4,545
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Formation of Cu–Au porphyry deposits: hydraulic quartz veins, magmatic processes and constraints from chlorine

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 1010-1033 | Received 13 Nov 2022, Accepted 12 Jul 2023, Published online: 03 Aug 2023

References

  • Almeida, K. M. F., & Jenkins, D. M. (2017). Stability field of the Cl-rich scapolite marialite. American Mineralogist, 102(12), 2484–2493. https://doi.org/10.2138/am-2017-6132
  • Anderson, J. A. C., & King, S. (2017). Walhalla—Woods Point goldfield. In G. N. Phillips (Ed.), Australian Ore Deposits (pp. 811–812). Monograph 32, Australasian Institute Mining Metallurgy.
  • Arth, J. G., & Hanson, G. N. (1972). Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths. Contributions to Mineralogy and Petrology, 37(2), 161–174. https://doi.org/10.1007/BF00371074
  • Audétat, A. (2019). The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Economic Geology, 114(6), 1033–1056. https://doi.org/10.5382/econgeo.4673
  • Bachmann, O., & Bergantz, G. W. (2004). On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. Journal of Petrology, 45(8), 1565–1582. https://doi.org/10.1093/petrology/egh019
  • Bachmann, O., & Bergantz, G. W. (2006). Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. Journal of Volcanology and Geothermal Research, 149(1-2), 85–102. https://doi.org/10.1016/j.jvolgeores.2005.06.002
  • Baker, E. M., & Tullemans, F. J. (1990). Kidston gold deposit. In F. E. Hughes (Ed.), Geology of the mineral deposits of Australia and Papua New Guinea (pp. 1461–1465). The Australasian Institute of Mining and Metallurgy.
  • Baker, T., Pollard, P. J., Mustard, R., Mark, G., & Graham, J. L. (2005). A comparison of granite-related tin, tungsten, and gold–bismuth deposits implications for exploration. SEG Discovery, 61(61), 5–17. https://doi.org/10.5382/SEGnews.2005-61.fea
  • Bickle, M. J., & McKenzie, D. (1987). The transport of heat and matter by fluids during metamorphism. Contributions to Mineralogy and Petrology, 95(3), 384–392. https://doi.org/10.1007/BF00371852
  • Boulter, C. A., Fotios, M. G., & Phillips, G. N. (1987). The Golden Mile, Kalgoorlie: A giant gold deposit localized in ductile shear zones by structurally induced infiltration of auriferous metamorphic fluid. Economic Geology, 82(7), 1661–1678. https://doi.org/10.2113/gsecongeo.82.7.1661
  • Brown, M. (2001). Crustal melting and granite magmatism: Key issues. Physics and Chemistry of the Earth Part A—Solid Earth and Geodesy, 26(4-5), 201–212. https://doi.org/10.1016/S1464-1895(01)00047-3
  • Brown, M. (2013). Granite: From genesis to emplacement. Geological Society of America Bulletin, 125(7-8), 1079–1113. https://doi.org/10.1130/B30877.1
  • Buddington, A. K. (1959). Granite emplacement with special reference to North America. Geological Society of America Bulletin, 70(6), 671–747. https://doi.org/10.1130/0016-7606(1959)70[671:GEWSRT2.0.CO;2]
  • Camus, F. (1975). Geology of the El Teniente orebody with emphasis on wall rock alteration. Economic Geology, 70(8), 1341–1372. − https://doi.org/10.2113/gsecongeo.70.8.1341
  • Candela, P. A., & Piccoli, P. M. (2005). Magmatic processes in the development of porphyry-type ore systems. Economic Geology, 100th Anniversary Volume, 25–37. https://doi.org/10.5382/AV100.03
  • Cannell, J., Cooke, D. R., Walshe, J. L., & Stein, H. (2005). Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu–Mo deposit. Economic Geology, 100(5), 979–1003. https://doi.org/10.2113/gsecongeo.100.5.979
  • Cathles, L. M. (1997). Thermal aspects of ore formation. In H. L. Barnes (Ed.), Geochemistry of Hydrothermal Ore Deposits (3rd ed., pp. 125–190). John Wiley.
  • Clemens, J. D. (2012). Granitic magmatism, from source to emplacement: A personal view. Applied Earth Science, 121(3), 107–136. https://doi.org/10.1179/1743275813Y.0000000023
  • Clemens, J. D., Bryan, S. E., Stevens, G., Mayne, M. J., & Petford, N. (2020). How are silicic volcanic and plutonic systems related, and what are the roles of mafic magmas and crystal mushes? Earth-Science Reviews, 200.
  • Clemens, J. D., & Mawer, C. K. (1992). Granitic magma transport by fracture propagation. Tectonophysics, 204(3-4), 339–360. https://doi.org/10.1016/0040-1951(92)90316-X
  • Clemens, J. D., Stevens, G., & Bryan, S. E. (2020). Conditions during the formation of granitic magmas by crustal melting—hot or cold; drenched, damp or dry? Earth-Science Reviews, 200, 102982. https://doi.org/10.1016/j.earscirev.2019.102982
  • Clemens, J. D., Stevens, G., & Farina, F. (2011). The enigmatic sources of I-type granites and the clinopyroxene–ilmenite connexion. Lithos, 126(3-4), 174–181. https://doi.org/10.1016/j.lithos.2011.07.004
  • Clemens, J. D., & Watkins, J. M. (2001). The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contributions to Mineralogy and Petrology, 140(5), 600–606. https://doi.org/10.1007/s004100000205
  • Cooke, D. R., Hollings, P., & Walshe, J. L. (2005). Giant porphyry deposits: Characteristics, distribution, and tectonic controls. Economic Geology, 100(5), 801–818. https://doi.org/10.2113/gsecongeo.100.5.801
  • Corbett, G. J. (1994). Regional structural control of selected Cu/Au occurrences in Papua New Guinea. In R. Rogerson (Ed.), Geology, Exploration and Mining Conference, June 1994, Lae, Papua New Guinea Proceedings (pp. 125–129). The Australasian Institute of Mining and Metallurgy.
  • Corbett, G. J., & Leach, T. M. (1998). Southwest Pacific Rim gold–copper systems: Structure, alteration, and mineralization. Society of Economic Geologists, Special Publication, 6, 237. https://doi.org/10.5382/SP.06
  • Cox, S. F., Etheridge, M. A., & Wall, V. J. (1987). The role of fluids in syntectonic mass transport, and the localization of metamorphic vein-type ore deposits. Ore Geology Reviews, 2(1-3), 65–86. https://doi.org/10.1016/0169-1368(87)90024-2
  • Cruden, A. R. (1998). On the emplacement of tabular granites. Journal of the Geological Society, 155, 853–862. https://doi.org/10.1144/gsjgs.155.5.0853
  • Cruden, A. (2006). Emplacement and growth of plutons: Implications for rates of melting and mass transfer in continental crust. In M. Brown & T. Rushmer (Eds.), Evolution and Differentiation of the Continental Crust (pp. 455–519). Cambridge University Press.
  • De Jong, G., Rotherham, J., Phillips, G. N., & Williams, P. J. (1997). Mobility of rare-earth elements and copper during shear-zone-related retrograde metamorphism. Geologie en Mijnbouw (Geology and Mining), 76(4), 311–319. https://doi.org/10.1023/A:1003232119010
  • Dilles, J. H. (1987). The petrology of the Yerington batholith, Nevada: Evidence for the evolution of porphyry copper ore fluids. Economic Geology, 82(7), 1750–1789. https://doi.org/10.2113/gsecongeo.82.7.1750
  • Dilles, J. H., & Einaudi, M. T. (1992). Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit, Nevada—a 6-km vertical reconstruction. Economic Geology, 87(8), 1963–2001. https://doi.org/10.2113/gsecongeo.87.8.1963
  • Duan, C., Li, Y., Mao, J., Zhu, Q., Xie, G., Wan, Q., Jian, W., & Hou, K. (2021). The role of evaporite layers in the ore-forming processes of iron oxide–apatite and skarn Fe deposits: Examples from the middle–lower Yangtze River metallogenic Belt, East China. Ore Geology Reviews, 138, 104352. https://doi.org/10.1016/j.oregeorev.2021.104352
  • Dunga, G., Sully, D., Hagemann, S. G., Duuring, P., & Danyushevsky, L. (2021). Structural setting, wall rock alteration and gold mineralisation of the Mt Percy gold deposit, Kalgoorlie, Western Australia. Mineralium Deposita, 56(8), 1449–1470. https://doi.org/10.1007/s00126-020-00993-7
  • Eastoe, C. J. (1978). A fluid inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea. Economic Geology, 73(5), 721–748. https://doi.org/10.2113/gsecongeo.73.5.721
  • Evans, K. A., & Tomkins, A. (2020). Metamorphic fluids in orogenic settings. Elements, 16(6), 381–387. https://doi.org/10.2138/gselements.16.6.381
  • Ewart, A., Bryan, W. B., & Gill, J. B. (1973). Mineralogy and geochemistry of the younger volcanic islands of Tonga, S. W. Pacific. Journal of Petrology, 14(3), 429–465. https://doi.org/10.1093/petrology/14.3.429
  • Ewart, A., & Griffin, W. L. (1994). Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chemical Geology, 117(1-4), 251–284. https://doi.org/10.1016/0009-2541(94)90131-7
  • Ferry, J. M. (1980). A case study of the amount and distribution of heat and fluid during metamorphism. Contributions to Mineralogy and Petrology, 71(4), 373–385. https://doi.org/10.1007/BF00374708
  • Ferry, J. M. (1981). Petrology of graphitic sulfide-rich schists from south-central Maine: An example of desulfidation during prograde regional metamorphism. American Mineralogist, 66, 908–930.
  • Ferry, J. M. (2016). Fluids in the crust during regional metamorphism: Forty years in the Waterville limestone. American Mineralogist, 101(3), 500–517. https://doi.org/10.2138/am-2016-5118
  • Finch, E. G., & Tomkins, A. G. (2017). Fluorine and chlorine behaviour during progressive dehydration melting: Consequences for granite geochemistry and metallogeny. Journal of Metamorphic Geology, 35(7), 739–757. https://doi.org/10.1111/jmg.12253
  • Froese, E. (1969). Metamorphic rocks from the Coronation Mine and surrounding areas. Geological Survey of Canada Paper, 68(5), 57–77.
  • Froese, E. (1971). The graphical representation of sulfide-silicate phase equilibria. Economic Geology, 66(2), 335–341. https://doi.org/10.2113/gsecongeo.66.2.335
  • Frost, T. P., & Mahood, G. A. (1987). Field, chemical, and physical constraints on mafic–felsic magma interaction in the Lamark Granodiorite, Sierra Nevada, California. Geological Society of America Bulletin, 99(2), 272–291. https://doi.org/10.1130/0016-7606(1987)99<272:FCAPCO>2.0.CO;2
  • Fyfe, W. S., Price, N. J., & Thompson, A. B. (1978). Fluids in the Earth’s Crust. Elsevier.
  • Goranson, R. W. (1931). The solubility of water in granite magmas. American Journal of Science, s5-22(132), 481–502. https://doi.org/10.2475/ajs.s5-22.132.481
  • Guilbert, J. M., & Park, C. F. (1986). The Geology of Ore Deposits. Waveland Press, Inc.
  • Gustafson, L. B., & Hunt, J. P. (1975). The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70(5), 857–912. https://doi.org/10.2113/gsecongeo.70.5.857
  • Hall, D., & Kisters, A. (2016). From steep feeders to tabular plutons—emplacement controls of syntectonic granitoid plutons of the Damara Belt, Namibia. Journal of African Earth Sciences, 113, 51–64. https://doi.org/10.1016/j.jafrearsci.2015.10.005
  • Hamilton, D. L., Burnham, C. W., & Osborn, E. F. (1964). The solubility of water and effects of oxygen fugacity and water content on crystallization of mafic magmas. Journal of Petrology, 5(1), 21–39. https://doi.org/10.1093/petrology/5.1.21
  • Harris, A. C., & Holcombe, R. J. (2014). Quartz vein emplacement mechanism at the E26 Porphyry Cu–Au Deposit, New South Wales. Economic Geology, 109(4), 1035–1050. https://doi.org/10.2113/econgeo.109.4.1035
  • Helgeson, H. C. (1964). Complexing and Hydrothermal Ore Deposition. McMillan Co.
  • Ho, S. E., Groves, D. I., & Phillips, G. N. (1990). Fluid inclusions in quartz veins associated with Archaean gold mineralization: Clues to ore fluids and ore depositional conditions and significance to exploration. In H. K. Herbert & S. E. Ho (Eds.), Proceedings of the Conference on Stable Isotopes and Fluid Processes in Mineralization (pp. 35–50). Geology Department and Extension, University of Western Australia Publication 23.
  • Hobbs, B. E., & Ord, A. (2023). An alternative to the fault valve model. Australian Journal of Earth Sciences, 70(7), 957–970. https://doi.org/10.1080/08120099.2023.2218452
  • Holland, T. J. B., & Powell, R. (2004). An internally consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology, 16(3), 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
  • Holwell, D. A., & Keays, R. R. (2014). The formation of low-volume, high-tenor magmatic PGE–Au sulfide mineralization in closed systems: Evidence from precious and base metal geochemistry of the Platinova Reef, Skaergaard Intrusion, East Greenland. Economic Geology, 109(2), 387–406. https://doi.org/10.2113/econgeo.109.2.387
  • Huang, R., Ding, X., Lin, C-T., Zhan, W., & Ling, M. (2018). Effect of saline fluids on chlorine incorporation in serpentine. Solid Earth Sciences, 3(3), 61–66. https://doi.org/10.1016/j.sesci.2018.04.001
  • Hughes, M. J. (2017). Mineralisation of the Lachlan Orogen. In G. N. Phillips (Ed.), Australian Ore Deposits (pp. 729–738). Monograph 32, Australasian Institute Mining Metallurgy.
  • Ishihara, S. (1981). The granitoid series and mineralization. Economic Geology Anniversary, 75, 458–484. https://doi.org/10.5382/AV75.14
  • Jensen, K. R., Campos, E., Wilkinson, J. J., Wilkinson, C. C., Kearsley, A., Miranda-Díaz, G., & Véliz, W. (2022). Hydrothermal fluid evolution in the Escondida porphyry copper deposit, northern Chile: Evidence from SEM-CL imaging of quartz veins and LA-ICP-MS of fluid inclusions. Mineralium Deposita, 57(2), 279–300. https://doi.org/10.1007/s00126-021-01058-z
  • Kerrich, R., & Allison, I. (1978). Vein geometry and hydrostatics during Yellowknife mineralisation. Canadian Journal of Earth Sciences, 15(10), 1653–1660. https://doi.org/10.1139/e78-169
  • Killick, A. M. (2003). Fault rock classification: An aid to structural interpretation in mine and exploration geology. South African Journal of Geology, 106(4), 395–402. https://doi.org/10.2113/106.4.395
  • Kouzmanov, K., & Pokrovski, G. S. (2012). Hydrothermal controls on metal distribution in porphyry Cu (–Mo–Au) systems. Economic Geology, Special Publication, 16, 573–618. https://doi.org/10.5382/SP.16.22
  • Lindgren, W. (1913). Mineral Deposits. McGraw-Hill.
  • Livesey, J. (2017). Chandler salt deposit. In G. N. Phillips (Ed.), Australian Ore Deposits (pp. 575–576). Monograph 32, Australasian Institute Mining Metallurgy.
  • Lodder, C., Padilla, R., Shaw, R., Garzon, T., Palacio, E., & Jahoda, R. (2010). Discovery history of the La Colosa Gold Porphyry Deposit, Cajamarca, Colombia. Economic Geology, Special Publication, 15, 19–28. https://doi.org/10.5382/SP.15.1.03
  • Loucks, R. R. (2014). Distinctive composition of copper-ore-forming arc magmas. Australian Journal of Earth Sciences, 61(1), 5–16. https://doi.org/10.1080/08120099.2013.865676
  • Luhr, J. F., & Carmichael, I. S. E. (1980). The Colima volcanic complex, Mexico. I: Post-caldera andesites from Volcan Colima. Contributions to Mineralogy and Petrology, 71(4), 343–372. https://doi.org/10.1007/BF00374707
  • Lundstrom, C. C., & Glazner, A. F. (2016). Silicic magmatism and the volcanic—plutonic connection. Elements, 12(2), 91–96. https://doi.org/10.2113/gselements.12.2.91
  • Mason, B. (1966). Principles of Geochemistry (3rd ed., 329 pp). Wiley.
  • McAndrew, J. (1965). Gold deposits of Victoria. In J. McAndrew (Ed.), Geology of Australian Ore Deposits (2nd ed., pp. 450–456). Australasian Institute of Mining and Metallurgy.
  • Miura, Y., Rucklidge, J., & Nord, G. L. (1981). The occurrence of chlorine in serpentine minerals. Contributions to Mineralogy and Petrology, 76(1), 17–23. https://doi.org/10.1007/BF00373679
  • Mueller, A. G. (2017). Mount Charlotte deposit–Kalgoorlie Goldfield. In G. N. Phillips (Ed.), Australian Ore Deposits (pp. 195–198). Monograph 32, Australasian Institute of Mining and Metallurgy.
  • Oen, I. S., & Lustenhouwer, W. J. (1992). Cl-rich biotite, Cl–K hornblende, and Cl-rich scapolite in meta-exhalites: Nora, Bergslagen, Sweden. Economic Geology, 87(6), 1638–1648. https://doi.org/10.2113/gsecongeo.87.6.1638
  • Oliver, N. H. S., Valenta, R. K., & Wall, V. J. (1990). The effect of heterogeneous stress and strain on metamorphic fluid flow, Mary Kathleen, Australia, and a model for large-scale fluid circulation. Journal of Metamorphic Geology, 8(3), 311–331. https://doi.org/10.1111/j.1525-1314.1990.tb00475.x
  • Oliver, N. H. S., Wall, V. J., & Cartwright, I. (1992). Internal controls on fluid compositions in amphibolitic-facies scapolitic calc-silicates, Mary Kathleen, Australia. Contributions to Mineralogy and Petrology, 111(1), 94–112. https://doi.org/10.1007/BF00296581
  • Otamendi, J. E., Ducea, M. N., Tibaldi, A. M., Bergantz, G. W., de la Rosa, J. D., & Vujovich, G. I. (2009). Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of the Famatinian magmatic arc, Argentina. Journal of Petrology, 50(5), 841–873. https://doi.org/10.1093/petrology/egp022
  • Pacey, A., Wilkinson, J. J., Boyce, A. J., & Millar, I. L. (2020). Magmatic fluids implicated in the formation of propylitic alteration: Oxygen, hydrogen, and strontium isotope constraints from the Northparkes porphyry Cu–Au district, New South Wales, Australia. Economic Geology, 115(4), 729–748. https://doi.org/10.5382/econgeo.4732
  • Penniston-Dorland, S. C. (2001). Illumination of vein quartz textures in a porphyry copper ore deposit using scanned cathodoluminescence: Grasberg Igneous Complex, Irian Jaya, Indonesia. American Mineralogist, 86(5-6), 652–666. https://doi.org/10.2138/am-2001-5-606
  • Perkins, J. P., Ward, K. M., Shanaka, L., de Silva, G. Z., Beck, S. L., & Finnegan, N. J. (2016). Surface uplift in the Central Andes driven by growth of the Altiplano-Puna magmatic body. Nature Communications, 7, 13185. https://doi.org/10.1038/ncomms13185
  • Petford, N., Cruden, A. R., McCaffrey, K. J. W., & Vigneresse, J-L. (2000). Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408(6813), 669– 673. https://doi.org/10.1038/35047000
  • Phillips, G. N. (2022). Formation of Gold Deposits. Springer.
  • Phillips, G. N., & Groves, D. I. (1984). Fluid access and fluid-wall rock interaction in the genesis of the Archaean gold-quartz vein deposit at Hunt mine, Kambalda. Western Australia. In R. P. Foster, (Ed.), Gold 82. (pp. 389–416)Balkema.
  • Phillips, G. N., Kisters, A. F. M., & Clemens, J. D. (2022). The tabular Strathbogie batholith in central Victoria. Australian Journal of Earth Sciences, 69(6), 776–800. https://doi.org/10.1080/08120099.2022.2032340
  • Phillips, G. N., & Powell, R. (1993). Link between gold provinces. Economic Geology, 88(5), 1084–1098. https://doi.org/10.2113/gsecongeo.88.5.1084
  • Phillips, G. N., & Powell, R. (2010). Formation of gold deposits: A metamorphic devolatilization model. Journal of Metamorphic Geology, 28(6), 689–718. https://doi.org/10.1111/j.1525-1314.2010.00887.x
  • Phillips, G. N., & Powell, R. (2015). A practical classification of gold deposits, with a theoretical basis. Ore Geology Reviews, 65, 568–573. https://doi.org/10.1016/j.oregeorev.2014.04.006
  • Phillips, G. N., Hergt, J., & Powell, R. (2017). Kalgoorlie goldfield—petrology, alteration and mineralisation of the Golden Mile Dolerite. In G. N. Phillips (Ed.), Australian Ore Deposits (pp. 185–194). Monograph 32, Australasian Institute of Mining and Metallurgy.
  • Phillips, G. N., & Vearncombe, J. R. (2021). The humble quartz vein. Australian Institute of Geoscientists News, June 2021, 49–50.
  • Phillips, G. N., Williams, P. J., & De Jong, G. (1994). Nature of metamorphic fluids and significance for metal exploration. Geological Society, London, Special Publications, 78(1), 55–68. https://doi.org/10.1144/GSL.SP.1994.078.01.06
  • Pistone, M., Baumgartner, L. P., Bégué, F., Jarvis, P. A., Bloch, E., Robyr, M., Müntener, O., Sisson, T. W., & Blundy, J. D. (2020). Felsic melt and gas mobilization during magma solidification: An experimental study at 1.1 kbar. Frontiers in Earth Science, 8, 175. https://doi.org/10.3389/feart.2020.00175
  • Piquer, J., Skarmeta, J., & Cooke, D. R. (2015). Structural evolution of the Rio Blanco–Los Bronces district, Andes of Central Chile: Controls on stratigraphy, magmatism, and mineralization. Economic Geology, 110(8), 1995–2023. https://doi.org/10.2113/econgeo.110.8.1995
  • Piquer, J., Sanchez-Alfaro, P., & Pérez-Flores, P. (2021). A new model for the optimal structural context for giant porphyry copper deposit formation. Geology, 49(5), 597–601. https://doi.org/10.1130/G48287.1
  • Pitcairn, I. K. (2011). Background concentrations of gold in different rock types. Applied Earth Science, 120(1), 31–38. https://doi.org/10.1179/1743275811Y.0000000021
  • Pollard, P. J. (2017). Australian rare element granitic pegmatites. In G. N. Phillips (Ed.), Australian Ore Deposits. (pp. 67–74). Monograph 32, Australasian Institute Mining Metallurgy.
  • Porter, T. M. (2017). Cadia gold–copper deposits. In G. N. Phillips (Ed.) Australian Ore Deposits (pp. 755–758). Monograph 32, Australasian Institute Mining Metallurgy.
  • Porter, M. (2020). Regular use was made of the comprehensive database of Porter Consulting. http://www.portergeo.com.au/database/mineinfo.asp?mineid=mn053
  • Powell, R., & Holland, T. J. B. (1988). An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Application, methods, worked examples and a computer program. Journal of Metamorphic Geology, 6(2), 173–204. https://doi.org/10.1111/j.1525-1314.1988.tb00415.x
  • Pritchard, M. E., & Gregg, P. M. (2016). Geophysical evidence for silicic crustal melt in the continents: Where, what kind, and how much? Elements, 12(2), 121–127. https://doi.org/10.2113/gselements.12.2.121
  • Proffett, J. M. Jr (1977). Cenozoic geology of the Yerington district, Nevada and implications for the nature and origin of Basin and Range faulting. Geological Society of America Bulletin, 88(2), 247–266. https://doi.org/10.1130/0016-7606(1977)88<247:CGOTYD>2.0.CO;2
  • Prokofiev, V. Y., & Naumov, V. B. (2022). Ranges of physical parameters and geochemical features of mineralizing fluids at porphyry deposits of various types of the Cu–Mo–Au system: Evidence from fluid inclusions data. Minerals, 12(5), 529. https://doi.org/10.3390/min12050529
  • Puddephatt, R. J. (1978). The Chemistry of Gold. Elsevier.
  • Ridley, J. (1993). The relations between mean rock stress and fluid flow in the crust: With reference to vein- and lode-style gold deposits. Ore Geology Reviews, 8(1-2), 23–37. https://doi.org/10.1016/0169-1368(93)90026-U
  • Ridley, J. (2013). Ore Deposit Geology. Cambridge University Press.
  • Ridley, J. R., & Diamond, L. W. (2000). Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Economic Geology Reviews, 14, 141–162. https://doi.org/10.5382/Rev.13.04
  • Ridley, J., & Mengler, F. (2000). Lithological and structural controls on the form and setting of vein stockwork orebodies at the Mt Charlotte gold deposit. Economic Geology, 95(1), 85–98. https://doi.org/10.2113/gsecongeo.95.1.85
  • Robb, L. (2005). Introduction to Ore-forming Processes. Blackwell Publishing. https://doi.org/10.1144/1467-7873/05-073
  • Robert, F., & Brown, A. C. (1986). Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec: Part I. Geologic relations and formation of the vein system. Economic Geology, 81(3), 578–592. https://doi.org/10.2113/gsecongeo.81.3.578
  • Roedder, E. (1967). Fluid inclusions as samples of ore fluids. In H. L. Barnes (Ed.), Geochemistry of Hydrothermal Ore Deposits (1st edn., pp. 515–574). Holt, Reinhart and Winston.
  • Roedder, E. (1971). Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Economic Geology, 66(1), 98–118. https://doi.org/10.2113/gsecongeo.66.1.98
  • Roedder, E. (1979). Fluid inclusions as samples of ore fluids. In H. L. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (2nd ed., pp. 684–737). Wiley.
  • Roedder, E. (1984). Reviews in Mineralogy. Volume 12: Fluid inclusions. Mineralogical Society of America.
  • Seedorff, E., Dilles, J. H., Proffett, J. M., Einaudi, M. T., Zurcher, L., Stravast, W. J. A., Johnson, D. A., & Barton, M. D. (2005). Porphyry deposits: Characteristics and origin of hypogene features. Economic Geology, 100th Anniversary Volume, 251–298. https://doi.org/10.5382/AV100.10
  • Shaw, A., Downes, H., & Thirlwall, M. F. (1993). The quartz-diorites of Limousin: Elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of the French Massif Central. Chemical Geology, 107(1-2), 1–18. https://doi.org/10.1016/0009-2541(93)90098-4
  • Sibson, R. H. (1987). Earthquake rupturing as a hydrothermal mineralising agent. Geology, 15(8), 701–704. https://doi.org/10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2
  • Sibson, R. H. (1996). Structural permeability of fluid-driven fault-fracture meshes. Journal of Structural Geology, 18(8), 1031–1042. https://doi.org/10.1016/0191-8141(96)00032-6
  • Sibson, R. H., Robert, F., & Poulsen, K. H. (1988). High-angle reverse faults, fluid-pressure cycling, and mesothermal gold–quartz deposits. Geology, 16(6), 551–555. https://doi.org/10.1130/0091-7613(1988)016<0551:HARFFP>2.3.CO;2
  • Sillitoe, R. H. (1972). A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67(2), 184–197. https://doi.org/10.2113/gsecongeo.67.2.184
  • Sillitoe, R. H. (1997). Characteristics and controls of the largest porphyry copper–gold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44(3), 373–388. https://doi.org/10.1080/08120099708728318
  • Sillitoe, R. H. (2010). Porphyry copper systems. Economic Geology, 105(1), 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
  • Sillitoe, R. H. (2020). Gold deposit types: An overview. Society of Economic Geologists Special Publications, 23, 1–28. https://doi.org/10.5382/SP.23.01
  • Singer, D. A., Berger, V. I., Menzie, W. D., & Berger, B. R. (2005). Porphyry copper deposit density. Economic Geology, 100(3), 491–514. https://doi.org/10.2113/gsecongeo.100.3.491
  • Skarmeta, J. (2021). Structural controls on alteration stages at the Chuquicamata copper–molybdenum deposit, Northern Chile. Economic Geology, 116(1), 1–28. https://doi.org/10.5382/econgeo.4769
  • Spurr, J. E. (1923). The Ore Magmas. McGraw Hill.
  • Stanton, R. L. (1972). Ore Petrology. McGraw-Hill.
  • Tamic, N., Behrens, H., & Holtz, F. (2001). The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2–H2O fluid phase. Chemical Geology, 174(1-3), 333–347. https://doi.org/10.1016/S0009-2541(00)00324-7
  • Taylor, S. R., & McLennan, S. (1985). The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publishers. Oxford.
  • Tosdal, R. M., & Dilles, J. H. (2020). Creation of permeability in the porphyry Cu environment. Reviews in Economic Geology, 21, 173–204. https://doi.org/10.5382/rev.21.05
  • Tosdal, R. M., & Richards, J. P. (2001). Magmatic and structural controls on the development of porphyry Cu ± Mo ± Au deposits. Reviews in Economic Geology, 14, 157–181. https://doi.org/10.5382/Rev.14.06
  • Travis, G. A., Woodall, R., & Bartram, G. D. (1971). The geology of the Kalgoorlie goldfield. In J. E. Glover (Ed.), Symposium on Archaean Rocks, Special Publication (3rd ed.). Geological Society of Australia.
  • Vearncombe, J. R. (1988). Fibrous vein geometry and gold mineralization. In S. E. Ho & D. I. Groves (Eds.), Advances in Understanding Precambrian Gold Deposits (Vol. II, pp. 41–61). The University of Western Australia.
  • Vearncombe, J. R. (1998). Shear zones, fault networks and Archean gold. Geology, 26(9), 855–858. https://doi.org/10.1130/0091-7613(1998)026<0855:SZFNAA>2.3.CO;2
  • Vry, V. H., Wilkinson, J. J., Seguel, J., & Millan, J. (2010). Multistage intrusion, brecciation, and veining at El Teniente, Chile: Evolution of a nested porphyry system. Economic Geology, 105(1), 119–153. https://doi.org/10.2113/gsecongeo.105.1.119
  • Warren, J. K. (2010). Evaporites through time: Tectonic, climatic, and eustatic controls in marine and nonmarine deposits. Earth-Science Reviews, 98(3-4), 217–268. https://doi.org/10.1016/j.earscirev.2009.11.004
  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2
  • White, D. E. (1974). Diverse origins of hydrothermal fluids. Economic Geology, 69(6), 954–973. https://doi.org/10.2113/gsecongeo.69.6.954
  • White, R. W., Powell, R., & Holland, T. J. B. (2001). Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3 –SiO2–H2O (NCKFMASH). Journal of Metamorphic Geology, 19(2), 139–153. https://doi.org/10.1046/j.0263-4929.2000.00303.x
  • Williams, P. J., Barton, M. D., Johnson, D. A., Fontboté, L., De Haller, A., Mark, G., Oliver, N. H. S., & Marschik, R. (2005). Iron oxide copper–gold deposits: Geology, space–time distribution, and possible modes of origin. Economic Geology, 100th Anniversary Volume, 371–406. https://doi.org/10.5382/AV100.13
  • Wilkinson, J. J. (2013). Triggers for the formation of porphyry ore deposits in magmatic arcs. Nature Geoscience, 6(11), 917–925. https://doi.org/10.1038/ngeo1940
  • Wilson, A. J., Cooke, D. R., & Harper, B. L. (2003). The Ridgeway gold–copper deposit: A high-grade alkalic porphyry deposit in the Lachlan Fold Belt, New South Wales, Australia. Economic Geology, 98(8), 1637–1666. https://doi.org/10.2113/gsecongeo.98.8.1637
  • Wormald, P. J. (2017). Mount Leyshon gold deposit. In G. N. Phillips (Ed.) Australian Ore Deposits (pp. 697–704). Monograph 32, Australasian Institute Mining Metallurgy.
  • Yardley, B. W. D., & Graham, J. T. (2002). The origins of salinity in metamorphic fluids. Geofluids, 2(4), 249–256. https://doi.org/10.1046/j.1468-8123.2002.00042.x