Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 69, 2022 - Issue 8
1,495
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Tectonic setting and mineralisation potential of the Cowley Ophiolite Complex, north Queensland

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1132-1148 | Received 13 Mar 2022, Accepted 26 May 2022, Published online: 27 Jun 2022

References

  • Abdel-Karim, A-A M., Ali, S., Helmy, H. M., & El-Shafei, S. A. (2016). A fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: Evidence from mineral chemistry and geochemistry of ultramafites. Lithos, 263, 52–65. https://doi.org/10.1016/j.lithos.2016.05.023
  • Abuamarah, B. A., Asimow, P. D., Azer, M. K., & Ghrefat, H. (2020). Suprasubduction-zone origin of the podiform chromitites of the Bir Tuluhah ophiolite, Saudi Arabia, during Neoproterozoic assembly of the Arabian Shield. Lithos, 360–361, 105439. https://doi.org/10.1016/j.lithos.2020.105439
  • Aitchison, J. C., & Buckman, S. (2012). Accordion vs. quantum tectonics: Insights into continental growth processes from the Paleozoic of eastern Gondwana. Gondwana Research, 22(2), 674–680. https://doi.org/10.1016/j.gr.2012.05.013
  • Arif, M., & Jan, M. Q. (2006). Petrotectonic significance of the chemistry of chromite in the ultramafic–mafic complexes of Pakistan. Journal of Asian Earth Sciences, 27(5), 628–646. https://doi.org/10.1016/j.jseaes.2005.06.004
  • Arnold, G. O., & Rubenach, M. J. (1976). Mafic‐ultramafic complexes of the Greenvale area, North Queensland: Devonian intrusions or Precambrian metamorphics? Journal of the Geological Society of Australia, 23(2), 119–139. https://doi.org/10.1080/00167617608728929
  • Barnes, S. J. (2000). Chromite in komatiites, II. Modification during greenschist to mid-amphibolite facies metamorphism. Journal of Petrology, 41(3), 387–409. https://doi.org/10.1093/petrology/41.3.387
  • Barnes, S. J., & Roeder, P. L. (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42(12), 2279–2302. https://doi.org/10.1093/petrology/42.12.2279
  • Belyaev, V., Gornova, M., Gordienko, I., Karimov, A., Medvedev, A. Y., Ivanov, A., Dril, S., Grigoriev, D., & Belozerova, O. Y. (2021). Late Cambrian calc-alkaline magmatism during transition from subduction to accretion: Insights from geochemistry of lamprophyre, dolerite and gabbro dikes in the Dzhida terrain, Central Asian orogenic belt. Lithos, 386–387, 106044. https://doi.org/10.1016/j.lithos.2021.106044
  • Berly, T. J., Hermann, J., Arculus, R. J., & Lapierre, H. (2006). Supra-subduction zone pyroxenites from San Jorge and Santa Isabel (Solomon Islands). Journal of Petrology, 47(8), 1531–1555. https://doi.org/10.1093/petrology/egl019
  • Betts, P. G., Withnall, I. W., Armit, R., Donchak, P., & Hutton, L. (2012). Ribbon tectonics: Ordovician and Silurian evolution of North Queensland. In 2012 IAGR Annual Convention and 9th International Symposium on Gondwana to Asia (pp. 78–79).
  • Blewett, R. S., & Black, L. P. (1998). Structural and temporal framework of the Coen Region, north Queensland: Implications for major tectonothermal events in east and north Australia. Australian Journal of Earth Sciences, 45(4), 597–609. https://doi.org/10.1080/08120099808728415
  • Boger, S. D., & Hansen, D. (2004). Metamorphic evolution of the Georgetown Inlier, northeast Queensland, Australia; evidence for an accreted Palaeoproterozoic terrane? Journal of Metamorphic Geology, 22(6), 511–527. https://doi.org/10.1111/j.1525-1314.2004.00528.x
  • Boschi, C., Fruh-Green, G. L., Delacour, A., Karson, J. A., & Kelley, D. S. (2006). Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30N). Geochemistry, Geophysics, Geosystems, 7(1), N/A–39. https://doi.org/10.1029/2005GC001074
  • Božović, M., Prelević, D., Romer, R. L., Barth, M., Van Den Bogaard, P., & Boev, BŽo. (2013). The Demir Kapija Ophiolite, Macedonia (FYROM): A snapshot of subduction Initiation within a back-arc. Journal of Petrology, 54(7), 1427–1453. https://doi.org/10.1093/petrology/egt017
  • Brown, M. T., Fuck, R. A., & Dantas, E. L. (2020). Isotopic age constraints and geochemical results of disseminated ophiolitic assemblage from Neoproterozoic mélange, central Brazil. Precambrian Research, 339, 105581. https://doi.org/10.1016/j.precamres.2019.105581
  • Buckman, S., Aitchison, J. C., Nutman, A. P., Bennett, V. C., Saktura, W. M., Walsh, J. M., Kachovich, S., & Hidaka, H. (2018). The Spongtang Massif in Ladakh, NW Himalaya: An Early Cretaceous record of spontaneous, intra-oceanic subduction initiation in the Neotethys. Gondwana Research, 63, 226–249. https://doi.org/10.1016/j.gr.2018.07.003
  • Bultitude, R. J., Donchak, P. J. T., Domagla, J., Fordham, B. G., & Champion, D. C. (1990). Geology and tectonics of the Hodgkinson Province, North Queensland. In Pacific Rim Congress (pp. 75–81). Australasian Institute of Mining and Metallurgy.
  • Bultitude, R. J., Garrad, P. D., Donchak, P. J. T., Domagala, J., Champion, D. C., Rees, I. D., Mackenzie, D. E., Wellman, P., Knutson, J., Fanning, C. M., Fordham, B. G., Grimes, K. G., Oversby, B. S., Rienks, I. P., Stephenson, P. J., Chappell, B. W., Pain, C. F., Wilford, J. R., Rigby, J. F., & Woodbury, M. J. (1997). Chapter 7: Cairns Region. In J. H. C. Bain & J. J. Draper (Eds.), North Queensland Geology (pp. 225–326). AGSO Bulletin, 240.
  • Butt, C. R. M., & Cluzel, D. (2013). Nickel laterite ore deposits: Weathered serpentinites. Elements, 9(2), 123–128. https://doi.org/10.2113/gselements.9.2.123
  • Cathelineau, M., Quesnel, B., Gautier, P., Boulvais, P., Couteau, C., & Drouillet, M. (2016). Nickel dispersion and enrichment at the bottom of the regolith: formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia). Mineralium Deposita, 51(2), 271–282. https://doi.org/10.1007/s00126-015-0607-y
  • Cawood, P. A., Kroner, A., Collins, W. J., Kusky, T. M., Mooney, W. D., & Windley, B. F. (2009). Accretionary orogens through Earth history. Geological Society, London, Special Publications, 318(1), 1–36. https://doi.org/10.1144/SP318.1
  • Colás, V., González-Jiménez, J. M., Griffin, W. L., Fanlo, I., Gervilla, F., O'Reilly, S. Y., Pearson, N. J., Kerestedjian, T., & Proenza, J. A. (2014). Fingerprints of metamorphism in chromite: New insights from minor and trace elements. Chemical Geology, 389, 137–152. https://doi.org/10.1016/j.chemgeo.2014.10.001
  • Collins, W. J. (2002). Nature of extensional accretionary orogens. Tectonics, 21(4), 6-1–12. https://doi.org/10.1029/2000TC001272
  • Davis, B. K., Bell, C. C., Lindsay, M., & Henderson, R. A. (2002). A single late orogenic Permian episode of gold mineralization in the Hodgkinson Province, North Queensland, Australia. Economic Geology, 97(2), 311–323. https://doi.org/10.2113/gsecongeo.97.2.311
  • De Keyser, F. (1965). The Barnard metamorphics and their relation to the Barron river metamorphics and the Hodgkinson formation, North Queensland. Journal of the Geological Society of Australia, 12(1), 91–103. https://doi.org/10.1080/00167616508728587
  • Deschamps, F., Godard, M., Guillot, S., & Hattori, K. (2013). Geochemistry of subduction zone serpentinites: A review. Lithos, 178, 96–127. https://doi.org/10.1016/j.lithos.2013.05.019
  • Dick, H. J. B., & Bullen, T. (1984). Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology, 86(1), 54–76. https://doi.org/10.1007/BF00373711
  • Dilek, Y., & Furnes, H. (2011). Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin, 123(3-4), 387–411. https://doi.org/10.1130/B30446.1
  • Dilek, Y., & Furnes, H. (2014). Ophiolites and their origins. Elements, 10(2), 93–100. https://doi.org/10.2113/gselements.10.2.93
  • Dirks, H. N., Sanislav, I. V., & Abu Sharib, A. S. A. A. (2021). Continuous convergence along the paleo-Pacific margin of Australia during the early Paleozoic: Insights from the Running River Metamorphics, NE Queensland. Lithos, 398–399, 106343. https://doi.org/10.1016/j.lithos.2021.106343
  • Draut, A. E., & Clift, P. D. (2013). Differential preservation in the geologic record of intraoceanic arc sedimentary and tectonic processes. Earth-Science Reviews, 116, 57–84. https://doi.org/10.1016/j.earscirev.2012.11.003
  • Edgar, A., Sanislav, I. V., Dirks, P. H. G. M., & Spandler, C. (2022). Metamorphic diamond from the northeastern margin of Gondwana – paradigm shifting implications for one of Earth's largest orogens. Science Advances (in press).
  • Elias, M. (2002). Nickel laterite deposits – geological overview, resources and exploitation. In D. R. Cooke & J. Pongratz (Eds.), Giant ore deposits: Characteristics, genesis and exploration (pp. 205–220). CODES Special Publication 4, Centre for Ore Deposit Research, University of Tasmania.
  • Farrokhpay, S., Cathelineau, M., Blancher, S., Laugier, O., & Filippov, L. (2019). Characterization of Weda Bay nickel laterite ore from Indonesia. Journal of Geochemical Exploration, 196, 270–291. https://doi.org/10.1016/j.gexplo.2018.11.002
  • Fergusson, C. L., Henderson, R. A., Withnall, I. W., Fanning, C. M., Phillips, D., & Lewthwaite, K. J. (2007). Structural, metamorphic, and geochronological constraints on alternating compression and extension in the early Paleozoic Gondwanan Pacific margin, northeastern Australia. Tectonics, 26(3), N/A–N/A. https://doi.org/10.1029/2006TC001979
  • Furnes, H., & Dilek, Y. (2017). Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: A global synthesis. Earth-Science Reviews, 166, 1–37. https://doi.org/10.1016/j.earscirev.2017.01.001
  • Gamal El Dien, H., Arai, S., Doucet, L-S., Li, Z-X., Kil, Y., Fougerouse, D., Reddy, S. M., Saxey, D. W., & Hamdy, M. (2019). Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nature Communications, 10(1), 1–12. https://doi.org/10.1038/s41467-019-13117-1
  • Garrad, P. D., & Bultitude, R. J. (1999). Geology, mining history and mineralisation of the Hodgkinson and Kennedy Provinces, Cairns region, North Queensland. Queensland Minerals and Energy Review Series, Queensland Department of Mines and Energy.
  • Gleeson, S., Butt, C. R. M., & Elias, M. (2003). Nickel laterites: A review. SEG Discovery, 54(54), 1–18. https://doi.org/10.5382/SEGnews.2003-54.fea
  • Glen, R. A. (2005). The Tasmanides of eastern Australia. Geological Society, London, Special Publications, 246(1), 23–96. https://doi.org/10.1144/GSL.SP.2005.246.01.02
  • Glen, R. A. (2013). Refining accretionary orogen models for the Tasmanides of eastern Australia. Australian Journal of Earth Sciences, 60(3), 315–370. https://doi.org/10.1080/08120099.2013.772537
  • Gray, D., & Foster, D. (2004). Tectonic evolution of the Lachlan Orogen, southeast Australia: historical review, data synthesis and modern perspectives. Australian Journal of Earth Sciences, 51(6), 773–817. https://doi.org/10.1111/j.1400-0952.2004.01092.x
  • Henderson, R. A. (1980). Structural outline and summary geological history for north-eastern Australia. In R. A. Henderson & P. J. Stephenson (Eds.), The geology and geophysics of North-eastern Australia (pp. 1–26). Geological Society of Australia.
  • Henderson, R. A. (1987). An oblique subduction and transform faulting model for the evolution of the Broken River Province, northern Tasman Orogenic Zone. Australian Journal of Earth Sciences, 34(2), 237–249. https://doi.org/10.1080/08120098708729407
  • Henderson, R. A., & Fergusson, C. L. (2019). Growth and provenance of a Paleozoic subduction complex in the Broken River Province, Mossman Orogen: Evidence from detrital zircon ages. Australian Journal of Earth Sciences, 66(5), 607–624. https://doi.org/10.1080/08120099.2019.1572033
  • Henderson, R. A., Fergusson, C. L., & Withnall, I. W. (2020). Coeval basin formation, plutonism and metamorphism in the Northern Tasmanides: Extensional Cambro-Ordovician tectonism of the Charters Towers Province. Australian Journal of Earth Sciences, 67(5), 663–680. https://doi.org/10.1080/08120099.2020.1747539
  • Henderson, R. A., Innes, B. M., Fergusson, C. L., Crawford, A. J., & Withnall, I. W. (2011). Collisional accretion of a Late Ordovician oceanic island arc, northern Tasman Orogenic Zone, Australia. Australian Journal of Earth Sciences, 58(1), 1–19. https://doi.org/10.1080/08120099.2010.535564
  • Henderson, R., Donchak, P., Withnall, I., Adams, C., Bultitude, R., Champion, D., Davis, B., Hutton, L., & Wormald, R. (2013). Mossman Orogen. In P. A. Jell (Ed.), Geology of Queensland (pp. 225–304). Queensland Government.
  • Herzberg, C., Vidito, C., & Starkey, N. A. (2016). Nickel–cobalt contents of olivine record origins of mantle peridotite and related rocks. American Mineralogist, 101(9), 1952–1966. https://doi.org/10.2138/am-2016-5538
  • Hole, M., Saunders, A., Marriner, G., & Tarney, J. (1984). Subduction of pelagic sediments: Implications for the origin of Ce-anomalous basalts from the Mariana Islands. Journal of the Geological Society of London, 141(3), 453–472. https://doi.org/10.1144/gsjgs.141.3.0453
  • Irvine, T. (1965). Chromian spinel as a petrogenetic indicator: Part 1. Theory. Canadian Journal of Earth Sciences, 2(6), 648–672. https://doi.org/10.1139/e65-046
  • Irvine, T. (1967). Chromian spinel as a petrogenetic indicator: Part 2. Petrologic applications. Canadian Journal of Earth Sciences, 4(1), 71–103. https://doi.org/10.1139/e67-004
  • Ishwar-Kumar, C., Rajesh, V. J., Windley, B. F., Razakamanana, T., Itaya, T., Babu, E. V. S. S. K., & Sajeev, K. (2018). Chromite chemistry as an indicator of petrogenesis and tectonic setting of the Ranomena ultramafic complex in north-eastern Madagascar. Geological Magazine, 155(1), 109–118. https://doi.org/10.1017/S0016756816000972
  • Jiménez, J. G., Kerestedjian, T., Fernández, J. P., & Linares, F. G. (2009). Metamorphism on chromite ores from the Dobromirtsi ultramafic massif, Rhodope Mountains (SE Bulgaria). Geologica Acta, 7(4), 413–429. https://revistes.ub.edu/index.php/GEOACTA/article/view/104.000001447
  • Kamenetsky, V., Crawford, A. J., & Meffre, S. (2001). Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42(4), 655–671. https://doi.org/10.1093/petrology/42.4.655
  • King, R. L., Kohn, M. J., & Eiler, J. M. (2003). Constraints on the petrologic structure of the subduction zone slab-mantle interface from Franciscan Complex exotic ultramafic blocks. Geological Society of America Bulletin, 115(9), 1097–1109. https://doi.org/10.1130/B25255.1
  • Lago, B. L., Rabinowicz, M., & Nicolas, A. (1982). Podiform chromite ore bodies: A genetic model. Journal of Petrology, 23(1), 103–125. https://doi.org/10.1093/petrology/23.1.103
  • Langbein, C. (2010). The Tectonics and Geochronology of the Mission Beach Granite Complex and Comparisons with the Barnard Metamorphics at Etty Bay [Unpublished B Sc(Hons) thesis]. James Cook University.
  • Lewis, J. F., Draper, G., Proenza, J. A., Espaillat, J., & Jimenez, J. (2006). Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean Region: A review of their occurrence, composition, origin, emplacement and Ni-laterite soil formation. Geologica Acta, 4, 237–263. https://revistes.ub.edu/index.php/GEOACTA/article/view/105.000000368
  • Maier, W. D., Barnes, S. J., Bandyayera, D., Livesey, T., Li, C., & Ripley, E. (2008). Early Kibaran rift-related mafic–ultramafic magmatism in western Tanzania and Burundi: Petrogenesis and ore potential of the Kapalagulu and Musongati layered intrusions. Lithos, 101(1–2), 24–53. https://doi.org/10.1016/j.lithos.2007.07.015
  • Manton, R. J., Buckman, S., Nutman, A. P., & Bennett, V. C. (2017). Exotic island arc Paleozoic terranes on the eastern margin of Gondwana: Geochemical whole rock and zircon U–Pb–Hf isotope evidence from Barry Station, New South Wales, Australia. Lithos, 286-287, 125–150. https://doi.org/10.1016/j.lithos.2017.06.002
  • Middlemost, E. A. K. (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews, 37(3–4), 215–224. https://doi.org/10.1016/0012-8252(94)90029-9
  • Miyashiro, A. (1974). Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4), 321–355. https://doi.org/10.2475/ajs.274.4.321
  • Miyashiro, A., & Shido, F. (1975). Tholeiitic and calc-alkaline series in relation to the behaviors of titanium, vanadium, chromium, and nickel. American Journal of Science, 275(3), 265–277. https://doi.org/10.2475/ajs.275.3.265
  • Müntener, O., Kelemen, P. B., & Grove, T. L. (2001). The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: An experimental study. Contributions to Mineralogy and Petrology, 141(6), 643–658. https://doi.org/10.1007/s004100100266
  • Murgulov, V., Beyer, E., Griffin, W. L., O’Reilly, S. Y., Walters, S. G., & Stephens, D. (2007). Crustal evolution in the Georgetown Inlier, North Queensland, Australia: A detrital zircon grain study. Chemical Geology, 245(3–4), 198–218. https://doi.org/10.1016/j.chemgeo.2007.08.001
  • O'Neill, H. S. C., & Palme, H. (2014). Cosmochemical estimates of mantle composition. In R. W. Carlson (Ed.), Treatise on geochemistry (pp. 1–39). Elsevier. https://doi.org/10.1016/B0-08-043751-6/02177-0
  • Pearce, J. (2014). Immobile element fingerprinting of ophiolites. Elements, 10(2), 101–108. https://doi.org/10.2113/gselements.10.2.101
  • Pearce, J. A., & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2), 290–300. https://doi.org/10.1016/0012-821X(73)90129-5
  • Pearce, J. A., Alabaster, T., Shelton, A. W., & Spearle, M. P. (1981). The Oman ophiolite as a Cretaceous arc-basin complex: Evidence and implications. Philosophical Transactions of the Royal Society of London, 300, 299–317. https://doi.org/10.2113/gselements.10.2.101
  • Poblete, J. A., Dirks, P. H. G. M., Chang, Z., Huizenga, J. M., Griessmann, M., & Hall, C. (2021). The Watershed Tungsten Deposit, northeast Queensland, Australia: Permian metamorphic tungsten mneralization overprinting Carboniferous magmatic tungsten. Economic Geology, 116(2), 427–451. https://doi.org/10.5382/econgeo.4791
  • Proenza, J. A., Zaccarini, F., Escayola, M., Cábana, C., Schalamuk, A., & Garuti, G. (2008). Composition and textures of chromite and platinum-group minerals in chromitites of the western ophiolitic belt from Pampean Ranges of Córdoba, Argentina. Ore Geology Reviews, 33(1), 32–48. https://doi.org/10.1016/j.oregeorev.2006.05.009
  • Rinne, M., & Hollings, P. (2013). The characteristics and origin of the Big Lake mafic-ultramafic-hosted volcanogenic massive sulfide occurrence, Marathon, Ontario, Canada. Economic Geology, 108(4), 719–738. https://doi.org/10.2113/econgeo.108.4.719
  • Rollinson, H. (2005). Chromite in the mantle section of the Oman ophiolite: A new genetic model. The Island Arc, 14(4), 542–550. https://doi.org/10.1111/j.1440-1738.2005.00482.x
  • Rollinson, H., & Adetunji, J. (2013). Mantle podiform chromitites do not form beneath mid-ocean ridges: A case study from the Moho transition zone of the Oman ophiolite. Lithos, 177, 314–327. https://doi.org/10.1016/j.lithos.2013.07.004
  • Rosenbaum, G. (2018). The Tasmanides: Phanerozoic tectonic evolution of eastern Australia. Annual Review of Earth and Planetary Sciences, 46(1), 291–325. https://doi.org/10.1146/annurev-earth-082517-010146
  • Schroeder, T., & John, B. E. (2004). Strain localization on an oceanic detachment fault system, Atlantis Massif, 30°N, Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 5(11), N/A–30. https://doi.org/10.1029/2004GC000728
  • Shervais, J. W. (1982). Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1), 101–118. https://doi.org/10.1016/0012-821X(82)90120-0
  • Shervais, J. W. (2001). Birth, death, and resurrection: The life cycle of suprasubduction zone ophiolites. Geochemistry, Geophysics, Geosystems, 2(1), N/A–N/A. https://doi.org/10.1029/2000GC000080
  • Shi, R., Griffin, W. L., O'Reilly, S. Y., Huang, Q., Zhang, X., Liu, D., Zhi, X., Xia, Q., & Ding, L. (2012). Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re–Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet. Gondwana Research, 21(1), 194–206. https://doi.org/10.1016/j.gr.2011.05.011
  • Spandler, C., Hermann, J., Faure, K., Mavrogenes, J., & Arculus, R. (2008). The importance of talc and chlorite ‘‘hybrid’’ rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction melange of New Caledonia. Contributions to Mineralogy and Petrology, 155(2), 181–198. https://doi.org/10.1007/s00410-007-0236-2
  • Takla, M. A., Trommsdorff, V., Basta, F. F., & Surour, A. A. (2004). Margarite in ultramafic alteration zones (Blackwall) A new occurrence in Barramiya Area. European Journal of Mineralogy, 15(6), 991–999. https://doi.org/10.1127/0935-1221/2003/0015-0991
  • Vos, I. M. A., Bierlein, F. P., & Teale, G. S. (2005). Genesis of orogenic-gold deposits in the Broken River Province, northeast Queensland. Australian Journal of Earth Sciences, 52(6), 941–958. https://doi.org/10.1080/08120090500375190
  • Vos, I. M. A., Bierlein, F. P., Barlow, M. A., & Betts, P. G. (2006). Resolving the nature and geometry of major fault systems from geophysical and structural analysis: The Palmerville Fault in NE Queensland, Australia. Journal of Structural Geology, 28(11), 2097–2108. https://doi.org/10.1016/j.jsg.2006.07.016
  • Wang, C. Y., Zhou, M-F., & Zhao, D. (2005). Mineral chemistry of chromite from the Permian Jinbaoshan Pt–Pd–sulphide-bearing ultramafic intrusion in SW China with petrogenetic implications. Lithos, 83(1–2), 47–66. https://doi.org/10.1016/j.lithos.2005.01.003
  • Wang, Z., Li, M. Y. H., Liu, Z. –R. R., & Zhou, M-F. (2021). Scandium: Ore deposits, the pivotal role of magmatic enrichment and future exploration. Ore Geology Reviews, 128, 103906. https://doi.org/10.1016/j.oregeorev.2020.103906
  • Wang, Z., Sun, S., Li, J., & Hou, Q. (2002). Petrogenesis of tholeiite associations in Kudi ophiolite (western Kunlun Mountains, northwestern China): Implications for the evolution of back-arc basins. Contributions to Mineralogy and Petrology, 143(4), 471–483. https://doi.org/10.1007/s00410-002-0358-5
  • Williams-Jones, A. E., & Vasyukova, O. (2018). The economic geology of scandium, the runt of the rare earth element litter. Economic Geology, 113(4), 973–988. https://doi.org/10.5382/econgeo.2018.4579
  • Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325–343. https://doi.org/10.1016/0009-2541(77)90057-2
  • Withnall, I. W., & Cranfield, L. C. (2013). Geological framework. In P. Jell (Ed.), The geology of Queensland (pp. 13–34). Queensland Government.
  • Withnall, I. W., & Henderson, R. A. (2012). Accretion on the long-lived continental margin of northeastern Australia. Episodes, 35(1), 166–176. https://doi.org/10.18814/epiiugs/2012/v35i1/016
  • Xiong, F., Yang, J., Robinson, P. T., Xu, X., Liu, Z., Li, Y., Li, J., & Chen, S. (2015). Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Research, 27(2), 525–542. https://doi.org/10.1016/j.gr.2014.04.008
  • Yellappa, T., Chetty, T. R. K., Tsunogae, T., & Santosh, M. (2010). The Manamedu Complex: Geochemical constraints on Neoproterozoic suprasubduction zone ophiolite formation within the Gondwana suture in southern India. Journal of Geodynamics, 50(3–4), 268–285. https://doi.org/10.1016/j.jog.2009.12.004
  • Yilmaz, A., & Yilmaz, H. (2013). Ophiolites and ophiolitic mélanges of Turkey: A review. Geological Bulletin of Turkey, 56, 61–114. https://doi.org/10.1007/s12583-016-0679-3
  • Yu, H., Zhang, H. F., Zou, H. B., & Yang, Y. H. (2019). Minor and trace element variations in chromite from the Songshugou dunites, North Qinling Orogen: Evidence for amphibolite-facies metamorphism. Lithos, 328–329, 146–158. https://doi.org/10.1016/j.lithos.2019.01.009
  • Zaccarini, F., Garuti, G., Proenza, J. A., Campos, L., Thalhammer, O. A., Aiglsperger, T., & Lewis, J. F. (2011). Chromite and platinum group elements mineralization in the Santa Elena Ultramafic Nappe (Costa Rica): Geodynamic implications. Geologica Acta, 9(3–4), 407–423. https://revistes.ub.edu/index.php/GEOACTA/article/view/105.000001696
  • Zeissink, H. (1969). The mineralogy and geochemistry of a nickeliferous laterite profile (Greenvale, Queensland, Australia). Mineralium Deposita, 4(2), 132–152. https://doi.org/10.1007/BF00208049
  • Zheng, Y. F., Chen, R. X., Xu, Z., & Zhang, S. B. (2016). The transport of water in subduction zones. Science China Earth Sciences, 59(4), 651–682. https://doi.org/10.1007/s11430-015-5258-4
  • Zhou, M-F., & Robinson, P. T. (1997). Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92(2), 259–262. https://doi.org/10.2113/gsecongeo.92.2.259
  • Zucchetto, R. G., Henderson, R. A., Davis, B. K., & Wysoczanski, R. (1999). Age constraints on deformation of the eastern Hodgkinson Province, north Queensland: New perspectives on the evolution of the northern Tasman Orogenic Zone. Australian Journal of Earth Sciences, 46(1), 105–114. https://doi.org/10.1046/j.1440-0952.1999.00689.x