978-0-75-901392-6
  • Ferris, G., & Schwarz, M. (2003). Proterozoic gold province of the central Gawler Craton. MESA Journal, 30, 4–12.
  • Ferris, G. M., Schwarz, M. P., & Heithersay, P. (2002). The geological framework, distribution and controls of Fe-oxide Cu–Au mineralisation in the Gawler Craton, South Australia. Part 1: Geological and tectonic framework. In T. M. Porter (Ed.), Hydrothermal iron oxide copper—gold and related deposits: A global perspective (Vol. 2, pp. 9–31). Porter Geological Consulting Publishing. ISBN: 978-0-95-805741-7
  • Garner, A., & McPhie, J. (1999). Partially melted lithic megablocks in the Yardea Dacite, Gawler Range Volcanics, Australia: Implications for eruption and emplacement mechanisms. Bulletin of Volcanology, 61(6), 396–410. https://doi.org/10.1007/s004450050281
  • Gerakiteys, C. (1996). Technical Report No. 2718, EL 1841 “Mt Ive Gate”. R96/02406. Adelaide, Australia.
  • Goetz, A. F. H., & Rowan, L. C. (1981). Geologic Remote Sensing. Science, 211(4484), 781–791. https://doi.org/10.1126/science.211.4484.781
  • González-Álvarez, I., Boni, M., & Anand, R. R. (2016). Mineral exploration in regolith-dominated terrains: Global considerations and challenges. Ore Geology Reviews, 73(3), 375–379. https://doi.org/10.1016/j.oregeorev.2015.11.017
  • Hand, M., Reid, A., & Jagodzinski, L. (2007). Tectonic framework and evolution of the Gawler Craton. Economic Geology, 102(8), 1377–1395. https://doi.org/10.2113/gsecongeo.102.8.1377
  • Hauff, P. L. (2008). An overview of VIS-NIR-SWIR field spectroscopy as applied to precious metals exploration. Spectral International Inc.
  • Hewson, R. D., Cudahy, T. J., & Huntington, J. F. (2001). Geologic and alteration mapping at Mt Fitton, South Australia, using ASTER satellite-borne data. In IGARSS 2001: Scanning the Present and Resolving the Future. Institute of Electrical and Electronics Engineers.
  • Hillis, R. R., Giles, D., Van Der Wielen, S. E., Baensch, A., Cleverley, J. S., Fabris, A., Halley, S. W., Harris, B. D., Hill, S. M., Kanck, P. A., Kepic, A., Soe, S. P., Stewart, G., & Uvarova, Y. (2014). Coiled tubing drilling and real-time sensing-enabling prospecting drilling in the 21st Century? In K. D. Kelley & H. C. Golden (Eds.), Building exploration capability for the 21st century (Vol. 18, pp. 243–259). Society of Economic Geologists. ISBN: 978-1-62-949637-5
  • Hunt, G. R., & Ashley, R. P. (1979). Spectra of altered rocks in the visible and near infrared. Economic Geology, 74(7), 1613–1629. https://doi.org/10.2113/gsecongeo.74.7.1613
  • Hussey, M. (2015). March 2011 Peterlumbo area HyMap survey. Mineral maps Data Package. GDP00028. Department of State Development.
  • HyVista Corporation (2003). HyMap Data Products. HyVista Corporation. http://www.hyvista.com/wp_11/wp-content/uploads/2011/02/hvc_data_products.pdf
  • Investigator Resources. (2017a). Large altered porphyry system with enhanced copper–gold potential confirmed at the Nankivel Prospect. http://www.investigatorresources.com.au/_dbase_upl/2017.04.26_IVR_ASX_Porphyry_copper_gold_potential_confirmed_at_Nankivel.pdf
  • Investigator Resources. (2017b). New drilling and advanced exploration techniques upgrade porphyry copper target at Nankivel. http://www.investigatorresources.com.au/_dbase_upl/2017.07.27_IVR_ASX_Upgrade_of_Nankivel_porphyry_copper_target.pdf
  • Investigator Resources. (2018). Projects. Retrieved August 2018, from http://www.investres.com.au/cms/page.asp?ID=1002
  • Jackisch, R., Lorenz, S., Zimmermann, R., Möckel, R., & Gloaguen, R. (2018). Drone-borne hyperspectral monitoring of acid mine drainage: an example from the Sokolov Lignite District. Remote Sensing, 10(3), 385. https://doi.org/10.3390/rs10030385
  • Jagodzinski, E. A. (2005). Compilation of SHRIMP U–Pb geochronological data, Olympic Domain, Gawler Craton, South Australia, 2001–2003. Record 2005/20. Geoscience Australia.
  • Jagodzinski, E. A., Reid, A. J., Crowley, J. L., McAvaney, S., & Wade, C. E. (2016). Precise zircon U–Pb dating of a Mesoproterozoic silicic large igneous province: The Gawler Range Volcanics and Benagerie Volcanic Suite, South Australia. In AESC 2016—Australian Earth Sciences Convention. Geological Society of Australia.
  • Kirsch, M., Lorenz, S., Zimmermann, R., Tusa, L., Mockel, R., Hodl, P., Booysen, R., Khodadadzadeh, M., & Gloaguen, R. (2018). Integration of terrestrial and drone-borne hyperspectral and photogrammetric sensing methods for exploration mapping and mining monitoring. Remote Sensing, 10(9), 1366. https://doi.org/10.3390/rs10091366
  • Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., Wise, R. A., Benzel, W. M., Lowers, H. A., Driscoll, R. L., & Klein, A. J. (2017). USGS Spectral Library Version 7. https://doi.org/10.5066/F7RR1WDJ
  • Krapf, C. B. E. (2016). Regolith Map of the Southern Gawler Ranges Margin (YARDEA and PORT AUGUSTA 1:250 000 map sheets) (1st ed.). Geological Survey of South Australia.
  • Kruse, F. A. (1988). Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern Grapevine mountains, Nevada, and California. Remote Sensing of Environment, 24(1), 31–51. https://doi.org/10.1016/0034-4257(88)90004-1
  • Kruse, F. A. (2012). Mapping surface mineralogy using imaging spectrometry. Geomorphology, 137(1), 41–56. https://doi.org/10.1016/j.geomorph.2010.09.032
  • Kruse, F. A., Boardman, J. W., Huntington, J. F. (2002). Comparison of airborne and satellite hyperspectral data for geologic mapping. Proceedings of SPIE—The International Society for Optical Engineering, 4725, 128–139. https://doi.org/10.1117/12.478743
  • Laukamp, C., Cudahy, T., Cleverley, J. S., Oliver, N. H. S., & Hewson, R. (2011). Airborne hyperspectral imaging of hydrothermal alteration zones in granitoids of the Eastern Fold Belt, Mount Isa Inlier. Australia. Geochemistry: Exploration, Environment, Analysis, 11(1), 3–24. https://doi.org/10.1144/1467-7873/09-231
  • Lewis, M., Jooste, V., & De Gasparis, A. A. (2001). Discrimination of arid vegetation with airborne multispectral scanner hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1471–1479. https://doi.org/10.1109/36.934078
  • Mahoney, S., James, P., Mauger, A., & Heinson, G. (2003). Geologic and regolith mapping for mineral exploration in the Gawler Craton of South Australia using Hyperion and other remote sensing techniques. In International Geoscience and Remote Sensing Symposium 2003, Toulouse, France. Institute for Electrical and Electronics Engineers. https://doi.org/10.1109/IGARSS.2003.1294248
  • Mauger, A. J., Keeling, J. L., & Huntington, J. F. (2007). Alteration mapping of the Tarcoola Goldfield (South Australia) using a suite of hyperspectral methods. Applied Earth Science, 116(1), 2–12. https://doi.org/10.1179/174327507X167028
  • McQueen, K. G. (2008). A guide for mineral exploration through the regolith in the Cobar Region, Lachlan Orogen. CRC LEME. ISBN: 978-1-921039-85-0
  • Morrow, N., & McPhie, J. (2000). Mingled silicic lavas in the Mesoproterozoic Gawler Range Volcanics, South Australia. Journal of Volcanology and Geothermal Research, 96(1–2), 1–13. https://doi.org/10.1016/S0377-0273(99)00143-2
  • Nicolson, B. E., Reid, A., McAvaney, S., Keeling, J., Fraser, G., & Vasconcelos, P. M. (2017b). Timing of advanced argillic alteration at Nankivel Hill, SE of Paris silver deposit, northern Eyre Peninsula. MESA Journal, 83(2), 20–26.
  • Nicolson, B., Reid, A., McAvaney, S., Keeling, J., Fraser, G., & Vasconcelos, P. (2017a). A Mesoproterozoic advanced argillic alteration system: 40Ar/39Ar thermochronology from Nankivel Hill, Gawler Craton. Report Book 2017/00011. South Australia Department of State Development.
  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4(2), 439–473. https://doi.org/10.5194/hess-11-1633-2007
  • Post, J. L., & Noble, P. N. (1993). The near-infrared combination band frequencies of dioctahedral smectites, micas, and illites. Clays and Clay Minerals, 41(6), 639–644. https://doi.org/10.1346/CCMN.1993.0410601
  • Pour, A. B., & Hashim, M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9. https://doi.org/10.1016/j.oregeorev.2011.09.009
  • Price, J. R., Velbel, M. A., & Patino, L. C. (2005). Allanite and epidote weathering at the Coweeta Hydrologic Laboratory, western North Carolina, U.S.A. American Mineralogist, 90(1), 101–114. https://doi.org/10.2138/am.2005.1444
  • Quigley, M. A., Ridley, J. R., Huntington, J. F. (2005). Airborne hyperspectral mineral mapping in regolith and variably weathered high-grade metamorphic sequences of the mineralized West Pinnacles area, Broken Hill, Australia. In Geological Society of Nevada Symposium 2005: Window to the World, Reno, Nevada.
  • Reid, A., & Jagodzinski, E. (2012). PACE Geochronology: Results of collaborative geochronology projects 2011–12. Report Book 2012/00012. South Australia Department of Manufacturing, Innovation, Trade, Resources and Energy.
  • Robertson, I. D. M., & Eggleton, R. A. (1991). Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite. Clays and Clay Minerals, 39(2), 113–126. https://doi.org/10.1346/CCMN.1991.0390201
  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium. NASA.
  • Rowan, L. C., Hook, S. J., Abrams, M. J., & Mars, J. C. (2003). Mapping hydrothermally altered rocks at Cuprite, Nevada, using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a new satellite-imaging system. Economic Geology, 98(5), 1019–1027. https://doi.org/10.2113/98.5.1019
  • Sabins, F. F. (1999). Remote sensing for mineral exploration. Ore Geology Reviews, 14(3–4), 157–183. https://doi.org/10.1016/S0169-1368(99)00007-4
  • Salama, W., González-Álvarez, I., & Anand, R. R. (2016). Significance of weathering and regolith/landscape evolution for mineral exploration in the NE Albany-Fraser Orogen, Western Australia. Ore Geology Reviews, 73(3), 500–521. https://doi.org/10.1016/j.oregeorev.2015.07.024
  • Schodde, R. C. (2017). The National State of Exploration. In Copper to the World Conference, Adelaide, Australia. MinEx Consulting.
  • Sillitoe, R. H. (1995). Exploration of porphyry copper lithocaps. In PACRIM Congress. Australasian Institute of Mining and Metallurgy.
  • Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105(1), 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
  • Smith, R. E. (1996). Regolith research in support of mineral exploration in Australia. Journal of Geochemical Exploration, 57(1–3), 159–173. https://doi.org/10.1016/S0375-6742(96)00032-5
  • Swayze, G. A., Clark, R. N., Goetz, A. F. H., Livo, K. E., Breit, G. N., Kruse, F. A., Sutley, S. J., Snee, L. W., Lowers, H. A., Post, J. L., Stoffregen, R. E., & Ashley, R. P. (2014). Mapping advanced argillic alteration at Cuprite, Nevada, using imaging spectroscopy. Economic Geology, 109(5), 1179–1221. https://doi.org/10.2113/econgeo.109.5.1179
  • Wade, C. E., McAvaney, S. O., & Gordon, G. A. (2014). Epithermal-style mineral textures, brecciation, veining & alteration, southern Gawler Ranges, SA. MESA Journal, 74(3), 31–43.
  • Werner, M., Krapf, C., Curtis, S., Pawley, M., & Fabris, A. (2018). Boots on the ground: release of Peltabinna maps and explanatory notes, southwestern Gawler Ranges margin. MESA Journal, 86(1), 14–29.
  • White, N., & Hedenquist, J. (1995). Epithermal gold deposits. Styles, characteristics and exploration. Society of Economic Geologists Newsletter, 23, 9–13.
  • Witt, W. K., Hagemann, S. G., Ojala, J., Laukamp, C., Vennemann, T., Villanes, C., & Nykanen, V. (2014). Multiple methods for regional-to mine-scale targeting, Pataz gold field, northern Peru. Australian Journal of Earth Sciences, 61(1), 43–58. https://doi.org/10.1080/08120099.2013.763859
  • Yamaguchi, Y., Kahle, A. B., Tsu, H., Kawakami, T., & Pniel, M. (1998). Overview of advanced spaceborne thermal emission and reflection radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1062–1071. https://doi.org/10.1109/36.700991

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.