Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 71, 2024 - Issue 4
508
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Paragenetic and geological setting of the Starra iron oxide copper–gold deposits, Mount Isa Inlier, Queensland, Australia: constraints on IOCG deposit models

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 513-537 | Received 05 Jul 2023, Accepted 24 Mar 2024, Published online: 06 May 2024

References

  • Adshead, N. D. (1995). Geology, alteration and geochemistry of the Osborne Cu–Au deposit, Cloncurry district, NW Queensland, Australia [Unpublished PhD thesis]. James Cook University of North Queensland.
  • Adshead, N. D., Voulgaris, P., & Muscio, V. (1998). Osborne copper–gold deposit. In D. A. Berkman & D. H. McKenzie (Eds.), Geology of Australian and Papua New Guinean mineral deposits (Vol. 22, pp. 793–800). Australasian Institute of Mining and Metallurgy Monograph.
  • Adshead-Bell, N. S. (1998). Evolution of the Starra and Selwyn high-strain zones, Eastern Fold Belt, Mount Isa Inlier; implications for Au–Cu mineralization. Economic Geology, 93(8), 1450–1462. https://doi.org/10.2113/gsecongeo.93.8.1450
  • Baker, T. (1998). Alteration, mineralization, and fluid evolution at the Eloise Cu–Au deposit, Cloncurry district, northwest Queensland, Australia. Economic Geology, 93(8), 1213–1236. https://doi.org/10.2113/gsecongeo.93.8.1213
  • Baker, T., Mustard, R., Fu, B., Williams, P. J., Dong, G., Fisher, L., Mark, G., & Ryan, C. G. (2008). Mixed messages in iron oxide–copper–gold systems of the Cloncurry district, Australia: Insights from PIXE analysis of halogens and copper in fluid inclusions. Mineralium Deposita, 43(6), 599–608. https://doi.org/10.1007/s00126-008-0198-y
  • Barton, M. D. (2014). Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., pp. 515–541). Elsevier Inc. https://doi.org/10.1016/b978-0-08-095975-7.01123-2
  • Barton, M. D., & Johnson, D. A. (1996). Evaporitic-source model for igneous-related Fe oxide–(REE–Cu–Au–U) mineralization. Geology, 24(3), 259–262. https://doi.org/10.1130/0091-7613
  • Barton, M. D., Johnson, D. A., & Porter, T. M. (2000). Alternative brine sources for Fe-oxide (–Cu–Au) systems: Implications for hydrothermal alteration and metals. In T. M. Porter (Ed.), Hydrothermal iron oxide copper–gold and related deposits: A global perspective (1st ed., pp. 43–60). PGC Publishing.
  • Blake, D. H. (1992). The compressional Lake Mary Kathleen fold and thrust zone, Mount Isa Inlier. In A. J. Stewart & D. H. Blake (Eds.), Detailed studies of the Mount Isa Inlier (Vol. 243, pp. 181–190). Australian Geological Survey Organisation, Bulletin. https://pid.geoscience.gov.au/dataset/ga/36
  • Blake, T. S., & Groves, D. I. (1987). Continental rifting and the Archean–Proterozoic transition. Geology, 15(3), 229–232.(1987) https://doi.org/10.1130/0091-7613
  • Brandt, F., Bosbach, D., Krawczyk-Bärsch, E., Arnold, T., & Bernhard, G. (2003). Chlorite dissolution in the acid pH-range: A combined microscopic and macroscopic approach. Geochimica et Cosmochimica Acta, 67(8), 1451–1461. https://doi.org/10.1016/S0016-7037(02)01293-0
  • Cannell, J., & Davidson, G. J. (1998). A carbonate-dominated copper–cobalt breccia-vein system at the Great Australia deposit, Mount Isa Eastern Succession. Economic Geology, 93(8), 1406–1421. https://doi.org/10.2113/gsecongeo.93.8.1406
  • Chinova Resources, P. L. (2017). Current resources and historic production provided by Chinova Resources. Geological Survey. https://geoscience.data.qld.gov.au/en/dataset/ds000039/resource/513127e0-2f30-47d6-a978-b0b4adccd190
  • Cook, N. J., Ciobanu, C. L., Danyushevsky, L. V., & Gilbert, S. (2011). Minor and trace elements in bornite and associated Cu–(Fe)-sulfides: A LA-ICP-MS study of bornite mineral chemistry. Geochimica et Cosmochimica Acta, 75(21), 6473–6496. https://doi.org/10.1016/j.gca.2011.08.021
  • Cooke, D. R., Bull, S. W., Large, R. R., & McGoldrick, P. J. (2000). The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb–Zn (Sedex) deposits. Economic Geology, 95(1), 1–18. https://doi.org/10.2113/gsecongeo.95.1.1
  • Corbett, G. J., & Leach, T. M. (1998). Southwest Pacific Rim gold–copper systems: Structure, alteration, and mineralization (Vol. 6, p. 318). Society of Economic Geologists, Special Publication. https://doi.org/10.5382/SP.06
  • Corriveau, L., Montreuil, J-F., Blein, O., Ehrig, K., Potter, E. G., Fabris, A., & Clark, J. (2022). Mineral systems with IOCG and affiliated deposits: Part 2—geochemical footprints. In L. Corriveau, E. G. Potter, & A. H. Mumin (Eds.), Mineral systems with iron oxide–copper–gold (IOCG) and affiliated deposits (pp. 159–204). Geological Association of Canada. Special Paper 52.
  • Corriveau, L., Montreuil, J-F., Potter, E. G., Ehrig, K., Clark, J., Mumin, A. H., & Williams, P. J. (2022). Mineral systems with IOCG and affiliated deposits: Part 1—metasomatic footprints of alteration facies. In L. Corriveau, E. G. Potter, & A. H. Mumin (Eds.), Mineral systems with iron oxide–copper–gold (IOCG) and affiliated deposits (pp. 113–158). Geological Association of Canada. Special Paper 52.
  • Crosswell, D. (2014). Open Data Portal—South East Isa. Geological Survey of Queensland. https://geoscience.data.qld.gov.au/magnetotelluric/mt099992
  • Danyushevsky, L. V., & Norris, A. (2018). Software and protocols for improved accuracy of LA ICP-MS analysis via quantification of matrix effects. Goldschmidt Abstracts, 513.
  • Davidson, G. J. (1989). Starra and trough tank: Iron-formation-hosted gold–copper deposits of North-West Queensland, Australia [Unpublished PhD thesis]. University of Tasmania.
  • Davidson, G. J. (1992). Hydrothermal geochemistry and ore genesis of sea-floor volcanogenic copper-bearing oxide ores. Economic Geology, 87(3), 889–912. https://doi.org/10.2113/gsecongeo.87.3.889
  • Davidson, G. J., & Large, R. (1994). Gold metallogeny and the copper–gold association of the Australian Proterozoic. Mineralium Deposita, 29(3), 208–223. https://doi.org/10.1007/BF00206864
  • Davidson, G. J., Large, R. R., Kary, G. L., & Osborne, R. (1989). The deformed Iron-formation-hosted Starra and Trough Tank Au–Cu mineralization: A new association from the Proterozoic Eastern Succession of Mount Isa, Australia. In R. R. Keays, W. R. H. Ramsay, & D. I. Groves (Eds.), The geology of gold deposits: The Perspective in 1988 (pp. 135–150). Society of Economic Geologists. https://doi.org/10.5382/Mono.06.10
  • Davidson, G. J., Paterson, H., Meffre, S., & Berry, R. F. (2007). Characteristics and Origin of the Oak Dam East Breccia-Hosted, iron oxide Cu–U–(Au) deposit: Olympic Dam Region, Gawler Craton, South Australia. Economic Geology, 102(8), 1471–1498. https://doi.org/10.2113/gsecongeo.102.8.1471
  • Day, R. W., Whitaker, W. G., Murray, C. G., Wilson, I. H., & Grimes, K. G. (1983). Queensland Geology: A companion volume to the 1: 2,500,000 scale geological map (1975) (p. 194). Queensland Geological Survey Publications.
  • Ding, K., & Seyfried, W., Jr (1992). Determination of Fe–Cl complexing in the low pressure supercritical region (NaCl fluid): Iron solubility constraints on pH of subseafloor hydrothermal fluids. Geochimica et Cosmochimica Acta, 56(10), 3681–3692. https://doi.org/10.1016/0016-7037(92)90161-B
  • Donchak, P. J. T., Bultitude, R. J., & Blake, D. H. (1981). Definitions of newly named and revised Precambrian stratigraphic and intrusive rock units in the Duchess and Urandangi 1:250 000 sheet areas, Mount Isa Inlier, northwestern Queensland. Queensland Geological Survey, Publication 233.
  • Duncan, R. J., Hitzman, M. W., Nelson, E. P., & Togtokhbayar, O. (2014). Structural and lithological controls on iron oxide copper–gold deposits of the southern Selwyn-Mount Dore corridor, Eastern fold belt, Queensland, Australia. Economic Geology, 109(2), 419–456. https://doi.org/10.2113/econgeo.109.2.419
  • Duncan, R. J., Stein, H. J., Evans, K. A., Hitzman, M. W., Nelson, E. P., & Kirwin, D. J. (2011). A new geochronological framework for mineralization and alteration in the Selwyn-Mount Dore corridor, Eastern fold belt, Mount Isa Inlier, Australia: Genetic implications for iron oxide copper–gold deposits. Economic Geology, 106(2), 169–192. https://doi.org/10.2113/econgeo.106.2.169
  • Ehrig, K., Kamenetsky, V. S., McPhie, J., Macmillan, E., Thompson, J., Kamenetsky, M., & Maas, R. (2021). Staged formation of the supergiant Olympic Dam uranium deposit, Australia. Geology, 49(11), 1312–1316. https://doi.org/10.1130/G48930.1
  • Escolme, A., Cooke, D. R., Hunt, J., Berry, R. F., Maas, R., & Creaser, R. A. (2020). The Productora Cu–Au–Mo deposit, Chile: A Mesozoic magmatic-hydrothermal breccia complex with both porphyry and iron oxide Cu–Au affinities. Economic Geology, 115(3), 543–580. https://doi.org/10.5382/econgeo.4718
  • Fisher, L., & Kendrick, M. A. (2008). Metamorphic fluid origins in the Osborne Fe oxide–Cu–Au deposit, Australia: Evidence from noble gases and halogens. Mineralium Deposita, 43(5), 483–497. https://doi.org/10.1007/s00126-008-0178-2
  • Foster, A., Williams, P. J., & Ryan, C. (2007). Distribution of gold in hypogene ore at the Ernest Henry iron oxide copper–gold deposit, Cloncurry district, NW Queensland. Exploration and Mining Geology, 16(3-4), 125–143. https://doi.org/10.2113/gsemg.16.3-4.125
  • Foster, D. R., & Austin, J. R. (2008). The 1800–1610 Ma stratigraphic and magmatic history of the Eastern Succession, Mount Isa Inlier, and correlations with adjacent Paleoproterozoic terranes. Precambrian Research, 163(1-2), 7–30. https://doi.org/10.1016/j.precamres.2007.08.010
  • Gauthier, L., Hall, G., Stein, H., & Schaltegger, U. (2001). The Osborne deposit, Cloncurry district: A 1595 Ma Cu–Au skarn deposit. Contributions of the Economic Geology Research Unit. James Cook University, 59, 58–59.
  • Gibson, G., Meixner, A., Withnall, I., Korsch, R., Hutton, L., Jones, L., Holzschuh, J., Costelloe, R., Henson, P., & Saygin, E. (2016). Basin architecture and evolution in the Mount Isa mineral province, northern Australia: Constraints from deep seismic reflection profiling and implications for ore genesis. Ore Geology Reviews, 76, 414–441. https://doi.org/10.1016/j.oregeorev.2015.07.013
  • Giles, D., & Nutman, A. P. (2002). SHRIMP U–Pb monazite dating of 1600–1580 Ma amphibolite facies metamorphism in the southeastern Mt Isa Block, Australia. Australian Journal of Earth Sciences, 49(3), 455–465. https://doi.org/10.1046/j.1440-0952.2002.00931.x
  • Groves, D. I., Bierlein, F. P., Meinert, L. D., & Hitzman, M. W. (2010). Iron oxide copper–gold (IOCG) deposits through Earth history: Implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Economic Geology, 105(3), 641–654. https://doi.org/10.2113/gsecongeo.105.3.641
  • Heinrich, C. A., & Seward, T. M. (1990). A spectrophotometric study of aqueous iron (II) chloride complexing from 25 to 200 °C. Geochimica et Cosmochimica Acta, 54(8), 2207–2221. https://doi.org/10.1016/0016-7037(90)90046-N
  • Hezarkhani, A., Williams-Jones, A., & Gammons, C. (1999). Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Mineralium Deposita, 34(8), 770–783. https://doi.org/10.1007/s001260050237
  • Hitzman, M. W., Oreskes, N., & Einaudi, M. T. (1992). Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambrian Research, 58(1-4), 241–287. https://doi.org/10.1016/0301-9268(92)90121-4
  • Hu, X., Chen, H., Beaudoin, G., & Zhang, Y. (2020). Textural and compositional evolution of iron oxides at Mina Justa (Peru): Implications for mushketovite and formation of IOCG deposits. American Mineralogist, 105(3), 397–408. https://doi.org/10.2138/am-2020-7024
  • Huston, D. L., Bolger, C., & Cozens, G. (1993). A comparison of mineral deposits at the Gecko and White Devil deposits; implications for ore genesis in the Tennant Creek District, Northern Territory, Australia. Economic Geology, 88(5), 1198–1225. https://doi.org/10.2113/gsecongeo.88.5.1198
  • Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314. https://doi.org/10.2307/1390807
  • Jackson, M., Scott, D., & Rawlings, D. (2000). Stratigraphic framework for the Leichhardt and Calvert Superbasins: Review and correlations of the pre-1700 Ma successions between Mt Isa and McArthur River. Australian Journal of Earth Sciences, 47(3), 381–403. https://doi.org/10.1046/j.1440-0952.2000.00789.x
  • Kary, G., & Harley, R. (1990). Selwyn gold–copper deposits. In F. E. Hughes (Ed.), Geology of Australian and Papua New Guinean mineral deposits (Vol. 14, pp. 955–960). Australasian Institute of Mining and Metallurgy, Monograph.
  • Kendrick, M. A., Baker, T., Fu, B., Phillips, D., & Williams, P. J. (2008). Noble gas and halogen constraints on regionally extensive mid-crustal Na–Ca metasomatism, the Proterozoic Eastern Mount Isa Block, Australia. Precambrian Research, 163(1-2), 131–150. https://doi.org/10.1016/j.precamres.2007.08.015
  • Kendrick, M. A., Mark, G., & Phillips, D. (2007). Mid-crustal fluid mixing in a Proterozoic Fe oxide–Cu–Au deposit, Ernest Henry, Australia: Evidence from Ar, Kr, Xe, Cl, Br, and I. Earth and Planetary Science Letters, 256(3-4), 328–343. https://doi.org/10.1016/j.epsl.2006.12.032
  • Keyser, W., Ciobanu, C. L., Ehrig, K., Dmitrijeva, M., Wade, B. P., Courtney-Davies, L., Verdugo-Ihl, M., & Cook, N. J. (2022). Skarn-style alteration in Proterozoic metasedimentary protoliths hosting IOCG mineralization: The Island Dam Prospect, South Australia. Mineralium Deposita, 57(7), 1227–1250. https://doi.org/10.1007/s00126-022-01096-1
  • Kreiner, D. C., & Barton, M. D. (2017). Sulfur-poor intense acid hydrothermal alteration: A distinctive hydrothermal environment. Ore Geology Reviews, 88, 174–187. https://doi.org/10.1016/j.oregeorev.2017.04.018
  • Kuhn, M., & Wickham, H. (2020). Tidymodels: A collection of packages for modeling and machine learning using tidyverse principles [(accessed on 10 December 2020)].
  • Large, R. R. (1975). Zonation of hydrothermal minerals at the Juno mine, Tennant Creek goldfield, central Australia. Economic Geology, 70(8), 1387–1413. https://doi.org/10.2113/gsecongeo.70.8.1387
  • Liu, W., & McPhail, D. (2005). Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions. Chemical Geology, 221(1-2), 21–39. https://doi.org/10.1016/j.chemgeo.2005.04.009
  • Mark, G., Oliver, N. H., & Williams, P. J. (2006). Mineralogical and chemical evolution of the Ernest Henry Fe oxide–Cu–Au ore system, Cloncurry district, northwest Queensland, Australia. Mineralium Deposita, 40(8), 769–801. https://doi.org/10.1007/s00126-005-0009-7
  • Mark, G., Oliver, N. H., Williams, P. J., Valenta, R., & Crookes, R. (2000). The evolution of the Ernest Henry Fe-oxide–(Cu–Au) hydrothermal system. In T. M. Porter (Ed.), Hydrothermal iron oxide copper–gold and related deposits: A global perspective (1st ed., pp. 123–136). PGC Publishing.
  • Mateo, L., Tornos, F., Hanchar, J. M., Villa, I. M., Stein, H. J., & Delgado, A. (2023). The Montecristo mining district, northern Chile: The relationship between vein-like magnetite–(apatite) and iron oxide–copper–gold deposits. Mineralium Deposita, 58(6), 1023–1049. https://doi.org/10.1007/s00126-023-01172-0
  • McLellan, J. G., Mustard, R., Blenkinsop, T., Oliver, N. H., & McKeagney, C. (2010). Critical ingredients of IOCG mineralisation in the Eastern Fold Belt of the Mount Isa Inlier: Insights from combining spatial analysis with mechanical numerical modelling. In T. M. Porter (Ed.) Hydrothermal iron oxide copper-gold & related deposits: A global perspective—advances in the understanding of IOCG deposits (3rd ed., pp. 233–255). PGC Publishing.
  • Murphy, T., Hinman, M., Donohue, J., Pirlo, M., Jones, M., & Pratt, A. (2017). Deep mining Queensland: Prospectivity analysis in the Southern Cloncurry Belt. Commissioned Industry Study No. CR102015.
  • Oliver, N. H., Butera, K. M., Rubenach, M. J., Marshall, L. J., Cleverley, J. S., Mark, G., Tullemans, F., & Esser, D. (2008). The protracted hydrothermal evolution of the Mount Isa Eastern Succession: A review and tectonic implications. Precambrian Research, 163(1-2), 108–130. https://doi.org/10.1016/j.precamres.2007.08.019
  • Oliver, N. H., Cleverley, J. S., Mark, G., Pollard, P. J., Fu, B., Marshall, L. J., Rubenach, M. J., Williams, P. J., & Baker, T. (2004). Modeling the role of sodic alteration in the genesis of iron oxide–copper–gold deposits, Eastern Mount Isa block, Australia. Economic Geology, 99(6), 1145–1176. https://doi.org/10.2113/gsecongeo.99.6.1145
  • Oreskes, N., & Einaudi, M. T. (1992). Origin of hydrothermal fluids at Olympic Dam; preliminary results from fluid inclusions and stable isotopes. Economic Geology, 87(1), 64–90. https://doi.org/10.2113/gsecongeo.87.1.64
  • Page, R. W., & Sun, S-S. (1998). Aspects of geochronology and crustal evolution in the Eastern Fold Belt, Mt Isa Inlier. Australian Journal of Earth Sciences, 45(3), 343–361. https://doi.org/10.1080/08120099808728396
  • Perelló, J., Zulliger, G., García, A., & Creaser, R. A. (2023). Revisiting the IOCG geology and age of Alemão in the Igarapé Bahia camp, Carajás province, Brazil. Journal of South American Earth Sciences, 124, 104273. https://doi.org/10.1016/j.jsames.2023.104273
  • Perkins, C., & Wyborn, L. (1998). Age of Cu–Au mineralisation, Cloncurry district, eastern Mt Isa Inlier, Queensland, as determined by 40Ar/39Ar dating. Australian Journal of Earth Sciences, 45(2), 233–246. https://doi.org/10.1080/08120099808728384
  • Pollard, P. J. (2006). An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces. Mineralium Deposita, 41(2), 179–187. https://doi.org/10.1007/s00126-006-0054-x
  • Porter, T. M. (2000). Current understanding of iron oxide associated-alkali altered mineralised systems: Part I – an overview. In T. M. Porter (Ed.), Hydrothermal iron oxide copper–gold and related deposits: A global perspective (1st ed., pp. 5–32). PGC Publishing.
  • Real, I. d., Thompson, J., Simon, A., & Reich, M. (2020). Geochemical and isotopic signature of pyrite as a proxy for fluid source and evolution in the Candelaria-Punta del Cobre iron oxide copper–gold district, Chile. Economic Geology, 115(7), 1493–1518. https://doi.org/10.5382/econgeo.4765
  • Reich, M., Simon, A. C., Deditius, A. P., Barra, F., Chryssoulis, S., Lagas, G., Tardani, D., Knipping, J. L., Bilenker, L., Sánchez-Alfaro, P., Roberts, M. P., & Rodrigo Munizaga, I. R. (2016). Trace element signature of pyrite from the Los Colorados iron oxide–apatite (IOA) deposit, Chile: A missing link between Andean IOA and iron oxide copper–gold systems? Economic Geology, 111(3), 743–761. https://doi.org/10.2113/econgeo.111.3.743
  • Richards, J. P., & Mumin, A. H. (2013a). Lithospheric fertilization and mineralization by arc magmas: Genetic links and secular differences between porphyry copper ± molybdenum ± gold and magmatic-hydrothermal iron oxide copper–gold deposits. In M. Colpron, T. Bissig, B. Rusk, & J. Thompson (Eds.), Tectonics, metallogeny, and discovery: The North American Cordillera and similar accretionary settings (pp. 277–299). Society of Economic Geologists, Special Publication 17. https://doi.org/10.5382/sp.17.09
  • Richards, J. P., & Mumin, A. H. (2013b). Magmatic-hydrothermal processes within an evolving Earth: Iron oxide–copper–gold and porphyry Cu ± Mo ± Au deposits. Geology, 41(7), 767–770. https://doi.org/10.1130/G34275.1
  • Rodriguez-Mustafa, M. A., Simon, A. C., Bilenker, L. D., Bindeman, I., Mathur, R., & Machado, E. L. (2022). The Mina Justa iron oxide copper–gold (IOCG) deposit, Peru: Constraints on metal and ore fluid sources. Economic Geology, 117(3), 645–666. https://doi.org/10.5382/econgeo.4875
  • Rodriguez-Mustafa, M. A., Simon, A. C., Real, I. d., Thompson, J., Bilenker, L. D., Barra, F., Bindeman, I., & Cadwell, D. (2020). A continuum from iron oxide copper–gold to iron oxide–apatite deposits: Evidence from Fe and O stable isotopes and trace element chemistry of magnetite. Economic Geology, 115(7), 1443–1459. https://doi.org/10.5382/econgeo.4752
  • Rotherham, J. F. (1997). Origin and fluid chemistry of the Starra ironstones and high grade Au–Cu mineralisation, Cloncurry district, Mount Isa inlier, Australia [Unpublished PhD thesis]. James Cook University of North Queensland.
  • Rotherham, J. F., Blake, K. L., Cartwright, I., & Williams, P. J. (1998). Stable isotope evidence for the origin of the Mesoproterozoic Starra Au–Cu deposit, Cloncurry District, northwest Queensland. Economic Geology, 93(8), 1435–1449. https://doi.org/10.2113/gsecongeo.93.8.1435
  • Rubenach, M. J. (1992). Proterozoic low-pressure/high-temperature metamorphism and an anticlockwise P–T–t path for the Hazeldene area, Mount Isa Inlier, Queensland, Australia. Journal of Metamorphic Geology, 10(3), 333–346. https://doi.org/10.1111/j.1525-1314.1992.tb00088.x
  • Rubenach, M. J., Foster, D., Evins, P., Blake, K., & Fanning, C. (2008). Age constraints on the tectonothermal evolution of the Selwyn Zone, Eastern fold belt, Mount Isa Inlier. Precambrian Research, 163(1-2), 81–107. https://doi.org/10.1016/j.precamres.2007.08.014
  • Rusk, B., Oliver, N., Cleverley, J., Blenkinsop, T., Zhang, D., Williams, P. J., & Habermann, P. (2010). Physical and chemical characteristics of the Ernest Henry iron oxide copper gold deposit, Australia; implications for IOGC genesis. In T. M. Porter (Ed.), Hydrothermal iron oxide copper–gold and related deposits: A global perspective (3rd ed., pp. 201–218). PGC Publishing.
  • Schlegel, T. U., Birchall, R., Shelton, T. D., & Austin, J. R. (2022). Mapping the mineral zonation at the Ernest Henry iron oxide copper–gold deposit: Vectoring to Cu–Au mineralization using modal mineralogy. Economic Geology, 117(2), 485–494. https://doi.org/10.5382/econgeo.4915
  • Sillitoe, R. H. (2003). Iron oxide–copper–gold deposits: An Andean view. Mineralium Deposita, 38(7), 787–812. https://doi.org/10.1007/s00126-003-0379-7
  • Simon, A. C., Knipping, J. L., Reich, M., Barra, F., Deditius, A. P., Bilenker, L., & Childress, T. (2018). Kiruna-type iron oxide–apatite (IOA) and iron oxide copper–gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: Evidence from the Chilean iron belt. In A. M. Arribas R & J. L. Mauk (Eds.), Metals, minerals, and society (pp. 89–114). Society of Economic Geologists, Special Publication 21. https://doi.org/10.5382/SP.21.06
  • Skirrow, R. G. (2022a). Iron oxide copper–gold (IOCG) deposits–A review (part 1): Settings, mineralogy, ore geochemistry and classification. Ore Geology Reviews, 140, 104569. https://doi.org/10.1016/j.oregeorev.2021.104569
  • Skirrow, R. G. (2022b). Hematite-group IOCG ± U deposits: An update on their tectonic settings, hydrothermal characteristics, and Cu–Au–U mineralizing processes. In L. Corriveau, E. G. Potter, & A. H. Mumin (Eds.), Mineral systems with iron oxide–copper–gold (IOCG) and affiliated deposits (pp. 27–51). Geological Association of Canada. Special Paper 52.
  • Skirrow, R. G., & Walshe, J. L. (2002). Reduced and oxidized Au–Cu–Bi iron oxide deposits of the Tennant Creek Inlier, Australia: An integrated geologic and chemical model. Economic Geology, 97(6), 1167–1202. https://doi.org/10.2113/gsecongeo.97.6.1167
  • Southgate, P., Neumann, N., & Gibson, G. (2013). Depositional systems in the Mt Isa Inlier from 1800 Ma to 1640 Ma: Implications for Zn–Pb–Ag mineralisation. Australian Journal of Earth Sciences, 60(2), 157–173. https://doi.org/10.1080/08120099.2013.758176
  • Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26(2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6
  • Switzer, C., Laing, W., & Rubenach, M. J. (1988). The Proterozoic Starra Au + Cu deposit ± syntectonic mineralization in a folded early regional zone of decollement [abs]. In A. D. T. Goode & L. I. Bosma (compiler), Bicentennial Gold’88, Abstracts, 23 (pp. 212–214). Geological Society of Australia.
  • Tornos, F., Velasco, F., Barra, F., & Morata, D. (2010). The Tropezón Cu–Mo–(Au) deposit, northern Chile: The missing link between IOCG and porphyry copper systems? Mineralium Deposita, 45(4), 313–321. https://doi.org/10.1007/s00126-010-0277-8
  • Torresi, I., Xavier, R. P., Bortholoto, D. F., & Monteiro, L. V. (2012). Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide–copper–gold deposit, Carajás mineral province (Brazil): Implications for ore genesis. Mineralium Deposita, 47(3), 299–323. https://doi.org/10.1007/s00126-011-0373-4
  • Twyerould, S. C. (1997). The geology and genesis of the Ernest Henry Fe–Cu–Au deposit, northwest Queensland, Australia [Unpublished PhD thesis]. University of Oregon.
  • Wedekind, M. R., Large, R. R., & Williams, B. T. (1989). Controls on high-grade gold mineralization at Tennant Creek, Northern Territory, Australia. Economic Geology Monograph, 6, 168–179. https://doi.org/10.5382/mono.06.12
  • Williams, P. J. (1994). Iron mobility during synmetamorphic alteration in the Selwyn Range area, NW Queensland: Implications for the origin of ironstone-hosted Au–Cu deposits. Mineralium Deposita, 29(3), 250–260. https://doi.org/10.1007/BF00206868
  • Williams, P. J. (2022). “Magnetite-group” IOCGs with special reference to Cloncurry (NW Queensland) and northern Sweden: Settings, alteration, deposit characteristics, fluid sources, and their relationship to apatite-rich iron ores. In L. Corriveau, E. G. Potter, & A. H. Mumin (Eds.), Mineral systems with iron oxide–copper–gold (IOCG) and affiliated deposits (pp. 53–68). Geological Association of Canada. Special Paper 52.
  • Williams, P. J., Barton, M. D., Johnson, D. A., Fontboté, L., de Haller, A., Mark, G., Oliver, N. H. S., & Marschik, R. (2005). Iron oxide copper–gold deposits: Geology, space–time distribution, and possible modes of origin. In J. W. Hedenquist, J. Thompson, R. J. Goldfarb, & J. P. Richards (Eds.), 100th Anniversary Volume (pp. 371–405). Society of Economic Geologists. https://doi.org/10.5382/AV100.13
  • Williams, P. J., Blake, K., & Pollard, P. (1998). Fe oxide–copper–gold deposits (The Candelaria-Ernest Henry-Olympic Dam Family). Economic Geology Research Unit, Short Course.
  • Williams, P. J., Dong, G., Ryan, C. G., Pollard, P. J., Rotherham, J. F., Mernagh, T. P., & Chapman, L. H. (2001). Geochemistry of hypersaline fluid inclusions from the Starra (Fe oxide)–Au–Cu deposit, Cloncurry district, Queensland. Economic Geology, 96(4), 875–883. https://doi.org/10.2113/gsecongeo.96.4.875
  • Withnall, I. W., & Hutton, L. J. (2013). Chapter 2: North Australian Craton. In P. A. Jell (Ed.), Geology of Queensland (pp. 23–112). Geological Survey of Queensland.
  • Zaw, K., Huston, D. L., Large, R., Mernagh, T., & Hoffmann, C. (1994a). Microthermometry and geochemistry of fluid inclusions from the Tennant Creek gold–copper deposits: Implications for ore deposition and exploration. Mineralium Deposita, 29(3), 288–300. https://doi.org/10.1007/BF00206872
  • Zaw, K., Huston, D. L., Large, R. R., Mernagh, T., & Hoffmann, C. F. (1994b). Geothermometry and compositional variation of fluid inclusions from the Tennant Creek gold–copper deposits: Implications for ore deposition and exploration. Mineralium Deposita, 29(3), 288–300. https://doi.org/10.1007/BF00206872