Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 68, 2021 - Issue 7
351
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Biogeochemical status of the Paleo-Pacific Ocean: clues from the early Cambrian of South Australia

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 968-991 | Received 02 Dec 2020, Accepted 06 Feb 2021, Published online: 28 Mar 2021

References

  • Abanda, P. A., & Hannigan, R. E. (2006). Effect of diagenesis on trace element partitioning in shales. Chemical Geology, 230(1–2), 42–59. https://doi.org/10.1016/j.chemgeo.2005.11.011
  • Adelson, J. M., Helz, G. R., & Miller, C. V. (2001). Reconstructing the rise of recent coastal anoxia; molybdenum in Chesapeake Bay sediments. Geochimica et Cosmochimica Acta, 65(2), 237–252. https://doi.org/10.1016/S0016-7037(00)00539-1
  • Algeo, T. J., & Lyons, T. W. (2006). Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography and Paleoceanography, 21(1), N/A–N/A. https://doi.org/10.1029/2004PA001112
  • Babcock, L. E. (2003). Trilobites in Paleozoic predator–prey systems, and their role in reorganization of early Paleozoic ecosystems. In P. H. Kelley, M. Kowalewski & T. A. Hansen (Eds.), Predator–Prey interactions in the fossil record (pp. 55–92). Kluwer Academic/Plenum Publishers.
  • Bau, M., & Dulski, P. (1996). Distribution of yttrium and rare-earth elements in the Peng and Kuruman iron-formations. Precambrian Research, 79(1–2), 37–55. https://doi.org/10.1016/0301-9268(95)00087-9
  • Berry, W. B. N., & Wilde, P. (1978). Progressive ventilation of the oceans; an explanation for the distribution of the lower Paleozoic black shales. American Journal of Science, 278(3), 257–275. https://doi.org/10.2475/ajs.278.3.257
  • Betts, M. J., Claybourn, T. M., Brock, G. A., Jago, J. B., Skovsted, C. B., & Paterson, J. R. (2019). Shelly fossils from the lower Cambrian White Point Conglomerate, Kangaroo Island, South Australia. Acta Palaeontologica Polonica, 64, 489–522. https://doi.org/10.4202/app.00586.2018
  • Betts, M. J., Paterson, J. R., Jacquet, S. M., Andrew, A. S., Hall, P. A., Jago, J. B., Jagodzinski, E. A., Preiss, W. V., Crowley, J. L., Brougham, T., Mathewson, C. P., García-Bellido, D. C., Topper, T. P., Skovsted, C. B., & Brock, G. A. (2018). Early Cambrian chronostratigraphy and geochronology of South Australia. Earth-Science Reviews, 185, 498–543. https://doi.org/10.1016/j.earscirev.2018.06.005
  • Bharati, S., Patience, R. L., Larter, S. R., Standen, G., & Poplett, I. J. (1995). Elucidation of the Alum Shale kerogen structure. Organic Geochemistry, 23(11–12), 1043–1058. https://doi.org/10.1016/0146-6380(95)00089-5
  • Bhatia, M. R., & Crook, K. A. W. (1986). Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92(2), 181–193. https://doi.org/10.1007/BF00375292
  • Boyer, D. L., Owens, J. D., Lyons, T. W., & Droser, M. L. (2011). Joining forces: Combined biological and geochemical proxies reveal a complex but refined high-resolution palaeo-oxygen history in Devonian epeiric seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 306(3–4), 134–146. https://doi.org/10.1016/j.palaeo.2011.04.012
  • Brasier, M. D. (1992). Background to the Cambrian explosion. Journal of the Geological Society, 149(4), 585–587. https://doi.org/10.1144/gsjgs.149.4.0585
  • Brasier, M. D., & Hewitt, R. A. (1979). Environmental setting of fossiliferous rocks from the uppermost Proterozoic–lower Cambrian of central England. Palaeogeography, Palaeoclimatology, Palaeoecology, 27, 35–57. https://doi.org/10.1016/0031-0182(79)90092-0
  • Brennan, S. T., Lowenstein, T. K., & Horita, J. (2004). Seawater chemistry and the advent of biocalcification. Geology, 32(6), 473–476. https://doi.org/10.1130/G20251.1
  • Brock, G. A., Engelbretsen, M. J., Jago, J. B., Kruse, P. D., Laurie, J. R., Shergold, J. H., Shi, G. R., & Sorauf, J. E. (2000). Palaeobiogeographic affinities of Australian Cambrian faunas. Association of Australasian Palaeontologists, Memoir 23, 61.
  • Brock, G. A., Jago, J. B., Kruse, P. D., Betts, M. J., Jacquet, S. M., Paterson, J. R., & García-Bellido, D. C. (2016). Cambrian of the Stansbury and Arrowie Basins. In P. D. Kruse & J. B. Jago (Eds.), Palaeo down under 2. Geological field excursion guide: Cryogenian–Ediacaran–Cambrian of the Adelaide Fold Belt (pp. 10–24). Department of State Development. Report Book 2016/00011.
  • Calvert, D. E., & Pedersen, T. F. (1993). Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record. Marine Geology, 113(1–2), 67–88. https://doi.org/10.1016/0025-3227(93)90150-T
  • Canfield, D. E. (1998). A new model for Proterozoic ocean chemistry. Nature, 396(6710), 450–453. https://doi.org/10.1038/24839
  • Canfield, D. E., & Farquhar, J. (2009). Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences of the United States of America, 106(20), 8123–8127. https://doi.org/10.1073/pnas.0902037106
  • Canfield, D. E., Olesen, C. A., & Raymond, P. C. (2006). Temperature and its control of isotope fractionation by a sulphate-reducing bacterium. Geochimica et Cosmochimica Acta, 70(3), 548–561. https://doi.org/10.1016/j.gca.2005.10.028
  • Canfield, D. E., Poulton, S. W., & Narbonne, G. M. (2007). Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science (New York, N.Y.), 315(5808), 92–95. https://doi.org/10.1126/science.1135013
  • Canfield, D. E., & Teske, A. (1996). Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature, 382(6587), 127–132. https://doi.org/10.1038/382127a0
  • Carson, M. (1994). The stratigraphy, sedimentology and thermal history of the Early Cambrian Heatherdale Shale, Fleurieu Peninsula [unpublished B.Sc. Honours thesis]. University of Adelaide.
  • Chen, F., Brock, G. A., Betts, M. J., Zhang, Z., Yun, H., Klaebe, R. M., Laing, B., & Zhang, Z. (2020). Sedimentology and integrated chronostratigraphy of the lower Heatherdale Shale (Cambrian, stages 2–3), Stansbury Basin, South Australia. Geological Magazine, 1–13. https://doi.org/10.1017/S0016756820001260
  • Chen, J., Algeo, T. J., Zhao, L., Chen, Z-Q., Cao, L., Zhang, L., & Li, Y. (2015). Diagenetic uptake of rare earth elements by bioapatite, with an example from Lower Triassic conodonts of South China. Earth-Science Reviews, 149, 181–202. https://doi.org/10.1016/j.earscirev.2015.01.013
  • Clark, C., Kinny, P. D., & Harley, S. L. (2012). Sedimentary provenance and age of metamorphism of the Vestfold Hills, East Antarctica: Evidence for a piece of Chinese Antarctica? Precambrian Research, 196-197, 23–45. https://doi.org/10.1016/j.precamres.2011.11.001
  • Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H., & Zak, I. (1980). Age curves of sulphur and oxygen isotopes in marine sulphate and their mutual interpretation. Chemical Geology, 28, 199–206. https://doi.org/10.1016/0009-2541(80)90047-9
  • Collins, A. S., Kröner, A., Fitzsimons, I. C. W., & Razakamanana, T. (2003). Detrital footprint of the Mozambique ocean: U–Pb SHRIMP and Pb evaporation zircon geochronology of metasedimentary gneisses in eastern Madagascar. Tectonophysics, 375(1–4), 77–99. https://doi.org/10.1016/S0040-1951(03)00334-2
  • Collins, A. S., & Pisarevsky, S. A. (2005). Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens. Earth-Science Reviews, 71(3–4), 229–270. https://doi.org/10.1016/j.earscirev.2005.02.004
  • Cox, G., Sansjofre, P., Blades, M. L., Farkas, J., & Collins, A. S. (2019). Dynamic interaction between basin redox and the biogeochemical nitrogen cycle in an unconventional Proterozoic petroleum system. Scientific Reports, 9(1), 5200. https://doi.org/10.1038/s41598-019-40783-4
  • Daily, B., & Milnes, A. R. (1973). Stratigraphy, structure and metamorphism of the Kanmantoo Group (Cambrian) in its type section east of Tunkalilla Beach, South Australia. Transactions of the Royal Society of South Australia, 97, 199–214.
  • Daily, B., Milnes, A. R., Twidale, C. R., & Bourne, J. A. (1979). Geology and geomorphology. In M. J. Tyler, J. K. Ling & C. R. Twidale (Eds.), Natural History of Kangaroo Island (pp. 1–38). Royal Society of South Australia.
  • Daily, B., Moore, P. S., & Rust, B. R. (1980). Terrestrial–marine transition in the Cambrian rocks of Kangaroo Island, South Australia. Sedimentology, 27(4), 379–399. https://doi.org/10.1111/j.1365-3091.1980.tb01189.x
  • Daley, A. C., Paterson, J. R., Edgecombe, G. D., García-Bellido, D. C., & Jago, J. B. (2013). New anatomical information on Anomalocaris from the Cambrian Emu Bay Shale of South Australia and a reassessment of its preferred predatory habits. Palaeontology, 56, 971–990. https://doi.org/10.1111/pala.12029
  • Debrenne, F., & Gravestock, D. (1990). Archaeocyatha from the Sellick Hill Formation and Fork Tree Limestone on Fleurieu Peninsula, South Australia. In J. B. Jago & P. J. Moore (Eds), The evolution of a late Precambrian–early Palaeozoic rift complex: The Adelaide Geosyncline (pp. 290–309). Geological Society of Australia, Special Publication. 16.
  • Derry, L. A., Kaufman, A. J., & Jacobsen, S. (1992). Sedimentary cycling and environmental change in the Late Proterozoic: Evidence from stable and radiogenic isotopes. Geochimica et Cosmochimica Acta, 56(3), 1317–1329. https://doi.org/10.1016/0016-7037(92)90064-P
  • Dong, X., Zhang, Z., Santosh, M., Wang, W., Yu, F., & Liu, F. (2011). Late Neoproterozoic thermal events in the northern Lhasa terrane, south Tibet: Zircon chronology and tectonic implications. Journal of Geodynamics, 52(5), 389–405. https://doi.org/10.1016/j.jog.2011.05.002
  • Erwin, D. H., Laflamme, M., Tweedt, S. M., Sperling, E. A., Pisani, D., & Peterson, K. J. (2011). The Cambrian conundrum: Early divergence and later ecological success in the early history of animals. Science (New York, N.Y.), 334(6059), 1091–1097. https://doi.org/10.1126/science.1206375
  • Felitsyn, S., & Morad, S. (2002). REE patterns in latest Neoproterozoic–early Cambrian phosphate concretions and associated organic matter. Chemical Geology, 187(3–4), 257–265. https://doi.org/10.1016/S0009-2541(02)00046-3
  • Fike, D. A., & Grotzinger, J. P. (2008). A paired sulfate–pyrite δ34S approach to understanding the evolution of the Ediacaran–Cambrian sulfur cycle. Geochimica et Cosmochimica Acta, 72(11), 2636–2648. https://doi.org/10.1016/j.gca.2008.03.021
  • Fike, D. A., Grotzinger, J. P., Pratt, L. M., & Summons, R. E. (2006). Oxidation of the Ediacaran Ocean. Nature, 444(7120), 744–747. https://doi.org/10.1038/nature05345
  • Fioretti, A. M., Black, L. P., Foden, J., & Visonà, D. (2005). Grenville-age magmatism at the South Tasman Rise (Australia): A new piercing point for the reconstruction of Rodinia. Geology, 33(10), 769–772. https://doi.org/10.1130/G21671.1
  • Flöttmann, T., & James, P. (1997). Influence of basin architecture on the style of inversion and fold-thrust belt tectonics—The southern Adelaide Fold-Thrust Belt, South Australia. Journal of Structural Geology, 19(8), 1093–1110. https://doi.org/10.1016/S0191-8141(97)00033-3
  • Flöttmann, T., Haines, P. W., Cockshell, C. D., & Preiss, W. V. (1998). Reassessment of the seismic stratigraphy of the Early Palaeozoic Stansbury Basin, Gulf St Vincent, South Australia. Australian Journal of Earth Sciences, 45(4), 547–557. https://doi.org/10.1080/08120099808728411
  • Foden, J., Elburg, M., Turner, S., Clark, C., Blades, M. L., Cox, G., Collins, A. S., Wolff, K., & George, C. (2020). Cambro-Ordovician magmatism in the Delamerian orogeny: Implications for tectonic development of the southern Gondwanan margin. Gondwana Research, 81, 490–521. https://doi.org/10.1016/j.gr.2019.12.006
  • Foden, J. D., Elburg, M. A., Dougherty-Page, J., & Burtt, A. (2006). The timing and duration of the Delamerian Orogeny: Correlation with the Ross Orogen and implications for Gondwana assembly. The Journal of Geology, 114(2), 189–210. https://doi.org/10.1086/499570
  • Foden, J. D., Sandiford, M., Dougherty-Page, J., & Williams, I. (1999). The geochemistry and geochronology of the Rathjen Gneiss: Implications for the early tectonic evolution of the Delamerian Orogen. Australian Journal of Earth Sciences, 46(3), 377–389. https://doi.org/10.1046/j.1440-0952.1999.00712.x
  • Foden, J. D., Turner, S. P., & Morrison, R. (1990). The tectonic implications of the Delamerian magmatism in South Australia and western Victoria. In J. B. Jago & P. S. Moore (Eds.), The evolution of a Late Precambrian–Early Palaeozoic Rift Complex: The Adelaide Geosyncline (pp. 483–495). Geological Society of Australia Special Publication. 16.
  • Gaines, R. R., & Droser, M. L. (2010). The paleoredox setting of Burgess Shale-type deposits. Palaeogeogaphy, Palaeoclimatology, Palaeoecology, 297(3–4), 649–661. https://doi.org/10.1016/j.palaeo.2010.09.014
  • Gaines, R. R., Paterson, J. R., Jago, J. B., Gehling, J. G., & García-Bellido, D. C. (2016). Palaeoenvironmental and depositional setting of the Emu Bay Shale, a unique early Cambrian Lagerstätte. Geological Society of Australia Abstracts, 117, 29.
  • García-Bellido, D. C., Paterson, J. R., Edgecombe, G. D., Jago, J. B., Gehling, J. G., & Lee, M. S. Y. (2009). The bivalved arthropods Isoxys and Tuzoia with soft-part preservation from the Lower Cambrian Emu Bay Shale Lagerstätte (Kangaroo Island, Australia. Palaeontology, 52(6), 1221–1241. https://doi.org/10.1111/j.1475-4983.2009.00914.x
  • Garver, J. I., & Scott, T. J. (1995). Trace elements in shale as indicators of crustal provenance and terrane accretion in the southern Canadian Cordillera. Geological Society of America Bulletin, 107(4), 440–453. https://doi.org/10.1130/0016-7606(1995)107<0440:TEISAI>2.3.CO;2
  • Gatehouse, C. G., Jago, J. B., & Cooper, B. J. (1990). Sedimentology and stratigraphy of the Carrickalinga Head Formation (low stand fan to high stand systems tract), Kanmantoo Group, South Australia. In J. B. Jago & P. S. Moore (Eds.), The evolution of a Late Precambrian–Early Palaeozoic rift complex: The Adelaide geosyncline (pp. 351–368). Geological Society of Australia Special Publication. 16.
  • Gatehouse, C. G., Jago, J. B., Clough, B. J., & McCulloch, A. J. (1993). The Early Cambrian volcanics from Red Creek, eastern Mt Lofty Ranges, South Australia. Transactions of the Royal Society of South Australia, 117, 57–66.
  • Gehling, J. G., Jago, J. B., Paterson, J. R., García-Bellido, D. C., & Edgecombe, G. D. (2011). The geological context of the lower Cambrian (Series 2) Emu Bay Shale Lagerstätte and adjacent stratigraphic units, Kangaroo Island, South Australia. Australian Journal of Earth Sciences, 58(3), 243–257. https://doi.org/10.1080/08120099.2011.555487
  • Gill, B. C., Lyons, T. W., Young, S. A., Kump, L. R., Knoll, A. H., & Saltzman, M. R. (2011). Geochemical evidence for widespread euxinia in the Late Cambrian ocean. Nature, 469(7328), 80–83. https://doi.org/10.1038/nature09700
  • Goldberg, T., Poulton, S. W., & Strauss, H. (2005). Sulphur and oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: Diagenetic constraints and seawater evolution. Precambrian Research, 137(3–4), 223–241. https://doi.org/10.1016/j.precamres.2005.03.003
  • Goldberg, T., Strauss, H., Guo, Q., & Liu, C. (2007). Reconstructing marine redox conditions for the early Cambrian Yangtze Platform: Evidence from biogenic sulphur and organic carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2), 175–193. https://doi.org/10.1016/j.palaeo.2007.03.015
  • Gorjan, P., Walter, M. R., & Swart, R. (2003). Global Neoproterozoic (Sturtian) post-glacial sulfide-sulfur isotope anomaly recognised in Namibia. Journal of African Earth Sciences, 36(1–2), 89–98. https://doi.org/10.1016/S0899-5362(03)00002-2
  • Gravestock, D. I. (1995). Early and Middle Palaeozoic. In J. F. Drexel & W. V. Preiss (Eds.), The Geology of South Australia, Vol. 2: The Phanerozoic (pp. 3–61). South Australia Geological Survey Bulletin. 54.
  • Gravestock, D. I., Alexander, E. M., Demidenko, Y. E., Esakova, N. B., Holmer, L. E., Jago, J. B., Lin, T. R., Melnikova, N., Parhaev, P. Y., Rozanov, A. Y., Ushatinskaya, G. T., Zang, W. L., Zhegallo, E. A., & Zhuravlev, A. Y. (2001). The Cambrian biostratigraphy of the Stansbury Basin, South Australia. Russian Academy of Sciences. Transactions of the Palaeontological Institute, 282, 1–341.
  • Gum, J. C. (1998). The sedimentology, sequence stratigraphy and mineralisation of the Silverton Subgroup [unpublished PhD thesis]. South Australia University of South Australia.
  • Guo, Q., Shields, G. A., Liu, C., Strauss, H., Zhu, M., Pi, D., Goldberg, T., & Yang, X. (2007). Trace element chemostratigraphy of two Ediacaran–Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2), 194–216. https://doi.org/10.1016/j.palaeo.2007.03.016
  • Haines, P. W., Flöttmann, T., Gum, J. C., Jago, J. B., & Gatehouse, C. G. (1996). Integrated approach to the reinterpretation of the Cambrian Kanmantoo Group type section, South Australia. Geological Society of Australia Abstracts, 41, 77.
  • Haines, P. W., Jago, J. B., & Gum, J. C. (2001). Turbidite deposition in the Cambrian Kanmantoo Group, South Australia. Australian Journal of Earth Sciences, 48(3), 465–478. https://doi.org/10.1046/j.1440-0952.2001.00872.x
  • Haines, P. W., Turner, S. P., Foden, J., & Jago, J. (2009). Isotopic and geochemical characterization of the Cambrian Kanmantoo Group, South Australia: Implications for stratigraphy and provenance. Australian Journal of Earth Sciences, 56(8), 1095–1110. https://doi.org/10.1080/08120090903246212
  • Hall, P. A., McKirdy, D. M., Halverson, G. P., Jago, J. B., & Gehling, J. G. (2011). Biomarker and isotopic signatures of an early Cambrian Lagerstätte in the Stansbury Basin, South Australia. Organic Geochemistry, 42(11), 1324–1330. https://doi.org/10.1016/j.orggeochem.2011.09.003
  • Halverson, G. P., & Hurtgen, M. T. (2007). Ediacaran growth of the marine sulfate reservoir. Earth and Planetary Science Letters, 263(1–2), 32–44. https://doi.org/10.1016/j.epsl.2007.08.022
  • Halverson, G. P., Hurtgen, M. T., Porter, S. M., & Collins, A. S. (2009). Neoproterozoic–Cambrian biogeochemical evolution. In C. Gaucher, A. N. Sial, G. P. Halverson & H. E. Frimmel (Eds.), Developments in Precambrian Geology (Vol. 16, pp. 351–365). Elsevier.
  • Hatch, J. R., & Leventhal, J. S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99(1–3), 65–82. https://doi.org/10.1016/0009-2541(92)90031-Y
  • Helly, J. J., & Levin, L. A. (2004). Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Research Part I: Oceanographic Research Papers, 51(9), 1159–1168. https://doi.org/10.1016/j.dsr.2004.03.009
  • Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. L. W., Pattrick, R. A. D., Garner, C. D., & Vaughan, D. J. (1996). Mechanisms of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60(19), 3631–3642. https://doi.org/10.1016/0016-7037(96)00195-0
  • Hofmann, M., Linnemann, U., Rai, V., Becker, S., Gärtner, A., & Sagawe, A. (2011). The India and South China cratons at the margin of Rodinia—Synchronous Neoproterozoic magmatism revealed by LA-ICP-MS zircon analyses. Lithos, 123(1–4), 176–187. https://doi.org/10.1016/j.lithos.2011.01.012
  • Holmes, J. D., Paterson, J. R., & García-Bellido, D. C. (2020a). The trilobite Redlichia from the lower Cambrian Emu Bay Shale Konservat-Lagerstätte of South Australia: Systematics, ontogeny and soft-part anatomy. Journal of Systematic Palaeontology, 18(4), 295–334. https://doi.org/10.1080/14772019.2019.1605411
  • Holmes, J. D., Paterson, J. R., & García-Bellido, D. C. (2020b). The post-embryonic ontogeny of the early Cambrian trilobite Estaingia bilobata from South Australia: Trunk development and phylogenetic implications. Papers in Palaeontology. https://doi.org/10.1002/spp2.1323
  • Holser, W. T. (1997). Evaluation of the application of rare-earth elements to paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1–4), 309–323. https://doi.org/10.1016/S0031-0182(97)00069-2
  • Holser, W., & Kaplan, I. (1966). Isotope geochemistry of sedimentary sulfates. Chemical Geology, 1, 93–135. https://doi.org/10.1016/0009-2541(66)90011-8
  • Hurtgen, M. T., Arthur, M. A., Suits, N. S., & Kaufman, A. J. (2002). The sulfur isotopic composition of Neoproterozoic seawater sulfate: Implications for a snowball Earth? Earth and Planetary Science Letters, 203(1), 413–430. https://doi.org/10.1016/S0012-821X(02)00804-X
  • Ireland, T. R., Flöttmann, T., Fanning, C. M., Gibson, G. M., & Preiss, W. V. (1998). Development of the early Paleozoic Pacific margin of Gondwana from detrital zircon ages across the Delamerian orogen. Geology, 26(3), 243–246. https://doi.org/10.1130/0091-7613(1998)026<0243:DOTEPP>2.3.CO;2
  • Jacquet, S. M., Jago, J. B., & Brock, G. A. (2016). An enigmatic univalve mollusc from the lower Cambrian (Series 2, Stage 3) Heatherdale Shale, South Australia. Australasian Palaeontological Memoirs, 49, 21–30.
  • Jago, J. B., Bentley, C. J., Paterson, J. R., Holmes, J. D., Lin, T. R., & Sun, X. W. (2021). The stratigraphic significance of early Cambrian (Series 2, Stage 4) trilobites from the Smith Bay Shale near Freestone Creek. Kangaroo Island. Australian Journal of Earth Sciences, 68(2), 205–213. https://doi.org/10.1080/08120099.2020.1749882
  • Jago, J. B., Daily, B., von der Borch, C. C., Cernovskis, A., & Saunders, N. (1984). First reported trilobites from the Lower Cambrian Normanville Group, Fleurieu Peninsula, South Australia. Transactions of the Royal Society of South Australia, 108, 207–211.
  • Jago, J. B., Dyson, I. A., & Gatehouse, C. G. (1994). The nature of the sequence boundary between the Normanville and Kanmantoo Groups on Fleurieu Peninsula, South Australia. Australian Journal of Earth Sciences, 41(5), 445–453. https://doi.org/10.1080/08120099408728154
  • Jago, J. B., & Gatehouse, C. G. (2009). The type section of the Cambrian Backstairs Passage Formation, Kanmantoo Group, South Australia. Transactions of the Royal Society of South Australia, 133(1), 150–163. https://doi.org/10.1080/03721426.2009.10887114
  • Jago, J. B., Gehling, J. G., Paterson, J. R., Brock, G. A., & Zang, W. L. (2012). Cambrian stratigraphy and biostratigraphy of the Flinders Ranges and the north coast of Kangaroo Island, South Australia. Episodes, 35(1), 247–255. https://doi.org/10.18814/epiiugs/2012/v35i1/024
  • Jago, J. B., Gum, J. C., Burtt, A. C., & Haines, P. W. (2003). Stratigraphy of the Kanmantoo Group: A critical element of the Adelaide Fold Belt and the Palaeo-Pacific plate margin, Eastern Gondwana. Australian Journal of Earth Sciences, 50(3), 343–363. https://doi.org/10.1046/j.1440-0952.2003.00997.x
  • Jago, J. B., & Kruse, P. D. (2020). Significance of the middle Cambrian (Wuliuan) trilobite Pagetia from Yorke Peninsula, South Australia. Australian Journal of Earth Sciences, 67(7), 1003–1008. https://doi.org/10.1080/08120099.2019.1643405
  • Jago, J. B., Sun, X., & Zang, W. (2002). Correlation within early Palaeozoic basins of eastern South Australia (2002/033). PIRSA Report Book.
  • Jago, J. B., Zang, W., Sun, X., Brock, G. A., Paterson, G. A., & Skovsted, C. (2006). A review of the Cambrian biostratigraphy of South Australia. Palaeoworld, 15(3–4), 406–488. https://doi.org/10.1016/j.palwor.2006.10.014
  • James, P. R., & Clark, I. F. (2002). Geology. In M. Davies, C. R. Twidale & M. J. Tyler (Eds.), Natural History of Kangaroo Island (2nd ed., pp. 1–22). Royal Society of South Australia.
  • Jenkins, R. J. F., Cooper, J. C., & Compston, W. (2002). Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. Journal of the Geological Society of Society, London, 159(6), 645–658. https://doi.org/10.1144/0016-764901-127
  • Jenkins, R. J. F., & Hasenohr, P. (1989). Trilobites and their trails in a black shale: Early Cambrian of the Fleurieu Peninsula, South Australia. Transactions of the Royal Society of South Australia, 113, 195–203.
  • Jiang, S. Y., Zhao, H. X., Chen, Y. Q., Yang, T., Yang, J. H., & Ling, H. F. (2007). Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu province, China. Chemical Geology, 244(3–4), 584–604. https://doi.org/10.1016/j.chemgeo.2007.07.010
  • Johnston, D. T., Farquhar, J., & Canfield, D. E. (2007). Sulfur isotope insight into microbial sulphate reduction: When microbes meet models. Geochimica et Cosmochimica Acta, 71(16), 3929–3947. https://doi.org/10.1016/j.gca.2007.05.008
  • Jones, B., & Manning, D. A. C. (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology, 111(1–4), 111–129. https://doi.org/10.1016/0009-2541(94)90085-X
  • Keeman, J., Turner, S., Haines, P. W., Belousova, E., Ireland, T., Brouwer, P., Foden, J., & Wörner, G. (2020). New U–Pb, Hf and O isotope constraints on the provenance of sediments from the Adelaide Rift Complex—documenting the key Neoproterozoic to early Cambrian succession. Gondwana Research, 83, 248–278. https://doi.org/10.1016/j.gr.2020.02.005
  • Kelsey, D. E., Wade, B. P., Collins, A. S., Hand, M., Sealing, C. R., & Netting, A. (2008). Discovery of a Neoproterozoic basin in the Prydz belt in East Antarctica and its implications for Gondwana assembly and ultrahigh temperature metamorphism. Precambrian Research, 161(3–4), 355–388. https://doi.org/10.1016/j.precamres.2007.09.003
  • Kenig, F., Hudson, J. D., Sinninghe Damsté, J. S., & Popp, B. N. (2004). Intermittent euxinia: Reconciliation of a Jurassic black shale with its biofacies. Geology, 32(5), 421–424. https://doi.org/10.1130/G20356.1
  • Kennedy, M. J., Pevear, D. R., & Hill, R. J. (2002). Mineral surface control of organic carbon in black shale. Science, 295(5555), 657–660. https://doi.org/10.1126/science.1066611
  • Kennedy, M. J., & Wagner, T. (2011). Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean. Proceedings of the National Academy of Sciences, 108(24), 9776–9781. https://doi.org/10.1073/pnas.1018670108
  • Kidder, D. L., Krishnaswamy, R., & Mapes, R. H. (2003). Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis. Chemical Geology, 198(3–4), 335–353. https://doi.org/10.1016/S0009-2541(03)00036-6
  • Kimura, H., & Watanabe, Y. (2001). Oceanic anoxia at the Precambrian–Cambrian boundary. Geology, 29(11), 995–998. https://doi.org/10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2
  • Klemme, H. D., & Ulmishek, G. F. (1991). Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors. American Association of Petroleum Geologists Bulletin, 75, 1809–1851.
  • Lee, M. S. Y., Jago, J. B., García-Bellido, D. C., Edgecombe, G. D., Gehling, J. G., & Paterson, J. R. (2011). Modern optics in exceptionally preserved eyes of Early Cambrian arthropods from Australia. Nature, 474(7353), 631–634. https://doi.org/10.1038/nature10097
  • Lehmann, B., Nägler, T. F., Holland, H. D., Wille, M., Mao, J., Pan, J., Ma, D., & Dulski, P. (2007). Highly metalliferous carbonaceous shale and early Cambrian seawater. Geology, 35(5), 403–406. https://doi.org/10.1130/G23543A.1
  • Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K., & Vernikovsky, V. (2008). Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160(1–2), 179–210. https://doi.org/10.1016/j.precamres.2007.04.021
  • Lindsay, J. F. (2002). Supersequences, superbasins, supercontinents—Evidence from the Neoproterozoic basins of Central Australia. Basin Research, 14(2), 207–223. https://doi.org/10.1046/j.1365-2117.2002.00170.x
  • Lloyd, J., Blades, M. L., Counts, J., Collins, A. S., Amos, K., Wade, B., Hall, J., Hore, S., Ball, A., Shahin, S., & Drabsch, M. (2020). Neoproterozoic geochronology and provenance of the Adelaide Superbasin. Precambrian Research, 350, 105849. https://doi.org/10.1016/j.precamres.2020.105849
  • Mancktelow, N. S. (1990). The structure of the southern Adelaide Fold Belt, South Australia. In J. B. Jago & P. S. Moore (Eds.), The evolution of a late Precambrian–Early Palaeozoic rift complex: The Adelaide Geosyncline (pp. 369–395). Geological Society of Australia Special Publication. 16.
  • McKenzie, N. R., Hughes, N. C., Myrow, P. M., Choi, D. K., & Park, T. (2011). Trilobites and zircons link north China with the eastern Himalaya during the Cambrian. Geology, 39(6), 591–594. https://doi.org/10.1130/G31838.1
  • McKirdy, D. M. (1994). Biomarker geochemistry of the Early Cambrian oil show in Wilkatana-1: Implications for oil generation in the Arrowie and Stansbury Basins. PESA Journal, 22, 3–17.
  • McKirdy, D. M., Hall, P. A., Nedin, C., Halverson, G. P., Michaelsen, B. H., Jago, J. B., Gehling, J. G., & Jenkins, R. J. F. (2011). Palaeoredox status and thermal alteration of the lower Cambrian (Series 2) Emu Bay Shale Lagerstätte, South Australia. Australian Journal of Earth Sciences, 58(3), 259–272. https://doi.org/10.1080/08120099.2011.557439
  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In B. R. Lipin & G. A. McKay (Eds.), Geochemistry and Mineralogy of Rare Earth Elements (pp. 169–200). Mineralogical Society of America. Reviews in Mineralogy and Geochemistry, 21.
  • McLennan, S. M., & Taylor, S. R. (1991). Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. The Journal of Geology, 99(1), 1–21. http://www.jstor.org/stable/30068762 https://doi.org/10.1086/629470
  • Meert, J. G., & Lieberman, B. S. (2008). The Neoproterozoic assembly of Gondwana and its relationship to the Ediacaran–Cambrian radiation. Gondwana Research, 14(1–2), 5–21. https://doi.org/10.1016/j.gr.2007.06.007
  • Merdith, A. S., Collins, A. S., Williams, S. E., Pisarevsky, S., Foden, J. F., Archibald, D. A., Blades, M. L., Alessio, B. L., Armistead, S., Plavsa, D., Clark, C., & Müller, R. D. (2017). A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, 50, 84–134. https://doi.org/10.1016/j.gr.2017.04.001
  • Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S., & Müller, R. D. (2019). Rift and plate boundary evolution across two supercontinent cycles. Global and Planetary Change, 173, 1–14. https://doi.org/10.1016/j.gloplacha.2018.11.006
  • Merdith, A. S., Williams, S. E., Müller, R. D., & Collins, A. S. (2017). Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Research, 299, 132–150. https://doi.org/10.1016/j.precamres.2017.07.013
  • Morris, B. J. (1991). Kanmantoo Trough geological investigations Karinya Syncline drilling report (Report Book 91/20). South Australian Department of Mines and Energy.
  • Morse, J. W., & Luther, G. W. III. (1999). Chemical influences on trace metal–sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta, 63(19–20), 3373–3378. https://doi.org/10.1016/S0016-7037(99)00258-6
  • Maruyama, S., & Santosh, M. (2008). Models on Snowball Earth and Cambrian explosion: A synopsis. Gondwana Research, 14(1–2), 22–32. https://doi.org/10.1016/j.gr.2008.01.004
  • Myrow, P. M., Hughes, N. C., Goodge, J. W., Fanning, C. M., Williams, I. S., Peng, S., Bhargava, O. N., Parcha, S. K., & Pogue, K. R. (2010). Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian–Ordovician. Geological Society of America Bulletin, 122(9–10), 1660–1670. https://doi.org/10.1130/B30123.1
  • Naqvi, S. M., Uday Raj, B., Subba Rao, D. V., Manikyamba, C., Nirmal Charan, S., Balaram, V., & Srinivasa Sarma, D. (2002). Geology and geochemistry of arenite–quartzwacke from the Late Archaean Sandur schist belt—implications for provenance and accretion processes. Precambrian Research, 114(3–4), 177–197. https://doi.org/10.1016/S0301-9268(01)00227-3
  • Naqvi, S. W. A., Naik, H., Jayakumar, D. A., Shailaja, M. S., & Narvekar, P. V. (2006). Seasonal oxygen deficiency over the western continental shelf of India. In L. N. Neretin (Ed.), Past and Present Water Column Anoxia (pp. 195–224, NATO Science Series: IV). Earth and Environmental Sciences. 64.
  • Nedin, C. (1995). The palaeontology and palaeoenvironment of the Early Cambrian Emu Bay Shale Kangaroo Island, South Australia [unpublished PhD thesis]. University of Adelaide.
  • Och, L. M., & Shields-Zhou, G. A. (2012). The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Science Reviews, 110(1–4), 26–57. https://doi.org/10.1016/j.earscirev.2011.09.004
  • Och, L. M., Shields-Zhou, G. A., Poulton, S. W., Manning, C., Thirlwall, M. F., Li, D., Chen, X., Ling, H., Osborn, T., & Cremonese, L. (2013). Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Research, 225, 166–189. https://doi.org/10.1016/j.precamres.2011.10.005
  • Paterson, J. R., García-Bellido, D. C., Jago, J. B., Gehling, J. G., Lee, M. S. Y., & Edgecombe, G. D. (2016). The Emu Bay Shale Konservat-Lagerstätte: A view of Cambrian life from East Gondwana. Journal of the Geological Society, 173(1), 1–11. https://doi.org/10.1144/jgs2015-083
  • Paterson, J. R., García-Bellido, D. C., Lee, M. S. Y., Brock, G. A., Jago, J. B., & Edgecombe, G. D. (2011). Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature, 480(7376), 237–240. https://doi.org/10.1038/nature10689
  • Paterson, J. R., Jago, J. B., Gehling, J. G., García-Bellido, D. C., Edgecombe, G. D., & Lee, M. S. Y. (2008). Early Cambrian arthropods from the Emu Bay Shale Lagerstätte, South Australia. In I. Rábano, R. Gozalo & D. García-Bellido (Eds.), Advances in Trilobite Research (pp. 319–325). Instituto Geológico y Minero de España.
  • Pi, D-H., Liu, C-Q., Shields-Zhou, G. A., & Jiang, S-Y. (2013). Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Research, 225, 218–229. https://doi.org/10.1016/j.precamres.2011.07.004
  • Piper, D. Z., & Calvert, S. E. (2009). A marine biogeochemical perspective on black shale deposition. Earth-Science Reviews, 95(1–2), 63–96. https://doi.org/10.1016/j.earscirev.2009.03.001
  • Powell, C. M., Preiss, W. V., Gatehouse, C. G., Krapez, B., & Li, Z. X. (1994). South Australian record of a Rodinian epi-continental basin and its mid-Neoproterozoic breakup (∼700 Ma) to form the Palaeo-Pacific Ocean. Tectonophysics, 237(3–4), 113–140. https://doi.org/10.1016/0040-1951(94)90250-X
  • Powell, W. G. (2009). Comparison of geochemical and distinctive mineralogical features associated with the Kinzers and Burgess Shale formations and their associated units. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(1–2), 127–140. https://doi.org/10.1016/j.palaeo.2009.02.016
  • Powell, W. G., Johnston, P. A., & Collom, C. J. (2003). Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 201(3–4), 249–268. https://doi.org/10.1016/S0031-0182(03)00612-6
  • Preiss, W. V., (1995). Delamerian orogeny. In J. F. Drexel & W. V. Preiss, (Eds.), The Geology of South Australia, Vol. 2: The Phanerozoic (pp. 45–60). Geological Survey of South Australia Bulletin. 54.
  • Preiss, W. V. (2000). The Adelaide Geosyncline of South Australia and its significance in Neoproterozoic continental reconstructions. Precambrian Research, 100(1–3), 21–63. https://doi.org/10.1016/S0301-9268(99)00068-6
  • Racka, M., Marynowski, L., Filipiak, P., Sobstel, M., Pisarzowska, A., & Bond, D. P. G. (2010). Anoxic Annulata events in the late Famennian of the Holy Cross Mountains (Southern Poland): Geochemical and palaeontological record. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(3–4), 549–575. https://doi.org/10.1016/j.palaeo.2010.08.028
  • Rimmer, S. M. (2004). Geochemical paleoredox indicators in Devonian–Mississipian black shales. Chemical Geology, 206(3–4), 373–391. https://doi.org/10.1016/j.chemgeo.2003.12.029
  • Schmitt, R. S., Fragoso, R. A., & Collins, A. S. (2018). Suturing Gondwana in the Cambrian—the orogenic events of the final amalgamation. In S. Siegesmund, M. A. S. Basei, P. Oyhantçabal & S. Oriolo (Eds.), Geology of Southwest Gondwana. Regional Geology Reviews. Springer. https://doi.org/10.1007/978-3-319-68920-3_15
  • Scott, C., Lyons, T. W., Bekker, A., Shen, Y., Poulton, S. W., Chu, X., & Anbar, A. D. (2008). Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452(7186), 456–459. https://doi.org/10.1038/nature06811
  • Shen, Y., Schidlowski, M., & Chu, X. (2000). Biogeochemical approach to understanding phosphogenic events of the terminal Proterozoic to Cambrian. Palaeogeography, Palaeoclimatology. Palaeoecology, 158(1–2), 99–108. https://doi.org/10.1016/S0031-0182(00)00033-X
  • Shields, G. A., Mills, B. J. W., Zhu, M., Raub, T. D., Daines, S. J., & Lenton, T. M. (2019). Unique Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite burial. Nature Geoscience, 12(10), 823–827. https://doi.org/10.1038/s41561-019-0434-3
  • Shields, G., Kimura, H., Yang, J., & Gammon, P. (2004). Sulphur isotopic evolution of Neoproterozoic–Cambrian seawater: New francolite-bound sulphate δ34S data and critical appraisal of the existing record. Chemical Geology, 204(1–2), 163–182. https://doi.org/10.1016/j.chemgeo.2003.12.001
  • Shields, G., Strauss, H., Howe, S. S., & Siegmund, H. (1999). Sulphur isotope compositions of sedimentary phosphorites from the basal Cambrian of China: Implications for Neoproterozoic–Cambrian biogeochemical cycling. Journal of the Geological Society, 156(5), 943–955. https://doi.org/10.1144/gsjgs.156.5.0943
  • Shields, G., & Stille, P. (2001). Diagenetic constrains on the use of cerium anomalies as palaeoseawater proxies: An isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175(1–2), 29–48. https://doi.org/10.1016/S0009-2541(00)00362-4
  • Sholkovitz, E., Landing, W. M., & Lewis, B. L. (1994). Ocean particle chemistry: The fractionation of the rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta, 58(6), 1567–1580. https://doi.org/10.1016/0016-7037(94)90559-2
  • Squire, R. J., Campbell, I. H., Allen, C. M., & Wilson, C. J. L. (2006). Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth and Planetary Science Letters, 250(1–2), 116–133. https://doi.org/10.1016/j.epsl.2006.07.032
  • Steiner, M., Li, G., Qian, Y., Zhu, M., & Erdtmann, B. (2007). Neoproterozoic to Early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2), 67–99. https://doi.org/10.1016/j.palaeo.2007.03.046
  • Strauss, H. (2002). The isotopic composition of Precambrian sulphides–seawater chemistry and biological evolution. International Association of Sedimentologists Special Publication, 33, 67–105.
  • Strauss, H. (2006). Anoxia through time. In L. N. Neretin (Ed.), Past and Present Water Column Anoxia (pp. 3–19), NATO Science Series: IV). Earth and Environmental Sciences. 64.
  • Suto, A. (2011). Structure of the Kangaroo Island Fleurieu Peninsula Shear Zone and the provenance of its host sediments—The Kanmantoo Group—South Eastern Australia [unpublished B.Sc. Honours thesis]. University of Adelaide.
  • Taylor, S. R., & McLennan, S. M. (1985). The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications.
  • Thickpenny, A., & Leggett, J. K. (1987). Stratigraphic distribution and palaeo-oceanographic significance of European early Palaeozoic organic-rich sediments. In J. Brooks & A. J. Fleet (Eds.), Marine Petroleum Source Rocks (pp. 231–247). Geological Society Special Publication. 26.
  • Thomson, B. P. (1969). The Kanmantoo Group and Early Palaeozoic Tectonics. In L. W. Parkin (Ed.), Handbook of South Australian Geology (pp. 97–108). Geological Survey of South Australia.
  • Thomson, J., Jarvis, I., Green, D. R. H., Green, D., & Clayton, T. (1998). Mobility and immobility of redox-sensitive elements in deep-sea turbidites during shallow burial. Geochimica et Cosmochimica Acta, 62(4), 643–656. https://doi.org/10.1016/S0016-7037(97)00378-5
  • Tissot, B. P., & Welte, D. H. (1984). Petroleum Formation and Occurrence (2nd ed.). Springer-Verlag.
  • Tostevin, R., & Mills, B. J. W. (2020). Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus, 10(4), 20190137. https://doi.org/10.1098/rsfs.2019.0137
  • Tribovillard, N., Algeo, T. J., Baudin, F., & Riboulleau, A. (2012). Analysis of marine environmental conditions based on molybdenum–uranium covariation—Applications to Mesozoic paleoceanography. Chemical Geology, 324-325, 46–58. https://doi.org/10.1016/j.chemgeo.2011.09.009
  • Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1–2), 12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012
  • Tribovillard, N., Bout-Roumazeilles, V., Algeo, T. J., Lyons, T. W., Sionneau, T., Montero-Serrano, J. C., Riboulleau, A., & Baudin, F. (2008). Paleodepositional conditions in the Orca Basin as inferred from organic matter and trace metal contents. Marine Geology, 254(1–2), 62–72. https://doi.org/10.1016/j.margeo.2008.04.016
  • Tribovillard, N., Riboulleau, A., Lyons, T., & Baudin, F. (2004). Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recorded by various Mesozoic formations. Chemical Geology, 213(4), 385–401. https://doi.org/10.1016/j.chemgeo.2004.08.011
  • Turner, B. L. (1994). Cambrian black shales in the Karinya Syncline: stratigraphic distribution, sedimentology and kerogen composition [unpublished B.Sc. Honours thesis]. University of Adelaide.
  • Turner, S. P., Adams, C. J., Flöttmann, T., & Foden, J. D. (1993). Geochemical and geochronological constraints on the Glenelg River Complex, Western Victoria. Australian Journal of Earth Sciences, 40(3), 275–292. https://doi.org/10.1080/08120099308728080
  • Turner, S. P., Haines, P. W., Foster, D., Powell, R., Sandiford, M., & Offler, R. (2009). Did the Delamerian Orogeny start in the Neoproterozoic? The Journal of Geology, 117(5), 575–583. https://doi.org/10.1086/600866
  • Tyson, R. V. (1995). Sedimentary Organic Matter—Organic Facies and Palynofacies (p. 615). Chapman & Hall.
  • Tyson, R. V., & Pearson, T. H., (1991). Modern and ancient continental shelf anoxia: an overview. In R. V. Tyson & T. H. Pearson (Eds.), Modern and Ancient Continental Shelf Anoxia (pp. 1–24). Geological Society, Special Publication. 58. https://doi.org/10.1144/GSL.SP.1991.058.01.01
  • Veevers, J. J., Belousova, E. A., Saeed, A., Sircombe, K., Cooper, A. F., & Read, S. R. (2006). Pan-Gondwanaland detrital zircons from Australia analysed for Hf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700–500 Ma age, TDM of 2.0–1.0 Ga, and alkaline affinity. Earth-Science Reviews, 76(3–4), 135–174. https://doi.org/10.1016/j.earscirev.2005.11.001
  • Walker, J. C. G. (1986). Global geochemical cycles of carbon, sulfur and oxygen. Marine Geology, 70, 159–174. https://doi.org/10.1016/0025-3227(86)90093-9
  • Wang, X., Shi, X., Jiang, G., & Zhang, W. (2012). New U–Pb age from the basal Niutitang Formation in South China: Implications for diachronous development and condensation of stratigraphic units across the Yangtze Platform at the Ediacaran–Cambrian transition. Journal of Asian Earth Sciences, 48, 1–8. https://doi.org/10.1016/j.jseaes.2011.12.023
  • Wani, H., & Mondal, M. E. A. (2011). Evaluation of provenance, tectonic setting and paleo-redox conditions of the Mesoproterozoic–Neoproterozoic basins of the Bastar craton, Central Indian Shield: Using petrography of sandstones and geochemistry of shales. Lithosphere, 3(2), 143–154. https://doi.org/10.1130/L74.1
  • Wignall, P. B., & Twitchett, R. J. (1996). Oceanic anoxia and the end Permian mass extinction. Science, 272(5265), 1155–1158. https://doi.org/10.1126/science.272.5265.1155
  • Wilde, P., Lyons, T. W., & Quinby-Hunt, M. S. (2004). Organic carbon proxies in black shales: molybdenum. Chemical Geology, 206(3–4), 167–176. https://doi.org/10.1016/j.chemgeo.2003.12.005
  • Wilde, P., Quinby-Hunt, M. S., & Erdtmann, B. D. (1996). The whole-rock cerium anomaly: A potential indicator of eustatic sea-level changes in shales of the anoxic facies. Sedimentary Geology, 101(1–2), 43–53. https://doi.org/10.1016/0037-0738(95)00020-8
  • Wombacher, F., & Münker, C. (2000). Pb, Nd, and Sr isotopes and REE systematic of Cambrian sediments from New Zealand: Implications for the reconstruction of the Early Palaeozoic Gondwana margin along Australia and Antarctica. The Journal of Geology, 108(6), 663–686. https://doi.org/10.1086/317950
  • Wu, N., Farquhar, J., Strauss, H., Kim, S., & Canfield, D. E. (2010). Evaluating the S-isotope fractionation associated with Phanerozoic pyrite burial. Geochimica et Cosmochimica Acta, 74(7), 2053–2071. https://doi.org/10.1016/j.gca.2009.12.012
  • Xie, S., Wu, Y., Gao, S., Liu, X., Zhou, L., Zhao, L., & Hu, Z. (2012). Sr–Nd isotopic and geochemical constraints on provenance of late Paleozoic to early Cretaceous sedimentary rocks in the Western Hills of Beijing, North China: Implications for the uplift of the northern North China Craton. Sedimentary Geology, 245–246, 17–28. https://doi.org/10.1016/j.sedgeo.2011.12.005
  • Yan, X., Kerrich, R., & Hendry, M. J. (2000). Trace element geochemistry of a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Chemical Geology, 164(1–2), 93–120. https://doi.org/10.1016/S0009-2541(99)00141-2
  • Yan, Y., Xia, B., Lin, G., Carter, A., Hu, X., Cui, X., Liu, B., Yan, P., & Song, Z. (2007). Geochemical and Nd isotope composition of detrital sediments on the north margin of the South China Sea: Provenance and tectonic implications. Sedimentology, 54(1), 1–17. https://doi.org/10.1111/j.1365-3091.2006.00816.x
  • Yang, J. H., Jiang, S. Y., Ling, H. F., Feng, H. Z., Chen, Y. Q., & Chen, J. F. (2004). Paleoceanographic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Progress in Natural Science, 14(2), 152–157. https://doi.org/10.1080/10020070412331343291
  • Yang, J., Torres, M., McManus, J., Algeo, T. J., Hakala, A., & Verba, C. (2017). Controls on rare earth element distributions in ancient organic-rich sedimentary sequences: Role of post-depositional diagenesis of phosphorus phases. Chemical Geology, 466, 533–544. https://doi.org/10.1016/j.chemgeo.2017.07.003
  • Yu, B., Dong, H., Widom, E., Chen, J., & Lin, C. (2009). Geochemistry of basal Cambrian black shales and cherts from the Northern Tarim Basin, Northwest China: Implications for depositional setting and tectonic history. Journal of Asian Earth Sciences, 34(3), 418–436. https://doi.org/10.1016/j.jseaes.2008.07.003
  • Zhang, L., Algeo, T. J., Cao, L., Zhao, L., Chen, Z-Q., & Li, Z. (2016). Diagenetic uptake of rare earth elements by conodont apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458, 176–197. https://doi.org/10.1016/j.palaeo.2015.10.049
  • Zhang, Q. R., & Piper, J. D. A. (1997). Palaeomagnetic study of Neoproterozoic glacial rocks of the Yangzi Block: Palaeolatitude and configuration of South China in the late Proterozoic Supercontinent. Precambrian Research, 85(3–4), 173–199. https://doi.org/10.1016/S0301-9268(97)00031-4
  • Zhang, T., Chu, X., Zhang, Q., Feng, L., & Huo, W. (2003). Variations of sulphur and carbon isotopes in seawater during the Doushantuo stage in late Neoproterozoic. Chinese Science Bulletin, 48(13), 1375–1380. https://doi.org/10.1007/BF03184182
  • Zheng, Y., Anderson, R. F., van Geen, A., & Kuwabara, J. (2000). Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 64(24), 4165–4178. https://doi.org/10.1016/S0016-7037(00)00495-6
  • Zhou, C., & Jiang, S. Y. (2009). Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: Evidence from pyrite framboids, redox-sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3–4), 279–286. https://doi.org/10.1016/j.palaeo.2008.10.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.