Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 68, 2021 - Issue 4
343
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Geochemical discrimination of igneous zircon in the Gawler Craton, South Australia

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 557-579 | Received 11 Mar 2020, Accepted 09 Sep 2020, Published online: 25 Oct 2020

References

  • Balan, E., Trocellier, P., Jupille, J., Fritsch, E., Muller, J-P., & Calas, G. (2001). Surface chemistry of weathered zircons. Chemical Geology, 181(1–4), 13–22. https://doi.org/10.1016/S0009-2541(01)00271-6
  • Belousova, E., Griffin, W., O’Reilly, S. Y., & Fisher, N. (2002). Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5), 602–622. https://doi.org/10.1007/s00410-002-0364-7
  • Belousova, E. A., Griffin, W. L., & O’Reilly, S. Y. (2006a). Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: Examples from eastern Australian granitoids. Journal of Petrology, 47(2), 329–353. https://doi.org/10.1093/petrology/egi077
  • Belousova, E. A., Reid, A., Schwarz, M., Griffin, W. L., & Fairclough, M. (2006b). Crustal evolution of the Gawler Craton, South Australia: Application of the TerraneChron® technique to detrital zircon from modern stream sediments. Report Book, 2006/0004. South Australia Department of Primary Industries and Resources.
  • Belousova, E., Reid, A., Griffin, W., & O’Reilly, S. (2009). Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: Evidence from U–Pb and Hf isotopes in detrital zircon. Lithos, 113(3–4), 570–582. https://doi.org/10.1016/j.lithos.2009.06.028
  • Breiter, K., Lamarão, C. N., Borges, R. M. K., Dall, Amp, A., & Agnol, R. (2014). Chemical characteristics of zircon from A-type granites and comparison to zircon of S-type granites. Lithos, 192–195, 208–225. https://doi.org/10.1016/j.lithos.2014.02.004
  • Brotodewo, A., Tiddy, C. J., Reid, A., Wade, C., & Conor, C. (2018). Relationships between magmatism and deformation in northern Yorke Peninsula and southeastern Proterozoic Australia. Australian Journal of Earth Sciences, 65(5), 619–641. https://doi.org/10.1080/08120099.2018.1470573
  • Budd, A. R. (2006). The Tarcoola Goldfield of the Central Gawler Gold Province, and the Hiltaba Association Granites, Gawler Craton, South Australia [Unpublished PhD thesis]. Australian National University.
  • Budd, A. R., & Skirrow, R. G. (2007). The nature and origin of gold deposits of the Tarcoola Goldfield and implications for the central Gawler Gold Province. Economic Geology, 102(8), 1541–1563. https://doi.org/10.2113/gsecongeo.102.8.1541
  • Cao, Y., Li, S., Zhang, H., Liu, X., Li, Z., Ao, C., & Yao, M. (2011). Significance of zircon trace element geochemistry, the Shihu gold deposit, western Hebei Province, North China. Journal of Rare Earths, 29(3), 277–286. https://doi.org/10.1016/S1002-0721(10)60445-0
  • Cherry, A., Ehrig, K., Kamenetsky, V., McPhie, J., Crowley, J., & Kamenetsky, M. (2018). Precise geochronological constraints on the origin, setting and incorporation of ca. 1.59 Ga surficial facies into the Olympic Dam Breccia Complex, South Australia. Precambrian Research, 315, 162–178. https://doi.org/10.1016/j.precamres.2018.07.012
  • Corfu, F., Hanchar, J. M., Hoskin, P. W. O., & Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53(1), 469–500. https://doi.org/10.2113/0530469
  • Corriveau, L., Perreault, S., & Davidson, A. (2007). Prospective metallogenic settings of the Grenville Province. Geological Association Canada—Mineral Deposits Division Special Publication, 5, 819–848.
  • Corriveau, L., Potter, E., Acosta-Gongora, P., Blein, O., Montreuil, J-F., de Toni, A., Day, W., Slack, J., Ayuso, R., & Hanes, R. (2017). Petrological mapping and chemical discrimination of alteration facies as vectors to IOA, IOCG, and affiliated deposits within Laurentia and beyond. SGA Québec.
  • Courtney-Davies, L., Ciobanu, C. L., Verdugo-Ihl, M. R., Slattery, A., Cook, N. J., Dmitrijeva, M., Keyser, W., Wade, B. P., Domnick, U. I., Ehrig, K., Xu, J., & Kontonikas-Charos, A. (2019). Zircon at the nanoscale records metasomatic processes leading to large magmatic-hydrothermal ore systems. Minerals, 9(6), 364. https://doi.org/10.3390/min9060364
  • Creaser, R. A., & Cooper, J. A. (1993). U–Pb geochronology of middle Proterozoic felsic magmatism surround the Olympic Dam Cu–U–Au–Ag and Moonta Cu–Au–Ag deposits, South Australia. Economic Geology, 88(1), 186–197. https://doi.org/10.2113/gsecongeo.88.1.186
  • Daly, S. J., & Fanning, C. M. (1993). Archaean. In J. F. Drexel, W. V. Preiss & A. J. Parker (Eds.), The Geology of South Australia; Volume 1, the Precambrian (pp. 32–49). South Australia Geological Survey. Bulletin 54.
  • Daly, S. J., Fanning, C. M., & Fairclough, M. C. (1998). Tectonic evolution and exploration potential of the Gawler craton, South Australia. AGSO Journal of Australian Geology and Geophysics, 17, 145–168.
  • Dutch, R., Hand, M., & Kinny, P. D. (2008). High-grade Paleoproterozoic reworking in the southeastern Gawler Craton, South Australia. Australian Journal of Earth Sciences, 55(8), 1063–1081. https://doi.org/10.1080/08120090802266550
  • Eugster, H., & Wones, D. (1962). Stability relations of the ferruginous biotite, annite. Journal of Petrology, 3(1), 82–125. https://doi.org/10.1093/petrology/3.1.82
  • Fabris, A. J., Halley, S., Van Der Wielen, S., Keeping, T., & Gordon, G. (2013). IOCG-style mineralisation in the central eastern Gawler Craton, SA; characterisation of alteration, geochemical associations and exploration. Department for Manufacturing, Innovation, Trade, Resources and Energy, South Australia, Report Book 2013/00014.
  • Fanning, C. M., Flint, R. B., Parker, A. J., Ludwig, K. R., & Blissett, A. H. (1988). Refined Proterozoic evolution of the Gawler Craton, South Australia, through U–Pb zircon geochronology. Precambrian Research, 40–41, 363–386. https://doi.org/10.1016/0301-9268(88)90076-9
  • Ferris, G. M., Schwarz, M. P., & Heithersay, P. (2002). The geological framework, distribution and controls of Fe-oxide and related alteration, and Cu–Au mineralisation in the Gawler craton, South Australia. Part I: geological and tectonic framework. In T. M. Porter (Ed.), Hydrothermal iron oxide copper–gold and related deposits: A global perspective (Vol. 2, pp. 9–31). Porter GeoConsultancy Publishing.
  • Ferguson, M., Ehrig, K., Meffre, S., & Cherry, A. (2020). Associations between zircon and Fe–Ti oxides in Hiltaba event magmatic rocks, South Australia: Atomic- or pluton-scale processes? Australian Journal of Earth Sciences, 67(2), 201–220. https://doi.org/10.1080/08120099.2019.1653990
  • Finch, R. J., & Hanchar, J. M. (2003). Structure and chemistry of zircon and zircon-group minerals. Reviews in Mineralogy and Geochemistry, 53(1), 1–25. https://doi.org/10.2113/0530001
  • Flint, R. B., Blissett, A. H., Conor, C. H. H., Cowley, W. M., Cross, K. C., Creaser, R. A., Daly, S. J., Krieg, G. W., Major, R. B., Teale, G. S., & Parker, A. J. (1993). Mesoproterozoic. In J. F. Drexel, W. V. Preiss & A. J. Parker (Eds.), The Geology of South Australia; volume 1, The Precambrian (pp. 106–169). South Australia Geological Survey. Bulletin 54.
  • Fraser, G. L., & Neumann, N. (2010). New SHRIMP U–Pb zircon ages from the Gawler Craton and Curnamona Province, South Australia, 2008–2010. Geoscience Australia, Record 2010/16.
  • Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42(11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033
  • Gao, P., Zheng, Y-F., & Zhao, Z-F. (2016). Distinction between S-type and peraluminous I-type granites: Zircon versus whole-rock geochemistry. Lithos, 258–259, 77–91. https://doi.org/10.1016/j.lithos.2016.04.019
  • Grimes, C. B., Wooden, J. L., Cheadle, M. J., & John, B. B. (2015). “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contributions to Mineralogy and Petrology, 170(5–6), 1–26. https://doi.org/10.1007/s00410-015-1199-3
  • Hand, M., Reid, A., & Jagodzinski, E. (2007). Tectonic framework and evolution of the Gawler Craton, Southern Australia. Economic Geology, 102(8), 1377–1395. https://doi.org/10.2113/gsecongeo.102.8.1377
  • Hitzman, M. W., Oreskes, N., & Einaudi, M. T. (1992). Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambrian Research, 58(1–4), 241–287. https://doi.org/10.1016/0301-9268(92)90121-4
  • Hoek, J. D., & Schaefer, B. F. (1998). Palaeoproterozoic Kimban mobile belt, Eyre Peninsula; timing and significance of felsic and mafic magmatism and deformation. Australian Journal of Earth Sciences, 45(2), 305–313. https://doi.org/10.1080/08120099808728389
  • Hofmann, A. E., Baker, M. B., & Eiler, J. M. (2014). Sub-micron-scale trace element distribution in natural zircons of known provenance: Implications for Ti-in-zircon thermometry. Contributions to Mineralogy and Petrology, 168(3), 1057. https://doi.org/10.1007/s00410-014-1057-8
  • Hoskin, P. W. O. (2005). Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3), 637–648. https://doi.org/10.1016/j.gca.2004.07.006
  • Hoskin, P. W. O., & Ireland, T. R. (2000). Rare earth element chemistry of zircon and its use as a provenance indicator. Geology, 28(7), 627–630. https://doi.org/10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2
  • Hoskin, P. W. O., & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1), 27–62. https://doi.org/10.2113/0530027
  • Jagodzinski, E. A., & Reid, A. (2016). U–Pb geochronological data from drill holes Nundroo 3 DDH and Nundroo 2 CCH, Fowler Domain, western Gawler Craton. Department of State Development, South Australia, Report Book, v. 2016/00010.
  • Johnson, J. P., & Cross, K. C. (1995). U–Pb geochronological constraints on the genesis of the Olympic Dam Cu–U–Au–Ag deposit, South Australia. Economic Geology, 90(5), 1046–1063. https://doi.org/10.2113/gsecongeo.90.5.1046
  • Kirkland, C., Smithies, R., Taylor, R., Evans, N., & McDonald, B. (2015). Zircon Th/U ratios in magmatic environs. Lithos, 212–215, 397–414. https://doi.org/10.1016/j.lithos.2014.11.021
  • Krapf, C. B. E., Mcavaney, S. O., Werner, M., & Pawley, M. J. (2016). Mineral Systems Drilling Program, Rock Shack. Report Book 2016/00024. Geological Survey of South Australia, Department of State Development, South Australia.
  • Kositcin, N. (2010). Geodynamic synthesis of the Gawler Craton and Curnamona Province. Geoscience Australia.
  • Li, H., Watanabe, K., & Yonezu, K. (2014). Zircon morphology, geochronology and trace element geochemistry of the granites from the Huangshaping polymetallic deposit, South China: Implications for the magmatic evolution and mineralisation processes. Ore Geology Reviews, 60(Supplement C), 14–35. https://doi.org/10.1016/j.oregeorev.2013.12.009
  • Linnen, R., & Keppler, H. (2002). Melt composition control of Zr/Hf fractionation in magmatic processes. Geochimica et Cosmochimica Acta, 66(18), 3293–3301. https://doi.org/10.1016/S0016-7037(02)00924-9
  • Longerich, H. P., Jackson, S. E., & Günther, D. (1996). Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11(9), 899–904. https://doi.org/10.1039/JA9961100899
  • Loucks, R., Fiorentini, M., & Henríquez, G. (2020). New magmatic oxybarometer using trace elements in zircon. Journal of Petrology, egaa034. https://doi.org/10.1093/petrology/egaa034
  • Lu, Y-J., Loucks, R. R., Fiorentini, M., McCuaig, T. C., Evans, N. J., Yang, Z-M., Hou, Z-Q., Kirkland, C. L., Parra-Avila, L. A., & Kobussen, A. (2016). Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits. In J. P. Richards (Ed.), Tectonics and Metallogeny of the Tethyan Orogenic Belt. (pp. 329–347). Society of Economic Geologists, Special Publication, 19.
  • McQueen, K. G. (2005). Ore deposit types and their primary expressions. In S. M. Cornelius & I. D. M. Robertson (Eds.), Regolith expression of Australian ore systems: A compilation of exploration case histories with conceptual dispersion, process and exploration models (pp. 1–14). CRC LEME.
  • Mortimer, G. E. (1984). Early to Middle Proterozoic granitoids, basaltic dykes and associated layered rocks of S.E. Eyre Peninsula, South Australia [Unpublished PhD Thesis]. University of Adelaide, 189 pp.
  • Nardi, L. V. S., Formoso, M. L. L., Müller, I. F., Fontana, E., Jarvis, K., & Lamarão, C. (2013). Zircon/rock partition coefficients of REEs, Y, Th, U, Nb, and Ta in granitic rocks: Uses for provenance and mineral exploration purposes. Chemical Geology, 335, 1–7. https://doi.org/10.1016/j.chemgeo.2012.10.043
  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26(12), 2508. https://doi.org/10.1039/c1ja10172b
  • Pawley, M. J., Reid, A., & Dutch, R. A. (2016). Magmatic systems of the Paleoproterozoic St Peter Suite, western Gawler Craton: Insights from reconnaissance mapping. MESA Journal, 81, 4–12.
  • Pidgeon, R. T. (1992). Recrystallization of oscillatory zoned zircon: some geochronological and petrological implications. Contributions to Mineralogy and Petrology, 110(4), 463–472. https://doi.org/10.1007/BF00344081
  • Pidgeon, R. T., Nemchin, A. A., & Hitchen, G. J. (1998). Internal structures of zircons from Archean granites from the Darling Range batholith: Implications for zircon stability and the interpretation of zircon U–Pb ages. Contributions to Mineralogy and Petrology, 132(3), 288–299. https://doi.org/10.1007/s004100050422
  • Pidgeon, R. T., Nemchin, A. A., & Cliff, J. (2013). Interaction of weathering solutions with oxygen and U–Pb isotopic systems of radiation-damaged zircon from an Archean granite, Darling Range Batholith, Western Australia. Contributions to Mineralogy and Petrology, 166(2), 511–523. https://doi.org/10.1007/s00410-013-0888-z
  • Porter, T. M. (2010). The Carrapateena iron oxide copper gold deposit, Gawler Craton, South Australia: A review. In T. M. Porter (Ed.), Hydrothermal iron oxide copper–gold and related deposits: A global perspective, v. 3—Advances in the understanding of IOCG deposits (pp. 191–200). PGC Publishing.
  • Rayner, N., Stern, R., & Carr, S. (2005). Grain-scale variations in trace element composition of fluid-altered zircon, Acasta Gneiss Complex, northwestern Canada. Contributions to Mineralogy and Petrology, 148(6), 721–734. https://doi.org/10.1007/s00410-004-0633-8
  • Reid, A. (2015). Zircon U–Pb geochronology from selected Paleoproterozoic igneous rocks of the Gawler Craton by laser ablation-inductively coupled plasma mass spectrometry. Report Book 2015/00025. Department of State Development, South Australia.
  • Reid, A. (2019). The Olympic Cu–Au Province, Gawler Craton: A review of the lithospheric architecture, geodynamic setting, alteration systems, cover successions and prospectivity. Minerals, 9(6), 371. https://doi.org/10.3390/min9060371
  • Reid, A., & Daly, S. J. (2009). The Mulgathing and Sleaford complexes of the Gawler Craton: a historical perspective of the geology and mineral potential. MESA Journal 52, 4–12.
  • Reid, A., & Dutch, R. (2012). Reconnaissance LA-ICPMS zircon U–Pb geochronology of crystalline basement outcrops on the FOWLER 1:250000 map sheet. Report Book 2012/00013. Department for Manufacturing, Innovation, Trade, Resources and Energy, South Australia.
  • Reid, A., & Hand, M. (2012). Mesoarchean to Mesoproterozoic evolution of the southern Gawler Craton, South Australia. Episodes—News Magazine of the International Union of Geological Sciences, 35, 216.
  • Reid, A., & Jagodzinski, E. A. (2012). PACE Geochronology: Results of collaborative geochronology projects 2011–12, Report Book 2012/00012. Department for Manufacturing, Innovation, Trade, Resources and Energy, South Australia.
  • Reid, A., & Payne, J. (2017). Magmatic zircon Lu–Hf isotopic record of juvenile addition and crustal reworking in the Gawler Craton, Australia. Lithos, 292–293, 294–306. https://doi.org/10.1016/j.lithos.2017.08.010
  • Reid, A., Hand, M., Jagodzinski, E., Kelsey, D., & Pearson, N. (2008). Paleoproterozoic orogenesis in the southeastern Gawler Craton, South Australia. Australian Journal of Earth Sciences, 55(4), 449–471. https://doi.org/10.1080/08120090801888594
  • Reid, A. J., Jagodzinski, E. A., Armit, R. J., Dutch, R. A., Kirkland, C. L., Betts, P. G., & Schaefer, B. F. (2014). U–Pb and Hf isotopic evidence for Neoarchean and Paleoproterozoic basement in the buried northern Gawler Craton, South Australia. Precambrian Research, 250, 127–142. https://doi.org/10.1016/j.precamres.2014.05.019
  • Reid, A., Pawley, M., Wade, C., Jagodzinski, E., Dutch, R., & Armstrong, R. (2020). Resolving tectonic settings of ancient magmatic suites using structural, geochemical and isotopic constraints: the example of the St Peter Suite, southern Australia. Australian Journal of Earth Sciences, 67(1), 31–58. https://doi.org/10.1080/08120099.2019.1632224
  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In R. L. Rudnick, H. D. Holland, & K. K. Turekian (Eds.), Treatise on Geochemistry (Vol. 3, pp. 1–64). Elsevier.
  • Samperton, K., Bell, E., Barboni, M., Keller, C., & Schoene, B. (2017). Zircon age-temperature-compositional spectra in plutonic rocks. Geology, 45(11), 983–986. https://doi.org/10.1130/G38645.1
  • SARIG. https://drillhole.pir.sa.gov.au/RockSampleSearchResults.aspx.
  • Schaefer, B. F. (1998). Insights into Proterozoic tectonics from the southern Eyre Peninsula, South Australia [Unpublished BSc (Hons) thesis]. University of Adelaide.
  • Schlegel, T. U., & Heinrich, C. A. (2015). Lithology and hydrothermal alteration control the distribution of copper grade in the prominent hill iron oxide–copper–gold deposit (Gawler Craton, South Australia). Economic Geology, 110(8), 1953–1994. https://doi.org/10.2113/econgeo.110.8.1953
  • Skirrow, R. G., Bastrakov, E., Davidson, G., Raymond, O. L., & Heithersay, P. (2002). The geological framework, distribution and controls of Fe-oxide Cu–Au mineralisation in the Gawler Craton, South Australia: Part II: Alteration and mineralisation. In T. M. Porter (Ed.), Hydrothermal iron oxide copper–gold & related deposits: A global perspective (Vol. 2, pp. 33–47). PGC Publishing.
  • Skirrow, R., Van Der Wielen, S. E., Champion, D. C., Czarnota, K., & Thiel, S. (2018). Lithospheric artchitecture and mantle metasomatism linked to iron-oxide Cu–Au ore formation: multidiciplinary evidence from the Olympic Dam region, South Australia. Geochemistry, Geophysics, Geosystems, 19(8), 2673–2705. https://doi.org/10.1029/2018GC007561
  • Stanley, C. R., & Madeisky, H. E. (1996). Lithogeochemical exploration for metasomatic zones associated with hydrothermal mineral deposits using Pearce Element Ratio Analysis. In Short course notes on pearce element ratio analysis. Mineral Deposit Research Unit, University of British Columbia. 195 p.
  • Stewart, K. P., & Foden, J. (2003). Mesoproterozoic granites of South Australia. South Australia Department of Primary Industries and Resources. Report Book, 2003/15.
  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In A. D. Saunders & M. J. Norry (Eds.), Magmatism in the ocean basins (pp. 313–345). Geological Society of London. Special Publication 42.
  • Swain, G., Woodhouse, A., Hand, M., Barovich, K., Schwarz, M., & Fanning, C. M. (2005). Provenance and tectonic development of the late Archaean Gawler Craton, Australia; U–Pb zircon, geochemical and Sm–Nd isotopic implications. Precambrian Research, 141(3–4), 106–136. https://doi.org/10.1016/j.precamres.2005.08.004
  • Swain, G., Barovich, K., Hand, M., Ferris, G., & Schwarz, M. (2008). Petrogenesis of the St Peter Suite, southern Australia: Arc magmatism and Proterozoic crustal growth of the South Australian Craton. Precambrian Research, 166(1–4), 283–296. https://doi.org/10.1016/j.precamres.2007.07.028
  • Symington, N. J., Weinberg, R. F., Hasalová, P., Wolfram, L. C., Raveggi, M., & Armstrong, R. A. (2014). Multiple intrusions and remelting-remobilisation events in a magmatic arc: The St Peter Suite, South Australia. Geological Society of America Bulletin, 126(9–10), 1200–1218. https://doi.org/10.1130/B30975.1
  • Szpunar, M., Hand, M., Barovich, K., Belousova, E., & Jagodzinski, E. (2011). Isotopic and geochemical constraints on the Paleoproterozoic Hutchison Group, southern Australia: Implications for Paleoproterozoic continental reconstructions. Precambrian Research, 187(1–2), 99–126. https://doi.org/10.1016/j.precamres.2011.02.006
  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell Scientific Publications.
  • Teasdale, J. (1997). Methods for understanding poorly exposed terranes: The interpretive geology and tectnothermal evolution of the western Gawler Craton [Unpublished PhD thesis]. University of Adelaide.
  • Tiddy, C., & Giles, D. (2020). Suprasubduction zone model for metal endowment at 1.60–1.57 Ga in eastern Australia. Ore Geology Reviews, 122, 103483. https://doi.org/10.1016/j.oregeorev.2020.103483
  • Uvarova, Y., Pearce, M., Liu, W., Cleverley, J., & Hough, R. (2018). Geochemical signatures of copper redistribution in IOCG-type mineralisation, Gawler Craton, South Australia. Mineralium Deposita, 53(4), 477–492. https://doi.org/10.1007/s00126-017-0749-1
  • Wang, X., Griffin, W., & Chen, J. (2010). Hf contents and Zr/Hf ratios in granitic zircons. Geochemical Journal, 44(1), 65–72. https://doi.org/10.2343/geochemj.1.0043
  • Wang, X., Griffin, W., Chen, J., Huang, P., & Li, X. (2011). U and Th contents and Th/U ratios of zircon in felsic and mafic magmatic rocks: Improved zircon-melt distribution coefficients. Acta Geologica Sinica—English Edition, 85(1), 164–174. https://doi.org/10.1111/j.1755-6724.2011.00387.x
  • Wade, C. E., Reid, A. J., Wingate, M. T. D., Jagodzinski, E. A., & Barovich, K. (2012). Geochemistry and geochronology of the c. 1585 Ma Benagerie Volcanic Suite, southern Australia: Relationship to the Gawler Range Volcanics and implications for the petrogenesis of a Mesoproterozoic silicic large igneous province. Precambrian Research, 206–207, 17–35. https://doi.org/10.1016/j.precamres.2012.02.020
  • Watson, E. B., Wark, D. A., & Thomas, J. B. (2006). Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151(4), 413–433. https://doi.org/10.1007/s00410-006-0068-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.