Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 71, 2024 - Issue 4
156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fertile, alkalic intrusions, Karari–Whirling Dervish gold deposit, Yilgarn Craton, Western Australia

, , &
Pages 553-584 | Received 22 Sep 2023, Accepted 17 Jan 2024, Published online: 18 Mar 2024

References

  • Ague, J. J., & Brimhall, G. H. (1988). Regional variations in bulk chemistry, mineralogy and compositions of mafic and accessory minerals in the batholiths of California. Geological Society of America Bulletin, 100(6), 891–911. https://doi.org/10.1130/0016
  • Aliani, F., Maanijou, M., & Miri, M. (2011). Field and textural evidences of magma mingling in the Tekyeh-Bala area granitoid rocks, West Iran. Australian Journal of Basic and Applied Science, 5, 220–2204.
  • Angiboust, S., & Harlov, D. (2017). Ilmenite breakdown and rutile–titanite stability in granitoids: Natural observations and experimental results. American Mineralogist, 102(8), 1696–1708. https://doi.org/10.2138/am-2017-6064
  • Bao, Z., Li, C., & Zhao, Z. (2016). Metallogeny of the syenite-related Dongping gold deposit in the northern part of the North China Craton. Ore Geology Reviews, 73, 198–210. https://doi.org/10.1016/j.oregeorev.2015.04.002
  • Barbarin, B., & Didier, J. (1992). Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2), 145–153. https://doi.org/10.1017/S0263593300007835
  • Bath, A. B., Walshe, J. L., Cloutier, J., Verrall, M., Cleverley, J. S., Pownceby, M. I., Macrae, C. M., Wilson, N. C., Tunjic, J., Nortje, G. S., & Robinson, P. (2013). Biotite and apatite as tools for tracking pathways of oxidised fluids in the Archaean East Repulse gold deposit, Australia. Economic Geology, 108(4), 667–690. https://doi.org/10.2113/econgeo.108.4.667
  • Bigot, L., & Jebrak, M. (2015). Gold mineralization at the syenite-hosted Beattie gold deposit, Duparquet, Neoarchean Abitibi Belt, Canada. Economic Geology, 110(2), 315–335. https://doi.org/10.2113/econgeo.110.2.315
  • Blevin, P. L., & Chappell, B. W. (1992). The role of mafic sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2), 305–316. https://doi.org/10.1017/S0263593300007987
  • Bruand, E., Fowler, M., Storey, C., Laurent, O., Antoine, C., Guitreau, M., Heilimo, E., & Nebel, O. (2020). Accessory mineral constraints on crustal evolution: Elemental fingerprints for magma discrimination. Geochemical Perspectives Letters, 13, 7–12. https://doi.org/10.7185/geochemlet.2006
  • Burnham, C. W. (1979). Magmas and hydrothermal fluids. In H. J. Barnes (Ed.), Geochemistry of hydrothermal ore deposits (2nd ed., pp. 71–136). John Wiley and Sons.
  • Carten, R. B. (1986). Sodium-calcium metasomatism: Chemical, temporal and spatial relationships at the Yerrington, Nevada, porphyry copper deposit. Economic Geology, 81(6), 1495–1519. https://doi.org/10.2113/gsecongeo.81.6.1495
  • Cassidy, K. F., Champion, D. C., McNaughton, N. J., Fletcher, I. R., Whitaker, A. J., Bastrakova, I. V., & Budd, A. R. (2002). Characterisation and metallogenic significance of Archean granitoids of the Yilgarn Craton, Western Australia. MERIWA Report, 222, 514.
  • Cassidy, K. F., Groves, D. I., & McNaughton, N. J. (1998). Late-Archean granitoid-hosted lode gold deposits, Western Australia: Deposit characteristics, crustal architecture and implications for ore genesis. Ore Geology Reviews, 13(1-5), 65–102. https://doi.org/10.1016/S0169-1368(97)00014-0
  • Champion, D. C., & Sheraton, J. W. (1997). Geochemistry and Nd isotope systematics of Archaean granites of the Eastern Goldfields, Yilgarn Craton, Australia: Implications for crustal growth processes. Precambrian Research, 83(1-3), 109–132. https://doi.org/10.1016/S0301-9268(97)00007-7
  • Cox, K. G., Bell, J. D., & Pankhurst, R. J. (1979). The interpretation of igneous rocks. George Allen and Unwin.
  • Czarnota, K., Champion, D. C., Goscombe, B., Blewett, R. S., Cassidy, K. F., Henson, P. A., & Groenewald, B. (2010). Geodynamics of the eastern Yilgarn Craton. Precambrian Research, 183(2), 175–202. https://doi.org/10.1016/j.precamres.2010.08.004
  • De Souza, S., Dubé, B., Mercier-Langevin, P., McNicoll, V., Dupuis, C., & Kjarsgaard, I. (2019). Hydrothermal alteration mineralogy and geochemistry of the Archean world-class Canadian Malartic disseminated-stockwork gold deposit, southern Abitibi greenstone belt, Quebec, Canada. Economic Geology, 114(6), 1057–1094. https://doi.org/10.5382/econgeo.4674
  • Dube, B., Mercier-Langevin, P., Ayer, J., Pilote, J-L., & Monecke, T. (2020). Gold deposits of the Archean Abitibi greenstone belt, Canada. Special Publication of the Society of Economic Geologists, 23, 53–80.
  • Essene, E. J., Claflin, C. L., Giorgetti, G., Mata, P. M., Peacor, D. R., Árkai, P., & Rathmell, M. A. (2005). Two-, three- and four-feldspar assemblages with hyalophane and celsian: Implications for phase equilibria in Ba2Al2Si2O8–Ca2Al2Si2O8–NaAlSi3O8–KAlSi3O8. European Journal of Mineralogy, 17(4), 515–535. https://doi.org/10.1127/0935-1221/2005/0017-0515
  • Gieré, R. (1990). Hydrothermal mobility of Ti, Zr and REE: Examples from the Bergell and Adamello contact aureoles (Italy). Terra Nova, 2(1), 60–67. https://doi.org/10.1111/j.1365-3121.1990.tb00037.x
  • Gregory, D. D., Large, R. R., Bath, A. B., Steadman, J. A., Wu, S., Danyushevsky, L., Bull, S. W., Holden, P., & Ireland, T. R. (2016). Trace element content of pyrite from the Kapai Slate, St Ives gold district, Western Australia. Economic Geology, 111(6), 1297–1320. https://doi.org/10.2113/econgeo.111.6.1297
  • Harlov, D. E., Wirth, R., & Förster, H-J. (2005). An experimental study of dissolution-reprecipitation in fluorapatite: Fluid infiltration and the formation of monazite. Contributions to Mineralogy and Petrology, 150(3), 268–286. https://doi.org/10.1007/s00410-005-0017-8
  • Helt, K. M., Williams-Jones, A. E., Clark, J. R., Wing, B. A., & Wares, R. P. (2014). Constraints on the genesis of the Archean, oxidized, intrusion-related Canadian Malartic gold deposit, Quebec, Canada. Economic Geology, 109(3), 713–735. https://doi.org/10.2113/econgeo.109.3.713
  • Hibbard, M. J. (1981). The magma-mixing origin of mantled feldspars. Contributions to Mineralogy and Petrology, 76(2), 158–170. https://doi.org/10.1007/BF00371956
  • Hicks, K. D., & Hattori, K. (1988). Magmatic-hydrothermal and wallrock alteration petrology at the Lake Shore gold deposit, Kirkland Lake, Ontario. Ontario Geological Survey Miscellaneous Paper, 140, 192–204.
  • Hitzman, M. W., Oreskes, N., & Einaudi, M. T. (1992). Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambrian Research, 58(1-4), 241–287. https://doi.org/10.1016/0301-9268(92)90121-4
  • Hunt, J. A., & Kerrick, D. M. (1977). The stability of sphene; experimental redeterminations and geologic implications. Geochimica et Cosmochimica Acta, 41(2), 279–288. https://doi.org/10.1016/0016-7037(77)90236-8
  • Irvine, T. N., & Baragar, W. R. A. (1971). A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences, 8(5), 523–548. https://doi.org/10.1139/e71-055
  • Ispolatov, V., LaFrance, B., Dube, B., Creaser, R., & Hamilton, M. (2008). Geologic and structural setting of gold mineralization in the Kirkland Lake–Larder Lake gold belt, Ontario. Economic Geology, 103(6), 1309–1340. https://doi.org/10.2113/gsecongeo.103.6.1309
  • Jackson, J. A. (1997). Glossary of geology (4th ed.). American Geological Institute.
  • Jensen, E. P., & Barton, M. D. (2000). Gold deposits related to alkali magmatism. Reviews in Economic Geology, 13, 279–314. https://doi.org/10.5382/Rev.13.08
  • Kelley, K. D., Spry, P. G., McLemore, V. T., Fey, D. L., & Anderson, E. D. (2020). Alkalic-type epithermal gold deposit model (US Geological Survey Science Investigations Report, 2010-5070-R, p. 74).
  • Kerrich, R., & Watson, G. P. (1984). The Macassa Mine Archean lode gold deposit, Kirkland Lake, Ontario: Geology, patterns of alteration, and hydrothermal regimes. Economic Geology, 79(5), 1104–1130. https://doi.org/10.2113/gsecongeo.79.5.1104
  • Leake, B. E., Woolley, A. R., Birch, W. D., Burke, E. A. J., Ferraris, G., Grice, J. D., Hawthorne, F. C., Kisch, H. J., Krivovichev, V. G., Schumacher, J. S., Stephenson, N. C. N., & Whittaker, E. J. E. (2003). Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s 1997 recommendations. The Canadian Mineralogist, 41(6), 1355–1362. https://doi.org/10.2113/gscanmin.41.6.1355
  • Li, J-X., Li, G-M., Evans, N. J., Zhao, J-X., Qin, K-Z., & Xie, J. (2021). Primary fluid exsolution in porphyry copper systems: Evidence for magmatic apatite and anhydrite inclusions in zircon. Mineralium Deposita, 56(2), 407–415. https://doi.org/10.1007/s00126-020-01013-4
  • Libby, W. (1978). The chemistry of plutonic alkaline igneous rocks in the Eastern Goldfields Province, Western Australia (Geological Survey of Western Australia, Report 26, pp. 83–104).
  • Loucks, R. R. (2014). Distinctive composition of copper ore-forming arc magmas. Australian Journal of Earth Sciences, 61(1), 5–16. https://doi.org/10.1080/08120099.2013.865676
  • Luhr, J. F. (2008). Primary igneous anhydrite: Progress since its recognition in the 1982 El Chichon trachyandesite. Journal of Volcanology and Geothermal Research, 175(4), 394–407. https://doi.org/10.1016/j.jvolgeores.2008.02.016
  • Mason, R. A. (1992). Models of order and iron–fluorine avoidance in biotite. Canadian Mineralogist, 30, 343–354.
  • Mason, R. A., Parsons, I., & Long, J. V. P. (1985). Trace and minor element chemistry of alkali feldspars in the Klokken layered syenite series. Journal of Petrology, 26(4), 952–970. https://doi.org/10.1093/petrology/26.4.952
  • McBirney, A. R. (2007). Igneous petrology (3rd ed.). Jones and Bartlett.
  • McDivitt, J. A., Hagemann, S. G., Thébaud, N., Martin, L. A., & Rankenburg, K. (2022). Constraints on the structural setting, relative timing, and geochemistry of the Fimiston, Hidden Secret, and Oroya gold-telluride lode types, Kalgoorlie gold camp, Western Australia. Mineralium Deposita, 57(6), 1023–1046. https://doi.org/10.1007/s00126-021-01077-w
  • Mériaud, N., & Jébrak, M. (2017). From intrusion-related to orogenic mineralization: The Wasamac deposit, Aibitibi Greenstone Belt, Canada. Ore Geology Reviews, 84, 289–308. https://doi.org/10.1016/j.oregeorev.2017.01.020
  • Miles, A. J., Graham, C. M., Hawkesworth, C. J., Gillespie, M. R., Hinton, R. W., Bromiley, G. D., & EMMAC. (2014). Apatite: A new redox proxy for silicic magmas? Geochimica et Cosmochimica Acta, 132, 101–119. https://doi.org/10.1016/j.gca.2014.01.040
  • Mueller, A. G. (2020). Structural setting of Fimiston-and Oroya-style pyrite-telluride-gold lodes, Paringa South mine, Golden Mile, Kalgoorlie: 1. Shear zone systems, porphyry dykes and deposit-scale alteration zones. Mineralium Deposita, 55(4), 665–695. https://doi.org/10.1007/s00126-019-00876-6
  • Mueller, A. G., Hall, G. C., Nemchin, A. A., Stein, H. J., Creaser, R. A., & Mason, D. R. (2008). Archean high-Mg monzodiorite-syenite, epidote skarn and biotite–sericite gold lodes in the Granny Smith–Wallaby district, Australia: U–Pb and Re–Os chronometry of two intrusion-related hydrothermal systems. Mineralium Deposita, 43(3), 337–362. https://doi.org/10.1007/s00126-007-0164-0
  • Munoz, J. L. (1992). F and Cl contents of hydrothermal biotites: A reevaulation. Geological Society of America, Abstract with Programs, 22, A135.
  • Nakano, S. (2021). Magmatic crystallization processes inferred from microtextures in anti-rapakivi feldspars: A case study of ferro-augite trachyte feldspars from Oki-Dogo, Japan. Lithos, 398-399, 106288. https://doi.org/10.1016/j.lithos.2021.106288
  • Nekvasil, H. (1992). Ternary feldspar crystallization in high-temperature felsic magmas. American Mineralogist, 77, 592–604.
  • Neumayr, P., Walshe, J., Hagemann, S., Petersen, K., Roache, A., Frikken, P., Horn, L., & Halley, S. (2008). Oxidised and reduced mineral assemblages in greenstone belt rocks of the St Ives gold camp, Western Australia: Vectors to high-grade ore bodies in Archaean gold deposits. Mineralium Deposita, 43(3), 363–371. https://doi.org/10.1007/s00126-007-0170-2
  • Ojala, V. J., Ridley, J. R., Groves, D. I., & Hall, G. C. (1993). The Granny Smith gold deposit: The role of heterogeneous stress distribution at an irregular granitoid contact in a greenschist facies terrane. Mineralium Deposita, 28(6), 409–419. https://doi.org/10.1007/BF02431599
  • Orville, P. M. (1963). Alkali ion exchange between vapor and feldspar phases. American Journal of Science, 261(3), 201–237. https://doi.org/10.2475/ajs.261.3.201
  • Parsons, I. (1978). Feldspar and fluids in cooling plutons. Mineralogical Magazine, 42(321), 1–17. https://doi.org/10.1180/minmag.1978.042.321.01
  • Pearce, J. A. (1996). A user’s guide to basalt discrimination diagrams. In D. A. Wyman (Ed.), Trace element geochemistry of volcanic rocks (pp. 79–114). Geological Association of Canada, Short Course Notes 12.
  • Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4), 956–983. https://doi.org/10.1093/petrology/25.4.956
  • Peccerillo, A., & Taylor, S. R. (1976). Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1), 63–81. https://doi.org/10.1007/BF00384745
  • Phillips, G. N., & Powell, R. (2010). Formation of gold deposits: A metamorphic devolatilization model. Journal of Metamorphic Geology, 28(6), 689–718. https://doi.org/10.1111/j.1525-1314.2010.00887.x
  • Pilet, S., Baker, M. B., & Stolper, E. M. (2008). Metasomatised lithosphere and the origin of alkaline lavas. Science, 320(5878), 916–919. https://doi.org/10.1126/science.1156563
  • Pollard, P. J., Taylor, R. G., & Peters, L. (2005). Age of intrusion, alteration, and mineralization at the Grasberg Cu–Au deposit, Papua, Indonesia. Economic Geology, 100(5), 1005–1020. https://doi.org/10.2113/gsecongeo.100.5.1005
  • Richards, J. P. (1990). Petrology and geochemistry of alkalic intrusives at Porgera gold deposit, Papua New Guinea. Journal of Geochemical Exploration, 35(1-3), 141–199. https://doi.org/10.1016/0375-6742(90)90038-C
  • Richards, J. P. (2011). High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Economic Geology, 106(7), 1075–1081. https://doi.org/10.2113/econgeo.106.7.1075
  • Rios, D. C., Conceição, H., Davis, D. W., Plá Cid, J., Rosa, M. L. S., Macambira, M. J. B., McReath, I., Marinho, M. M., & Davis, W. J. (2007). Paleoproterozoic potassic-ultrapotassic magmatism: Morro do Afonso Syenite Pluton, Bahia, Brazil. Precambrian Research, 154(1-2), 1–30. https://doi.org/10.1016/j.precamres.2006.11.015
  • Robert, F. (2001). Syenite-associated, disseminated gold deposits in the Abitibi greenstone belt, Canada. Mineralium Deposita, 36(6), 503–516. https://doi.org/10.1007/s001260100186
  • Salier, B. P., Groves, D. I., McNaughton, N. J., & Fletcher, I. F. (2004). The world-class Wallaby gold deposit, Laverton, Western Australia: An orogenic-style overprint on a magmatic-hydrothermal magnetite–calcite alteration pipe? Mineralium Deposita, 39(4), 473–494. https://doi.org/10.1007/s00126-004-0425-0
  • Seedorff, E., Dilles, J. H., Proffett, J. M., Jr, Einaudi, M. T., Zurcher, L., Stavast, W. J. A., Johnson, D. A., & Barton, M. D. (2005). Porphyry deposits: Characteristics, and origin of hypogene features. In J. W. Hedenquist, J. F. H. Thompson, R. J. Goldfarb, & J. P. Richards (Eds.), Economic Geology, One Hundredth Anniversary Volume (pp. 251–298). Society of Economic Geologists.
  • Seward, T. M., Williams-Jones, A. E., & Migdisov, A. A. (2014). The chemistry of metal transport and deposition by ore-forming hydrothermal fluids. In K. K. Turekian & H. D. Holland (Eds.), Treatise on geochemistry (pp. 29–57). Elsevier.
  • Shaw, C., & Penczak, R. (1996). Barium- and titanium-rich biotite and phlogopite from the western and eastern gabbro, Coldwell Alkaline Complex, northwestern Ontario. Canadian Mineralogist, 34, 967–975.
  • Smith, J. V. (2012). Feldspar minerals: 2 chemical and textural properties (p. 692). Springer.
  • Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In A. D. Saunders & M. J. Norry (Eds.), Magmatism in ocean basins (pp. 313–345). Geological Society of London, Special Publication, 42. https://doi.org/10.1144/GSL.SP.1989.042.01.1
  • Van Dongen, M., Weinberg, R. F., & Tomkins, A. G. (2014). Grade distribution of the giant Ok Tedi Cu–Au deposit, Papua New Guinea – A reply. Economic Geology, 109(5), 1493–1494. https://doi.org/10.2113/econgeo.109.5.1493
  • Vance, J. A. (1969). On synneusis. Contributions to Mineralogy and Petrology, 24(1), 7–29. https://doi.org/10.1007/BF00398750
  • Ventruti, G., Caggianelli, A., Festa, V., & Langone, A. (2020). Crystal chemistry of barian titanian phlogopite from a lamprophyre of the Gargano Promontory (Apulia, southern Italy). Minerals, 10(9), 766. https://doi.org/10.3390/min10090766
  • Vielreicher, N., Groves, D. I., McNaughton, N. J., & Fletcher, I. (2015). The timing of gold mineralization across the eastern Yilgarn craton using U–Pb geochronology of hydrothermal phosphate minerals. Mineralium Deposita, 50(4), 391–428. https://doi.org/10.1007/s00126-015-0589-9
  • Vielreicher, N. M., Groves, D. I., Snee, L. W., Fletcher, I. R., & McNaughton, N. J. (2010). Broad synchroneity of three gold mineralization styles in the Kalgoorlie gold field: SHRIMP, U–Pb and 40Ar/39Ar geochronological evidence. Economic Geology, 105(1), 187–227. https://doi.org/10.2113/gsecongeo.105.1.187
  • Wells, T. J., Meffre, S., Cooke, D. R., Steadman, J. A., & Hoye, J. L. (2020). Porphyry fertility in the Northparkes district: Indicators from whole-rock geochemistry. Australian Journal of Earth Sciences, 67(5), 717–738. https://doi.org/10.1080/08120099.2020.1715477
  • Wells, T. J., Meffre, S., Cooke, D. R., Steadman, J. A., & Hoye, J. L. (2021). Assessment of magmatic fertility using pXRF on altered rocks from the Ordovician Macquarie Arc, New South Wales. Australian Journal of Earth Sciences, 68(3), 397–409. https://doi.org/10.1080/08120099.2020.1782471
  • Werle, J. L., Ikramuddin, M., & Mutschler, F. E. (1984). Allard Stock, La Plata Mountains, Colorado – An alkaline rock-hosted porphyry copper–precious metal deposit. Canadian Journal of Earth Sciences, 21(6), 630–641. https://doi.org/10.1139/e84-069
  • Western Australia Department of Mines, Industry Regulation & Safety (DMIRS). (2015). Mines and mineral deposits MINEDEX database. https://minedex.dmirs.wa.gov.au/Web/home
  • Williams-Jones, A. E., Migdisov, A. A., & Samson, I. M. (2012). Hydrothermal mobilisation of the rare earth elements – A tale of “Ceria” and “Yttria”. Elements, 8(5), 355–360. https://doi.org/10.2113/gselements.8.5.355
  • Wilson, M. (1989). Igneous petrogenesis: A global tectonic approach (p. 466). Harper-Collins Academic.
  • Witt, W. K., Cassidy, K. F., Lu, Y-J., & Hagemann, S. G. (2018). Syenitic intrusions of the Kurnalpi Terrane, Yilgarn Craton: Hosts to ancient alkali porphyry gold deposits? Ore Geology Reviews, 96, 262–268. https://doi.org/10.1016/j.oregeorev.2017.08.037
  • Witt, W. K., Cassidy, K. F., Lu, Y-J., & Hagemann, S. G. (2020). The tectonic setting and evolution of the 2.7 Ga Kalgoorlie–Kurnalpi Rift, a world-class Archean gold province. Mineralium Deposita, 55(4), 601–631. https://doi.org/10.1007/s00126-017-0778-9
  • Witt, W. K., & Davy, R. (1997). Geology and geochemistry of granitoid rocks in the southwest Eastern Goldfields Province (Geological Survey of Western Australia, Report 46, p. 137).
  • Witt, W. K., Fisher, C., Hagemann, S. G., & Roberts, M. P. (2023). Oldest syenitic intrusions of the Yilgarn Craton identified at Karari gold deposit, Carosue Dam camp, Western Australia. Australian Journal of Earth Sciences, 70(3), 344–357. https://doi.org/10.1080/08120099.2023.2157485
  • Witt, W. K., Ford, A., & Hanrahan, B. (2015). District-scale targeting for gold in the Yilgarn Craton: Part 2 of the Yilgarn Gold Targeting Atlas (Geological Survey of Western Australia, Report 132, p. 276).
  • Witt, W. K., Ford, A., Hanrahan, W., & Mamuse, A. (2013). Regional-scale targeting for gold in the Yilgarn Craton: Part 1 of the Yilgarn Gold Targeting Atlas (Geological Survey of Western Australia, Report 125, p. 130).
  • Witt, W. K., & Hammond, D. (2008). Archean gold mineralisation in an intrusion-related, geochemically zoned, district-scale alteration system in the Carosue Basin, Western Australia. Economic Geology, 103(2), 445–454. https://doi.org/10.2113/gsecongeo.103.2.445
  • Witt, W. K., Knight, J. T., & Mikucki, E. J. (1997). A synmetamorphic lateral fluid flow model for gold mineralization in the Archean southern Kalgoorlie and Norseman Terranes, Western Australia. Economic Geology, 92(4), 407–437. https://doi.org/10.2113/gsecongeo.92.4.407
  • Witt, W. K., Mason, D. R., & Hammond, D. P. (2009). Archean Karari gold deposit, Eastern Goldfields Province, Western Australia: A monzonite-associated disseminated gold deposit. Australian Journal of Earth Sciences, 56(8), 1061–1086. https://doi.org/10.1080/08120090903246188
  • Witt, W. K., & Mills, D. (2017). Carosue Dam gold deposits. In N. Phillips (Ed.), Australian ore deposits (Vol. 32, pp. 245–248). Australasian Institute of Mining and Metallurgy.
  • Witt, W. K., Roberts, M. P., Hagemann, S. G., & Fisher, C. (2023). Apatite and biotite in syenitic intrusions, Archean Karari gold deposit: Evidence for an oxidized magma and oxidized subsolidus potassic (biotite) alteration. The Canadian Journal of Mineralogy and Petrology, 61(2), 217–238. https://doi.org/10.3749/2200043
  • Woolley, A. R., Platt, R. G., & Eby, N. (1992). Niobian titanite and eudyalite from the Ilomba nepheline syenite complex, north Malawi. Mineralogical Magazine, 56(384), 428–430. https://doi.org/10.1180/minmag.1992.056.384.19
  • Yang, W-B., Niu, H-C., Shan, Q., Sun, W-D., Zhang, H., Li, N-B., Jiang, Y-H., & Yu, X-Y. (2014). Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: Implications for Zr–REE–Nb mineralisation. Mineralium Deposita, 49(4), 451–470. https://doi.org/10.1007/s00126-013-0504-1
  • Zhu, C., & Sverjensky, D. A. (1992). F–Cl–OH partitioning between biotite and apatite. Geochimica et Cosmochimica Acta, 56(9), 3435–3467. https://doi.org/10.1016/0016-7037(92)90390-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.