1,728
Views
1
CrossRef citations to date
0
Altmetric
Research Article

An alternative to the fault-valve model

ORCID Icon & ORCID Icon
Pages 958-971 | Received 07 Jan 2023, Accepted 17 May 2023, Published online: 17 Jul 2023

References

  • Alevizos, S., Poulet, T., Sari, M., Lesueur, M., Regenauer-Lieb, K., & Veveakis, M. (2017). A framework for fracture network formation in overpressurized impermeable shale: Deformability vs diagenesis. Rock Mechanics and Rock Engineering, 50(3), 689–703. https://doi.org/10.1007/s00603-016-0996-y
  • Anderson, E. M. (1905). The dynamics of faulting. Transactions of the Edinburgh Geological Society, 8(3), 387–402. https://doi.org/10.1144/transed.8.3.387
  • Anderson, E. M. (1951). The dynamics of faulting. Oliver and Boyd.
  • Aydin, A., Borja, R. I., & Eichhubl, P. (2006). Geological and mathematical framework for failure modes in granular rock. Journal of Structural Geology, 28(1), 83–98. https://doi.org/10.1016/j.jsg.2005.07.008
  • Blenkinsop, T. (2023). Failure modes in hydrothermal ore systems. Australian Journal of Earth Sciences, 70(7), 947–957. https://doi.org/10.1016/j.jsg.2012.07.005
  • Bons, P. D., Elburg, M. A., & Gomez-Rivas, E. (2012). A review of the formation of tectonic veins and their microstructures. Journal of Structural Geology, 43, 33–62. https://doi.org/10.1016/j.jsg.2012.07.005
  • Cahn, J. W. (1980). Surface stress and the chemical equilibrium of small crystals: I. The case of the isotropic surface. Acta Metallurgica, 28(10), 1333–1338. https://doi.org/10.1016/0001-6160(80)90002-4
  • Cahn, J. W. (1989). The physical chemistry of stressed solids. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 93(11), 1169–1173. https://doi.org/10.1002/bbpc.19890931105
  • Chace, F. M. (1949). Origin of the Bendigo saddle reefs with comments on the formation of ribbon quartz. Economic Geology, 44(7), 561–597. https://doi.org/10.2113/gsecongeo.44.7.561
  • Chen, W. F., & Baladi, G. Y. (1985). Soil plasticity. Elsevier.
  • Collins, I. F., & Kelly, P. A. (2002). A thermomechanical analysis of a family of soil models. Géotechnique, 52(7), 507–518. https://doi.org/10.1680/geot.2002.52.7.507
  • Cox, S. F. (2010). The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids, 10, 217–233. https://doi.org/10.1111/j.1468-8123.2010.00281.x
  • Dimaggio, F. L., & Sandler, I. S. (1971). Material model for granular soils. Journal of the Engineering Mechanics Division, 97(3), 935–950. https://doi.org/10.1061/JMCEA3.0001427
  • Dove, P. M., & Rimstidt, J. D. (1994). Silica water interactions. In P. J. Heaney, C. T. Prewitt & G. V. Gibbs (Eds.), Reviews in Mineralogy. Silica: Physical behavior, geochemistry and materials applications (vol. 29, pp. 259–308). Mineralogical Society of America.
  • Drucker, D. C., Gibson, R. E., & Henkel, D. J. (1957). Soil mechanics and work-hardening theories of plasticity. Transactions of the American Society of Civil Engineers, 122(1), 338–346. https://doi.org/10.1061/TACEAT.0007430
  • Elphick, K., Sloss, C., Regenauer-Lieb, K., & Schrank, C. (2021). Distribution, microphysical properties, and tectonic controls of deformation bands in the Miocene subduction wedge (Whakataki Formation) of the Hikurangi subduction zone. Solid Earth., 12(1), 141–170. https://doi.org/10.5194/se-12-141-2021
  • Fossen, H., Schultz, R. A., Shipton, Z. K., & Mai, K. (2007). Deformation bands in sandstone: A review. Journal of the Geological Society, 164(4), 755–769. https://doi.org/10.1144/0016-76492006-036
  • Fossum, A. F., Fredrich, J. T. (2000). Cap plasticity models and compactive and dilatant pre-failure deformation. In J. Girard, M. Liebman, C. Breeds & T. Doe (Eds.), Pacific Rocks 2000, Proceedings of the 4th north american rock mechanics symposium (pp. 1169––1176.). A. A. Balkema.
  • Fossum, A. F., Senseny, P. E., Pfeifle, T. F., & Mellegard, K. D. (1995). Experimental determination of probability distributions for parameters of a Salem limestone cap plasticity model. Mechanics of Materials., 21(2), 119–137. https://doi.org/10.1016/0167-6636(95)00002-X
  • Fournier, R. A., & Potter, R. W. III, (1982). An equation correlating the solubility of quartz in water from 25 °C to 900 °C at pressures up to 10,000 bars. Geochimica et Cosmochimica Acta, 46(10), 1969–1973. https://doi.org/10.1016/0016-7037(82)90135-1
  • Frolov, T., & Mishin, Y. (2010). Effect of nonhydrostatic stresses on fluid-solid equilibrium: I. Bulk thermodynamics. Physical Review B, 82(17), 174113. https://doi.org/10.1103/PhysRevB.82.174113
  • Ganor, J., Huston, T., J., & Walter, L. M. (2005). Quartz precipitation kinetics at 180 °C in NaCl solutions—Implications for the usability of the principle of detailed balancing. Geochimica et Cosmochimica Acta, 69(8), 2043–2056. https://doi.org/10.1016/j.gca.2004.09.026
  • Gibbs, J. W. (1876). On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy, 3, 108–2482.
  • Gibbs, J. W. (1961). The scientific papers of J. Willard Gibbs. In H. Andrews Bumstead & R. Gibbs Van Name (Eds.), Thermodynamics (Vol. 1, pp. 434). Dover Publications.
  • Gratier, J-P., Dysthe, D. K., & Renard, F. (2013). The role of pressure solution creep in the ductility of the Earth’s upper crust. Advances in Geophysics, 54, 47–179.
  • Hill, R. (1950). The mathematical theory of plasticity. Oxford University Press.
  • Hobbs, B. E., & Ord, A. (2015). Structural Geology: The Mechanics of Deforming Metamorphic Rocks. Elsevier.
  • Hobbs, B. E., & Ord, A. (2018). Episodic modes of operation in hydrothermal gold systems: Part II. A model for gold deposition. In K. Gessner, T. G. Blenkinsop & P. Sorjonen-Ward (Eds.), Characterization of ore-forming systems from geological, geochemical and geophysical studies (pp. 147–164). Geological Society. https://doi.org/10.1144/SP453.15
  • Hobbs, B. E., & Ord, A. (2022). Failure modes in fluid saturated brittle rocks: Failure modes and mode-switching. Geological Magazine, 159(11-12), 2002–2019. https://doi.org/10.1017/S0016756822000516
  • Holcomb, D., Rudnicki, J. W., Issen, K. A., & Sternlof, K. (2007). Compaction localization in the Earth and the laboratory: State of the research and research directions. Acta Geotechnica, 2(1), 1–15. https://doi.org/10.1007/s11440-007-0027-y
  • Houlsby, G. T., & Puzrin, A. M. (2006). Principles of Hyperplasticity. Springer.
  • Issen, K., & Rudnicki, J. (2000). Conditions for compaction bands in porous rock. Journal of Geophysical Research: Solid Earth, 105(B9), 21529–21536. https://doi.org/10.1029/2000JB900185
  • Itasca Consulting Group, Inc. (2008). FLAC—Fast Lagrangian Analysis of Continua, Ver. 6.0. Minneapolis.
  • Kamb, W. B. (1961). The thermodynamic theory of nonhydrostatically stressed solids. Journal of Geophysical Research, 66(1), 259–271. https://doi.org/10.1029/JZ066i001p00259
  • Laubach, S. E., Lander, R. H., Criscenti, L. J., Anovitz, L. M., Urai, J. L., Pollyea, R. M., Hooker, J. N., Narr, W., Evans, M. A., Kerisit, S. N., Olson, J. E., Dewers, T., Fisher, D., Bodnar, R., Evans, B., Dove, P., Bonnell, L. M., Marder, M. P., & Pyrak‐Nolte, L. (2019). The role of chemistry in fracture pattern development and opportunities to advance interpretations of geological materials. Reviews of Geophysics, 57(3), 1065–1111. https://doi.org/10.1029/2019RG000671
  • Lubarda, V. A., Mastilovic, S., & Knap, J. (1996). Brittle-ductile transition in porous rocks by cap model. Journal of Engineering Mechanics, 122(7), 633–642. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(633)
  • Ma, J. (2014). Coupled flow deformation analysis of fractured porous media subject to elastic-plastic damage [unpublished PhD thesis]. The University of NSW. pp. 224.
  • Ma, Z., Li, Y., Gamage, R. P., Zhang, G., & Zhang, C. (2021). Probing the mechanical properties of granite from a microscopic perspective. Geothermal Resources Council Transactions, 45, 978–993.
  • Manning, C. E. (1994). The solubility of quartz in H2O in the lower crust and upper mantle. Geochimica et Cosmochimica Acta, 58(22), 4831–4839. https://doi.org/10.1016/0016-7037(94)90214-3
  • McCuaig, T. C., & Hronsky, J M A. (2014). The mineral system concept: The key to exploration targeting. In K. D. Kelly, & H. C. Golden (Eds.), Building exploration capability for the 21st Century (pp. 153–175). Society of Economic Geologists, Inc. Special Publication.
  • Menzel, M. D., Urai, J. L., Ukar, E., Hirth, G., Schwedt, A., Kovács, A., Kibkalo, L., & Kelemen, P. B. (2022). Ductile deformation during carbonation of serpentinised peridotite. Nature Communications, 13(1), 3478. https://doi.org/10.1038/s41467-022-31049-1
  • Oka, F., Kimoto, S., Higo, Y., Ohta, H., Sanagawa, T., & Kodaka, T. (2011). An elasto-viscoplastic model for diatomaceous mudstone and numerical simulation of compaction bands. International Journal for Numerical and Analytical Methods in Geomechanics, 35(2), 244–263. https://doi.org/10.1002/nag.987
  • Olsson, W. A. (1999). Theoretical and experimental investigation of compaction bands in porous rock. Journal of Geophysical Research: Solid Earth, 104(B4), 7219–7228. https://doi.org/10.1029/1998JB900120
  • Ord, A., & Hobbs, B E. (2018). Episodic modes of operation in hydrothermal gold systems: Part I. Deformation, mineral reactions and chaos. In K. Gessner, T. G. Blenkinsop & P. Sorjonen-Ward (Eds.), Characterization of ore-forming systems from geological, geochemical and geophysical studies (pp. 121–146). Geological Society. https://doi.org/10.1144/SP453.14
  • Paterson, M. S. (1995). A theory for granular flow accommodated by material transfer via an intergranular fluid. Tectonophysics, 245(3-4), 135–151. https://doi.org/10.1016/0040-1951(94)00231-W
  • Phillips, O. M. (1991). Flow and reactions in permeable rocks. Cambridge University Press.
  • Poulet, T., Veveakis, M., Regenauer-Lieb, K., & Yuen, D. A. (2014). Thermo-poro-mechanics of chemically active creeping faults. 3: The role of serpentinite in episodic tremor and slip sequences, and transition to chaos. Journal of Geophysical Research: Solid Earth, 119(6), 4606–4625. https://doi.org/10.1002/2014JB011004
  • Regenauer-Lieb, K., Hu, M., Schrank, C., Chen, X., Clavijo, S. P., Kelka, U., Karrech, A., Gaede, O., Blach, T., Roshan, H., & Jacquey, A. B. (2021). Cross-diffusion waves resulting from multiscale, multi-physics instabilities: Theory. Solid Earth., 12(4), 869–883. https://doi.org/10.5194/se-12-869-2021
  • Regenauer-Lieb, K., Poulet, T., & Veveakis, M. (2016). A novel wave-mechanics approach for fluid flow in unconventional resources. The Leading Edge, 35(1), 90–97. https://doi.org/10.1190/tle35010090.1
  • Rudnicki, J. W. (2004). Shear and compaction band formation on an elliptic yield cap. Journal of Geophysical Research, 109(B3), B03402. https://doi.org/10.1029/2003JB002633
  • Rutter, E. H. (1976). The kinetics of rock deformation by pressure solution. Philosophical Transactions of the Royal Society of London, 283, 203–219.
  • Saishu, H., Okamoto, A., & Otsubo, M. (2017). Silica precipitation potentially controls earthquake recurrence in seismogenic zones. Scientific Reports, 7(1), 13337. https://doi.org/10.1038/s41598-017-13597-5
  • Saksala, T. (2010). Damage–viscoplastic consistency model with a parabolic cap for rocks with brittle and ductile behavior under low-velocity impact loading. International Journal for Numerical and Analytical Methods in Geomechanics, 34(10), 1041–1062. https://doi.org/10.1002/nag.847
  • Schenk, O., & Urai, J. L. (2004). Microstructural evolution and grain boundary structure during static recrystallization in synthetic polycrystals of Sodium Chloride containing saturated brine. Contributions to Mineralogy and Petrology, 146(6), 671–682. https://doi.org/10.1007/s00410-003-0522-6
  • Schimmel, M. T. W. (2020). Stress-cycling data uniaxial compaction of quartz sand in various chemical environments. Utrecht University. https://doi.org/10.24416/UU01-VM3Z6I
  • Sekerka, R. F., & Cahn, J. W. (2004). Solid-liquid equilibrium for non-hydrostatic stress. Acta Materialia, 52(6), 1663–1668. https://doi.org/10.1016/j.actamat.2003.12.010
  • Sheldon, H. A., & Ord, A. (2005). Evolution of porosity, permeability and fluid pressure in dilatant faults post-failure: Implications for fluid flow and mineralization. Geofluids, 5(4), 272–288. https://doi.org/10.1111/j.1468-8123.2005.00120.x
  • Sheldon, H. A., Barnicoat, A. C., & Ord, A. (2006). Numerical modelling of faulting and fluid flow in porous rocks: An approach based on critical state soil mechanics. Journal of Structural Geology, 28(8), 1468–1482. https://doi.org/10.1016/j.jsg.2006.03.039
  • Shimizu, I. (1995). Kinetics of pressure solution creep in quartz: Theoretical considerations. Tectonophysics, 245(3-4), 121–134. https://doi.org/10.1016/0040-1951(94)00230-7
  • Shimizu, I. (1997). The nonequilibrium thermodynamics of intracrystalline diffusion under nonhydrostatic stress. Philosophical Magazine A, 75(5), 1221–1235. https://doi.org/10.1080/01418619708209853
  • Sibson, R. H. (1985). A note on fault reactivation. Journal of Structural Geology, 7(6), 751–754. https://doi.org/10.1016/0191-8141(85)90150-6
  • Sibson, R. H. (2020). Preparation zones for large crustal earthquakes consequent on fault-valve action. Earth, Planets and Space, 72(1), 31. https://doi.org/10.1186/s40623-020-01153-x
  • Sibson, R. H., Robert, F., & Poulsen, K. H. (1988). High-angle reverse faults, fluid pressure cycling, and mesothermal gold-quartz deposits. Geology, 16(6), 551–555. https://doi.org/10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2
  • Späth, M., Urai, J. L., & Nestler, B. (2022). Incomplete crack sealing causes localization of fracturing in hydrothermal quartz veins. Geophysical Research Letters, 49(15), e2022GL098643. https://doi.org/10.1029/2022GL098643
  • den Ende, M. P. A., Niemeijer, A. R., & Spiers, C. J. (2019). Influence of grain boundary structural evolution on pressure solution creep rates. Journal of Geophysical Research: Solid Earth, 124(10), 10210–10230. https://doi.org/10.1029/2019JB017500
  • Veveakis, M., & Regenauer-Lieb, K. (2015). Cnoidal waves in solids. Journal of the Mechanics and Physics of Solids, 78, 231–248. https://doi.org/10.1016/j.jmps.2015.02.010
  • Wintsch, R. P., & Dunning, J. (1985). The effect of dislocation density on the aqueous solubility of quartz and some geological implications. A theoretical approach. Journal of Geophysical Research, 90(B5), 3649–3657. https://doi.org/10.1029/JB090iB05p03649
  • Wintsch, R. P., & Yeh, M-W. (2013). Oscillating brittle and viscous behavior through the earthquake cycle in the Red River Shear Zone: Monitoring flips between reaction and textural softening and hardening. Tectonophysics, 587, 46–62. https://doi.org/10.1016/j.tecto.2012.09.019
  • Wong, T. F., & Baud, B. (2012). The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44, 25–53. https://doi.org/10.1016/j.jsg.2012.07.010
  • Wong, T-F., David, C., & Zhu, W. (1997). The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. Journal of Geophysical Research: Solid Earth, 102(B2), 3009–3025. https://doi.org/10.1029/96JB03281
  • Zhao, C., Hobbs, B. E., & Ord, A. (2008). Convective and Advective Heat Transfer in Geological Systems. Springer.
  • Zhong, R., Brugger, J., Chen, Y., & Li, W. (2015). Contrasting regimes of Cu, Zn and Pb transport in ore-forming hydrothermal fluids. Chemical Geology, 395, 154–164. https://doi.org/10.1016/j.chemgeo.2014.12.008
  • Zhurkov, S. N. (1984). Kinetic concept of the strength of solids. International Journal of Fracture, 26(4), 295–307. https://doi.org/10.1007/BF00962961