Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 69, 2022 - Issue 8
1,846
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Isotopic investigations of the Nova-Bollinger Ni–Cu–Co deposit in the Fraser Zone, Albany-Fraser Orogen, Western Australia

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1177-1196 | Received 05 Feb 2022, Accepted 09 May 2022, Published online: 10 Jul 2022

References

  • Barnes, S. J., & Robertson, J. C. (2019). Time scales and length scales in magma flow pathways and the origin of magmatic Ni–Cu–PGE ore deposits. Geoscience Frontiers, 10(1), 77–87. https://doi.org/10.1016/j.gsf.2018.02.006
  • Barnes, S. J., Godel, B., Gürer, D., Brenan, J. M., Robertson, J., & Paterson, D. (2013). Sulfide-olivine Fe-Ni exchange and the origin of anomalously Ni-rich magmatic sulfides. Economic Geology, 108(8), 1971–1982. https://doi.org/10.2113/econgeo.108.8.1971
  • Barnes, S. J., Mungall, J. E., Le Vaillant, M., Godel, B., Lesher, C. M., Holwell, D. A., Lightfoot, P. C., Krivolutskaya, N. A., & Wei, B. (2017). Sulfide-silicate textures in magmatic Ni–Cu–PGE sulfide ore deposits: Disseminated and net-textured ores. American Mineralogist, 102(3), 473–506. https://doi.org/10.2138/am-2017-5754
  • Barnes, S. J., Stanley, C. R., & Taranovic, V. (2022a). Compositions and Ni-Cu-PGE tenors of Nova-Bollinger ores with implications for the origin of Pt anomalies in PGE-poor massive sulfides. Economic Geology. https://doi.org/10.5382/econgeo.4894
  • Barnes, S. J., Staude, S., Le Vaillant, M., Pina, R., & Lightfoot, P. C. (2018). Sulfide-silicate textures in magmatic Ni–Cu–PGE sulfide ore deposits: Massive, semi-massive and sulfide-matrix breccia ores. Ore Geology Reviews, 101, 629–651. https://doi.org/10.1016/j.oregeorev.2018.08.011
  • Barnes, S. J., Taranovic, V., Miller, J. M., Boyce, G., & Beresford, S. W. (2020a). Sulfide emplacement and migration in the Nova-Bollinger Ni-Cu-Co deposit, Albany-Fraser Orogen, Western Australia. Economic Geology, 115(8), 1749–1776. https://doi.org/10.5382/econgeo.4758
  • Barnes, S. J., Taranovic, V., Schoneveld, L. E., Mansur, E. T., Le Vaillant, M., Dare, S. A. S., Staude, S., Evans, N. J., & Blanks, D. (2020b). The occurrence and origin of pentlandite–chalcopyrite–pyrrhotite loop textures in magmatic Ni-Cu sulfide ores. Economic Geology, 115(8), 1777–1798. https://doi.org/10.5382/econgeo.4757
  • Barnes, S. J., Williams, M. J., Smithies, R. H., Lowrey, J. R., & Hanski, E. (2021). Trace element contents of mantle-derived magmas through time. Journal of Petrology, 62(6), egab024. https://doi.org/10.1093/petrology/egab024
  • Barnes, S. J., Yao, Z-S., Mao, Y. J., Jesus, A. P., Yang, S. H., Taranovic, V., & Maier, W. D. (2022b). Nickel in olivine as an exploration indicator for magmatic Ni–Cu sulfide deposits: a data review and re-evaluation. American Mineralogist, online. https://doi.org/10.2138/AM-2022-8327
  • Bathgate, K. (2019). Geochemical and isotopic characterisation of mafic intrusions in the Fraser [thesis]. Zone, Western Australia [unpublished MScUniversity of Western Australia]. https://doi.org/10.26182/hwx6-q022
  • Baublys, K. A., Golding, S. D., Young, E., & Kamber, B. S. (2004). Simultaneous determination of delta33S(V-CDT) and delta34S(V-CDT) using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer. Rapid Communications in Mass Spectrometry : RCM, 18(22), 2765–2769. https://doi.org/10.1002/rcm.1681
  • Bennett, M., Gollan, M., Staubmann, M., & Bartlett, J. (2014). Motive, means, and opportunity: key factors in the discovery of the Nova-Bollinger magmatic Nickel–Copper sulfide deposits in Western Australia. In K. D. Kelley & H. C. Golden (Eds.), Building exploration capability for the 21st century (vol. 18, pp. 301–320). Society of Economic Geologists. https://doi.org/10.5382/SP.18.15
  • Blanks, D. E., Holwell, D. A., Fiorentini, M. L., Moroni, M., Giuliani, A., Tassara, S., González-Jiménez, J. M., Boyce, A. J., & Ferrari, E. (2020). Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the crust. Nature Communications, 11(1), 4342–1798. https://doi.org/10.1038/s41467-020-18157-6
  • Chai, G., & Naldrett, A. J. (1992). Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, northwest China. Economic Geology, 87(6), 1475–1495. https://doi.org/10.2113/gsecongeo.87.6.1475
  • Clark, C., Kirkland, C. L., Spaggiari, C. V., Oorschot, C., Wingate, M. T. D., & Taylor, R. J. (2014). Proterozoic granulite formation driven by mafic magmatism; an example from the Fraser Range Metamorphics, Western Australia. Precambrian Research, 240(1), 1–21. https://doi.org/10.1016/j.precamres.2013.07.024
  • Condie, K. C., & Myers, J. S. (1999). Mesoproterozoic Fraser Complex; geochemical evidence for multiple subduction-related sources of lower crustal rocks in the Albany-Fraser Orogen, Western Australia. Australian Journal of Earth Sciences, 46(6), 875–882. https://doi.org/10.1046/j.1440-0952.1999.00750.x
  • Ding, T., Valkiers, S., Kipphardt, H., De Bièvre, P., Taylor, P. D. P., Gonfiantini, R., & Krouse, R. (2001). Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochimica et Cosmochimica Acta, 65(15), 2433–2437. https://doi.org/10.1016/S0016-7037(01)00611-1
  • Ding, X., Li, C., Ripley, E. M., Rossell, D., & Kamo, S. (2010). The Eagle and East Eagle sulfide ore-bearing mafic-ultramafic intrusions in the Midcontinent Rift System, upper Michigan: Geochronology and petrologic evolution. Geochemistry, Geophysics, Geosystems, 11(3), n/a–n/a. https://doi.org/10.1029/2009GC002546
  • Ding, X., Ripley, E. M., Shirey, S. B., & Li, C. (2012). Os, Nd, O and S isotope constraints on country rock contamination in the conduit-related Eagle Cu–Ni–(PGE) deposit, Midcontinent Rift System, Upper Michigan. Geochimica et Cosmochimica Acta, 89, 10–30. https://doi.org/10.1016/j.gca.2012.04.029
  • Fletcher, I. R., Myers, J. S., & Ahmat, A. L. (1991). Isotopic evidence on the age and origin of the Fraser Complex, Western Australia; a sample of mid-Proterozoic lower crust. Chemical Geology. Chemical Geology: Isotope Geoscience Section, 87(3–4), 197–216. https://doi.org/10.1016/0168-9622(91)90021-N
  • Gao, J., & Zhou, M. (2013). Magma mixing in the genesis of the Kalatongke dioritic intrusion; implications for the tectonic switch from subduction to post-collision, Chinese Altay, NW China. Lithos, 162–163, 236–250. https://doi.org/10.1016/j.lithos.2013.01.007
  • Glasson, K., Johnson, T., Kirkland, C., Gardiner, N. J., Clark, C., Blereau, E., Hartnady, M., Spaggiari, C. V., & Smithies, H. (2019). A window into an ancient backarc? The magmatic and metamorphic history of the Fraser Zone, Western Australia. Precambrian Research, 323, 55–69. https://doi.org/10.1016/j.precamres.2019.01.011
  • Goldstein, S. L., O’Nions, R. K., & Hamilton, P. J. (1984). A Sm–Nd study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters, 70, 221–236. https://doi.org/10.1016/0012-821X(84)90007-4
  • Jacobsen, S. B., & Wasserburg, G. J. (1978). Interpretation of Nd, Sr and Pb isotope data from Archean migmatites in Lofoten-Vesterålen, Norway. Earth and Planetary Science Letters, 41(3), 245–253. https://doi.org/10.1016/0012-821X(78)90181-4
  • Kamber, B. S., Greig, A., Schoenberg, R., & Collerson, K. D. (2003). A refined solution to Earth’s hidden niobium: implications for evolution of continental crust and mode of core formation. Precambrian Research, 126(3–4), 289–308. https://doi.org/10.1016/S0301-9268(03)00100-1
  • Kang, Z., Qin, K., Mao, Y., Tang, D., & Yao, Z. (2020). The formation of a magmatic Cu–Ni sulfide deposit in mafic intrusions at the Kalatongke, NW China; insights from amphibole mineralogy and composition. Lithos, 352–353, 105317. https://doi.org/10.1016/j.lithos.2019.105317
  • Kirkland, C. L., Spaggiari, C. V., Pawley, M. J., Wingate, M. T. D., Smithies, R. H., Howard, H. M., Tyler, I. M., Belousova, E. A., & Poujol, M. (2011a). On the edge: U–Pb, Lu–Hf, and Sm–Nd data suggests reworking of the Yilgarn craton margin during formation of the Albany-Fraser Orogen. Precambrian Research, 187(3–4), 223–247. https://doi.org/10.1016/j.precamres.2011.03.002
  • Kirkland, C. L., Spaggiari, C. V., Wingate, M. T. D., Smithies, R. H., Belousova, E. A., Murphy, R., & Pawley, M. (2011b). Inferences on crust–mantle interaction from Lu–Hf isotopes: a case study from the Albany-Fraser Orogen. Geological Survey of Western Australia Record, 2011/12, p. 25.
  • Kirkland, C. L., Spaggiari, C. V., Smithies, R. H., Wingate, M. T. D., Belousova, E. A., Gréau, Y., Sweetapple, M. T., Watkins, R., Tessalina, S., & Creaser, R. (2015). The affinity of Archean crust on the Yilgarn–Albany-Fraser Orogen boundary: Implications for gold mineralisation in the Tropicana Zone. Precambrian Research, 266, 260–281. https://doi.org/10.1016/j.precamres.2015.05.023
  • Labidi, J., Cartigny, P., & Moreira, M. (2013). Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature, 501(7466), 208–211. https://doi.org/10.1038/nature12490
  • Labidi, J., Cartigny, P., Hamelin, C., Moreira, M., & Dosso, L. (2014). Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific–Antarctic ridge basalts: A record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochimica et Cosmochimica Acta, 133, 47–67. https://doi.org/10.1016/j.gca.2014.02.023
  • Latypov, R. (2015). Basal reversals in Mafic Sills and layered intrusions. In B. Charlier, O. Namur, R. Latypov, & C. Tegner (Eds.), Layered intrusions (pp. 259–293). Springer Netherlands.
  • Le Vaillant, M., Barnes, S. J., Mole, D. R., Fiorentini, M. L., LaFlamme, C. K., Denyszyn, S., Austin, J., Patterson, B., Godel, B., Neaud, A., Hicks, J., Shaw-Stuart, A., & Mao, Y. J. (2020). Multidisciplinary study of a complex magmatic system: The Savannah Ni-Cu-Co Camp, Western Australia. Ore Geology Reviews, 117, 103292. https://doi.org/10.1016/j.oregeorev.2019.103292
  • Lesher, C. M. (2019). Up, down, or sideways: emplacement of magmatic Fe–Ni–Cu–PGE sulfide melts in large igneous provinces. Canadian Journal of Earth Sciences, 56(7), 756–773. https://doi.org/10.1139/cjes-2018-0177
  • Lesher, C. M., & Burnham, O. M. (2001). Multicomponent elemental and isotopic mixing in Ni–Cu–(PGE) ores at Kambalda, Western Australia. Canadian Mineralogist, 39, 421–446.
  • Li, C., & Naldrett, A. J. (1999). Geology and petrology of the Voisey’s Bay intrusion: Reaction of olivine with sulfide and silicate liquids. Lithos, 47(1–2), 1–31. https://doi.org/10.1016/S0024-4937(99)00005-5
  • Li, C., & Ripley, E. M. (2009). Sulfur contents at sulfide-liquid or anhydrite saturation in silicate melts: empirical equations and example applications. Economic Geology, 104(3), 405–412. https://doi.org/10.2113/gsecongeo.104.3.405
  • Li, C., & Ripley, E. M. (2011). The giant Jinchuan Ni-Cu-(PGE) deposit; tectonic setting, magma evolution, ore genesis, and exploration implications. Reviews in Economic Geology, 17, 163–180. https://doi.org/10.5382/Rev.17.06
  • Li, C., Zhang, M., Fu, P., Qian, Z. Z., Hu, P., & Ripley, E. M. (2012). The Kalatongke magmatic Ni–Cu deposits in the Central Asian Orogenic Belt, NW China: Product of slab window magmatism? Mineralium Deposita, 47(1–2), 51–67. https://doi.org/10.1007/s00126-011-0354-7
  • Li, C., Zhang, Z., Li, W., Wang, Y., Sun, T., & Ripley, E. M. (2015). Geochronology, petrology and Hf–S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni–Cu sulfide deposit in the Qinghai-Tibet Plateau, western China. Lithos, 216-217, 224–240. https://doi.org/10.1016/j.lithos.2015.01.003
  • Lightfoot, P. C., Keays, R. R., Evans-Lamswood, D., & Wheeler, R. (2012). S saturation history of Nain plutonic suite mafic intrusions; origin of the Voisey’s Bay Ni–Cu–Co sulfide deposit, Labrador, Canada. Mineralium Deposita, 47(1–2), 23–50. https://doi.org/10.1007/s00126-011-0347-6
  • Lu, Y., Lesher, C. M., & Deng, J. (2019). Geochemistry and genesis of magmatic Ni–Cu–(PGE) and PGE–(Cu)–(Ni) deposits in China. Ore Geology Reviews, 107, 863–887. https://doi.org/10.1016/j.oregeorev.2019.03.024
  • Maas, R., Grew, E. S., & Carson, C. J. (2015). On the sources of Early Cambrian pegmatites with boron and beryllium minerals in the Larsemann Hills, Prydz Bay, Antarctica. The Canadian Mineralogist, 53(2), 249–272. https://doi.org/10.3749/canmin.1400081
  • Magee, C., Muirhead, J. D., Karvelas, A., Holford, S. P., Jackson, C. A. L., Bastow, I. D., Schofield, N., Stevenson, C. T. E., McLean, C., McCarthy, W., & Shtukert, O. (2016a). Lateral magma flow in mafic sill complexes. Geosphere, 12(3), 809–841. https://doi.org/10.1130/GES01256.1
  • Magee, C., O’Driscoll, B., Petronis, M. S., & Stevenson, C. T. E. (2016b). Three-dimensional magma flow dynamics within subvolcanic sheet intrusions. Geosphere, 12(3), 842–866. https://doi.org/10.1130/GES01270.1
  • Maier, W. D., Smithies, R. H., Spaggiari, C. V., Barnes, S. J., Kirkland, C. L., Yang, S., Lahaye, Y., Kiddie, O., & MacRae, C. M. (2016). Petrogenesis and Ni–Cu sulphide potential of mafic-ultramafic rocks in the Mesoproterozoic Fraser Zone within the Albany-Fraser Orogen, Western Australia. Precambrian Research, 281, 27–46. https://doi.org/10.1016/j.precamres.2016.05.004
  • Mao, Y. J., Barnes, S. J., Godel, B., Schoneveld, L. E., Qin, K. Z., Tang, D. M., Williams, M. J., & Kang, Z. (2022). Sulfide ore formation of the Kalatongke Ni-Cu deposit as illustrated by sulfide textures. Economic Geology. https://doi.org/10.5382/econgeo.4914
  • Mao, Y-J., Barnes, S. J., Qin, K. Z., Tang, D. M., Martin, L., Su, B. X., & Evans, N. J. (2019). Sector zoned orthopyroxene, olivine oxygen isotope and trace elemental stratigraphic variations in the Huangshanxi orthopyroxene-rich Ni–Cu deposit, northwest China: implications for rapid orthopyroxene growth induced by silica assimilation. Contribution to Mineralogy and Petrology, 174, 33. https://doi.org/10.1007/s00410-019-1574-6
  • Morrison, J. L., Kirkland, C. L., Fiorentini, M., Beresford, S., & Polito, P. (2022). An apatite to unravel petrogenic processes of the Nova-Bollinger Ni–Cu magmatic sulfide deposit, Western Australia. Precambrian Research, 369, 106524. https://doi.org/10.1016/j.precamres.2021.106524
  • Mota-e-Silva, J., Filho, C. F. F., & Giustina, M. E. S. D. (2013). The Limoeiro Deposit: Ni-Cu-PGE sulfide mineralization hosted within an ultramafic tubular magma conduit in the Borborema Province, Northeastern Brazil. Economic Geology, 108(7), 1753–1771. https://doi.org/10.2113/econgeo.108.7.1753
  • Mungall, J. E., Jenkins, M. C., Robb, S. L., Yao, Z., & Brenan, J. M. (2020). Upgrading of magmatic sulfides, revisited. Economic Geology, 115(8), 1827–1833. https://doi.org/10.5382/econgeo.4775
  • Naldrett, A. J., Keats, H., Sparkes, K., & Moore, R. (1996). Geology of the Voisey’s Bay Ni–Cu–Co deposit, Labrador, Canada. Exploration and Mining Geology, 5, 69–179.
  • Parker, P., Bartlett, J., Hodges, K., & Thompson, A. (2017). Nova-Bollinger Ni–Cu–Co sulfide deposit. In G. N. Phillips (Ed.), Australian Ore Deposits, (Monograph 32, pp. 139–142). The Australasian Institute of Mining and Metallurgy.
  • Pearce, J. A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100(1–4), 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
  • Pearce, J. A. (2014). Geochemical fingerprinting of the Earth’s oldest rocks. Geology, 42(2), 175–176. https://doi.org/10.1130/focus022014.1
  • Qian, Z., Wang, J., Jiang, C., Jiao, J., He, K., Yan, H., & Sun, T. (2009). Geochemistry characters of platinum-group elements and its significances on the process of mineralization in the Kalatongke Cu–Ni sulfide deposit, Xinjiang China. Acta Petrologica Sinica, 25(4), 832–844.
  • Ripley, E. M., & Li, C. (2003). Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu–Ni–(PGE) deposits. Economic Geology, 98(1), 635–641. https://doi.org/10.2113/gsecongeo.98.3.635
  • Ripley, E. M., & Li, C. (2011). A review of conduit-related Ni–Cu–(PGE) sulfide mineralization at the Voisey’s Bay Deposit, Labrador, and the Eagle Deposit, northern Michigan. In C. Li & E. M. Ripley (Eds.), Magmatic Ni–Cu and PGE deposits: geology, geochemistry and genesis (Reviews in Economic Geology 17, pp. 181–197). Society of Economic Geologists.
  • Ripley, E. M., & Li, C. (2013). Sulfide saturation in mafic magmas; is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis? Economic Geology, 108(1), 45–58. https://doi.org/10.2113/econgeo.108.1.45
  • Ripley, E. M., Park, Y-R., Li, C., & Naldrett, A. J. (1999). Sulfur and oxygen isotopic evidence of country rock contamination in the Voisey’s Bay Ni–Cu–Co deposit, Labrador, Canada. Lithos, 47(1–2), 53–68. https://doi.org/10.1016/S0024-4937(99)00007-9
  • Ripley, E. M., Sarkar, A., & Li, C. S. (2005). Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni–Cu Deposit, China. Economic Geology, 100(7), 1349–1361. https://doi.org/10.2113/gsecongeo.100.7.1349
  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. In R. L. Rudnick, H. D. Holland, & K. K. Turekian (Eds.), Treatise on Geochemistry (Vol. 3, pp. 1–64). Elsevier.
  • Saumur, B. M., & Cruden, A. R. (2015). On the emplacement of the Voisey’s Bay intrusion (Labrador, Canada). Geological Society of America Bulletin, 128, 147–168. https://doi.org/10.1130/B31240.1
  • Seal, R. R. (2006). Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, 61(1), 633–663. https://doi.org/10.2138/rmg.2006.61.12
  • Seat, Z., Beresford, S. W., Grguric, B. A., Gee, M. A. M., & Grassineau, N. V. (2009). Reevaluation of the role of external sulfur addition in the genesis of Ni-Cu-PGE deposits; evidence from the Nebo-Babel Ni-Cu-PGE deposit, west Musgrave, Western Australia. Economic Geology, 104(4), 521–538. https://doi.org/10.2113/gsecongeo.104.4.521
  • Sippl, C., Brisbout, L. J., Spaggiari, C. V., Kennett, B. L. N., Tkalčić, H., Murdie, R., & Gessner, K. (2017). Crustal structure and tectonic evolution scenarios for the east Albany-Fraser Orogen, Western Australia, from passive seismic and gravity anomaly data. Precambrian Research, 296, 78–92. https://doi.org/10.1016/j.precamres.2017.04.041
  • Smithies, R. H., Spaggiari, C. V., Kirkland, C. L., Howard, H. M., & Maier, W. D. (2013). Melting, mixing, and emplacement; evolution of the Fraser Zone, Albany-Fraser Orogen. GSWA Record 2013/5. Geological Survey of Western Australia.
  • Song, X-Y., Danyushevsky, L. V., Keays, R. R., Chen, L-M., Wang, Y-S., Tian, Y-L., & Xiao, J-F. (2012). Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni–Cu sulfide deposit, NW China. Mineralium Deposita, 47(3), 277–297. https://doi.org/10.1007/s00126-011-0370-7
  • Song, X., Yi, J., Chen, L., She, Y., Liu, C., Dang, X., Yang, Q., & Wu, S. (2016). The giant Xiarihamu Ni–Co sulfide deposit in the East Kunlun orogenic belt, northern Tibet Plateau, China. Economic Geology, 111(1), 29–55. https://doi.org/10.2113/econgeo.111.1.29
  • Spaggiari, C. V., Kirkland, C. L., Smithies, R. H., Wingate, M. T. D., & Belousova, E. (2015). Transformation of an Archean craton margin during Proterozoic basin formation and magmatism: the Albany-Fraser Orogen, Western Australia. Precambrian Research, 266, 440–466. https://doi.org/10.1016/j.precamres.2015.05.036
  • Spaggiari, C. V., Kirkland, C., Pawley, M. J., Smithies, R. H., Wingate, M. T. D., Doyle, M. G., Blenkinsop, T. G., Clark, C., Oorschot, C. W., Fox, L. J., & Savage, J. (2011). The geology of the East Albany-Fraser Orogen – a field guide. Geological Survey of Western Australia Record, vol. 2011/23, p. 97.
  • Spaggiari, C. V., Smithies, R. H., Kirkland, C. L., Wingate, M. T. D., England, R. N., & Lu, Y-J. (2018). Buried but preserved; the Proterozoic Arubiddy Ophiolite, Madura Province, Western Australia. Precambrian Research, 317, 137–158. https://doi.org/10.1016/j.precamres.2018.08.025
  • Spaggiari, C. V., Smithies, R. H., Kirkland, C. L., Wingate, M. T. D., England, R. N., & Lu, Y-J. (2020). Stratigraphic and co-funded drilling of the Eucla Basement – the Proterozoic geology beneath the Nullarbor Plain. Geological Survey of Western Australia, Report, 204, 147.
  • Taranovic, V., Barnes, S. J., Beresford, S. W., Williams, M. J., MacRae, C., & Schoneveld, L. E. (2022). Nova-Bollinger Ni–Cu sulfide ore deposits, Fraser Zone, Western Australia. Economic Geology, 117(2), 455–484. https://doi.org/10.5382/econgeo.4873
  • Taranovic, V., Ripley, E. M., Li, C., & Rossell, D. (2015). Petrogenesis of the Ni–Cu–PGE sulfide-bearing Tamarack Intrusive Complex, Midcontinent Rift System, Minnesota. Lithos, 212–215, 16–31. https://doi.org/10.1016/j.lithos.2014.10.012
  • Taranovic, V., Ripley, E. M., Li, C., & Rossell, D. (2016). Chalcophile element (Ni, Cu, PGE, and Au) variations in the Tamarack magmatic sulfide deposit in the Midcontinent Rift system; implications for dynamic ore-forming processes. Mineralium Deposita, 51(7), 937–951. https://doi.org/10.1007/s00126-016-0643-2
  • Torres-Rodriguez, N., Barnes, S. J., Taranovic, V., Pearce, M. B., Verrall, M., & Schoneveld, L. E. (2021). Reaction coronas at olivine–plagioclase contacts in host rocks from the Nova-Bollinger Ni–Cu–Co deposit, Albany-Fraser Orogen, Western Australia: Evidence of a magmatic to metamorphic continuum. Journal of Petrology, 62(9), 1–24. https://doi.org/10.1093/petrology/egab055
  • Walker, A. T., Evans, K. A., Kirkland, C. L., & Polito, P. A. (2022). Multiple modes of sulphur cycling within a mineralised orogen: A case study from the Fraser Zone, Western Australia, Lithos. Lithos, 408–409, 106536. https://doi.org/10.1016/j.lithos.2021.106536
  • Walker, A. T., Evans, K. A., Kirkland, C. L., Martin, L., Kiddie, O. C., & Spaggiari, C. V. (2019). Tracking mineralisation with in situ multiple sulphur isotopes: A case study from the Fraser Zone, Western Australia. Precambrian Research, 332, 105379. https://doi.org/10.1016/j.precamres.2019.105379
  • Yao, Z., & Mungall, J. E. (2022). Transport and deposition of immiscible sulfide liquid during lateral magma flow. Earth-Science Reviews, 227, 103964. https://doi.org/10.1016/j.earscirev.2022.103964
  • Yaxley, G. M., Kamenetsky, V. S., Nichols, G. T., Maas, R., Belousova, E., Rosenthal, A., & Norman, M. (2013). The discovery of kimberlites in Antarctica extends the vast Gondwanan Cretaceous province. Nature Communications, 4, 2921. https://doi.org/10.1038/ncomms3921