507
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Structural and haemodynamic properties of ocular vasculature in axial myopia

ORCID Icon, ORCID Icon & ORCID Icon
Pages 247-262 | Received 30 Mar 2021, Accepted 07 Jun 2021, Published online: 03 Aug 2021

References

  • Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–1042.
  • Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res. 2018;62:134–149.
  • Luong TQ, Shu Y-H, Modjtahedi BS, et al. Racial and Ethnic Differences in Myopia Progression in a Large, Diverse Cohort of Pediatric Patients. Invest Ophthalmol Vis Sci. 2020;61:20.
  • Flitcroft DI, He M, Jonas JB, et al. IMI - Defining and Classifying Myopia: a Proposed Set of Standards for Clinical and Epidemiologic Studies. Invest Ophthalmol Vis Sci. 2019;60:M20–M30.
  • Ohno-Matsui K, Wu P-C, Yamashiro K, et al. IMI Pathologic Myopia. Invest Ophthalmol Vis Sci. 2021;62:5.
  • Wong CW, Yanagi Y, Tsai ASH, et al. Correlation of axial length and myopic macular degeneration to levels of molecular factors in the aqueous. Sci Rep. 2019;9:15708.
  • Rong SS, Chen LJ, Pang CP. Myopia Genetics-The Asia-Pacific Perspective. Asia Pac J Ophthalmol (Phila). 2016;5:236–244.
  • Leveziel N, Yu Y, Reynolds R, et al. Genetic factors for choroidal neovascularization associated with high myopia. Invest Ophthalmol Vis Sci. 2012;53:5004–5009.
  • Guggenheim JA, Mojarrad N, Williams C, et al. Genetic prediction of myopia: prospects and challenges. Ophthalmic Physiol Optics. 2017;37:549–556.
  • Wu H, Chen W, Zhao F, et al. Scleral hypoxia is a target for myopia control. Proc Natl Acad Sci U S A. 2018;115:E7091–e7100.
  • Zhao F, Zhang D, Zhou Q, et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis. EBioMedicine. 2020;57:102878.
  • Corvi F, Pellegrini M, Erba S, et al. Reproducibility of Vessel Density, Fractal Dimension, and Foveal Avascular Zone Using 7 Different Optical Coherence Tomography Angiography Devices. Am J Ophthalmol. 2018;186:25–31.
  • Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201.
  • Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al. Quantitative optical coherence tomography angiography of the retinal microvasculature and the choriocapillaris in myopic eyes. Invest Ophthalmol Vis Sci. 2017;58:2063–2069.
  • Fan H, Chen HY, Ma HJ, et al. Reduced macular vascular density in myopic eyes. Chin Med J (Engl). 2017;130:445–451.
  • Mo J, Duan A, Chan S, et al. Vascular flow density in pathological myopia: an optical coherence tomography angiography study. BMJ Open. 2017;7:e013571.
  • Elsherif W, Moustafa M, Attaallah H, et al. Macular microvaculature evaluation using optical coherence tomography angiography in patients with high myopia. Egyptian Retina J. 2019;6:43–51.
  • Yang DW, Cao D, Zhang L, et al. Macular and peripapillary vessel density in myopic eyes of young Chinese adults. Clin Exp Optometry. 2020;103:830–837.
  • Wen C, Pei C, Xu X, et al. Influence of axial length on parafoveal and peripapillary metrics from swept source optical coherence tomography angiography. Curr Eye Res. 2019;44:980–986.
  • He J, Chen Q, Yin Y, et al. Association between retinal microvasculature and optic disc alterations in high myopia. Eye. 2019;33:1494–1503.
  • Min CH, Al-Qattan HM, Lee JY, et al. Macular microvasculature in high myopia without pathologic changes: an optical coherence tomography angiography study. Korean J Ophthalmol. 2020;34:106–112.
  • Su L, Ji Y-S, Tong N, et al. Quantitative assessment of the retinal microvasculature and choriocapillaris in myopic patients using swept-source optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2020;258:1173–1180.
  • Ucak T, Icel E, Yilmaz H, et al. Alterations in optical coherence tomography angiography findings in patients with high myopia. Eye. 2020;34:1129–1135.
  • Zhu Q, Xing X, Wang M, et al. Characterization of the three distinct retinal capillary plexuses using optical coherence tomography angiography in myopic eyes. Transl Vis Sci Techn. 2020;9:8.
  • Yang Y, Wang J, Jiang H, et al. Retinal microvasculature alteration in high myopia. Invest Ophthalmol Vis Sci. 2016;57:6020–6030.
  • Li M, Yang Y, Jiang H, et al. Retinal microvascular network and microcirculation assessments in high myopia. Am J Ophthalmol. 2017;174:56–67.
  • Liu M, Wang P, Hu X, et al. Myopia-related stepwise and quadrant retinal microvascular alteration and its correlation with axial length. Eye. 2020;35:2196–2205.
  • Sung MS, Lee TH, Heo H, et al. Association between optic nerve head deformation and retinal microvasculature in high myopia. Am J Ophthalmol. 2018;188:81–90.
  • Wang X, Kong X, Jiang C, et al. Is the peripapillary retinal perfusion related to myopia in healthy eyes? a prospective comparative study. BMJ Open. 2016;6:e010791.
  • Yang SQ, Zhou MW, Lu B, et al. Quantification of macular vascular density using optical coherence tomography angiography and its relationship with retinal thickness in myopic eyes of young adults. J Ophthalmol. 2017;2017:1397179.
  • Venkatesh R, Sinha S, Gangadharaiah D, et al. Retinal structural-vascular-functional relationship using optical coherence tomography and optical coherence tomography – angiography in myopia. Eye and Vision. 2019;6:8.
  • Guo Y, Sung MS, Park SW. Assessment of superficial retinal microvascular density in healthy myopia. Int Ophthalmol. 2019;39:1861–1870.
  • Tan CS, Lim LW, Chow VS, et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci 2016;57: 224–234.
  • Ye J, Wang MY, Shen MX, et al. Deep retinal capillary plexus decreasing correlated with the outer retinal layer alteration and visual acuity impairment in pathological myopia. Invest Ophthalmol Vis Sci. 2020;61:10.
  • Sampson DM, Gong P, An D, et al. Axial length variation impacts on superficial retinal vessel density and foveal avascular zone area measurements using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58:3065–3072.
  • Ie MURDOCH, Ss MORRIS, Sn COUSENS. People and eyes: statistical approaches in ophthalmology. Br J Ophthalmol. 1998;82:971–973.
  • Leng Y, Tam EK, Falavarjani KG, et al. Effect of age and myopia on retinal microvasculature. Ophthalmic Surg Lasers Imaging Retina. 2018;49:925–931.
  • Gómez-Ulla F, Cutrin P, Santos P, et al. Age and gender influence on foveal avascular zone in healthy eyes. Exp Eye Res. 2019;189:107856.
  • Milani P, Montesano G, Rossetti L, et al. Vessel density, retinal thickness, and choriocapillaris vascular flow in myopic eyes on optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol. 2018;256:1419–1427.
  • Lee K, Maeng KJ, Kim JY, et al. Diagnostic ability of vessel density measured by spectral-domain optical coherence tomography angiography for glaucoma in patients with high myopia. Sci Rep. 2020;10:3027.
  • Zhu X, Meng J, Wei L, et al. Cilioretinal arteries and macular vasculature in highly myopic eyes: an optical coherence tomography angiography-based study. Ophthalmol Retina. 2020;4:965–972.
  • Meng J, Wei L, Zhang K, et al. Cilioretinal arteries in highly myopic eyes: a photographic classification system and its association with myopic macular degeneration. Frontiers in Medicine. 2020;7:595544.
  • Gupta P, Thakku SG, Saw SM, et al. Characterization of choroidal morphologic and vascular features in young men with high myopia using spectral-domain optical coherence tomography. Am J Ophthalmol. 2017;177:27–33.
  • Alshareef RA, Khuthaila MK, Goud A, et al. Subfoveal choroidal vascularity in myopia: evidence from spectral-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging Retina. 2017;48:202–207.
  • Agrawal R, Gupta P, Tan K-A, et al. Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep. 2016;6:21090.
  • Agrawal R, Wei X, Goud A, et al. Influence of scanning area on choroidal vascularity index measurement using optical coherence tomography. Acta Ophthalmol. 2017;95:e770–e775.
  • Diaz JD, Wang JC, Oellers P, et al. Imaging the deep choroidal vasculature using spectral domain and swept source optical coherence tomography angiography. J Vitreoretin Dis. 2018;2:146–154.
  • Zhang Q, Zheng F, Motulsky EH, et al. A novel strategy for quantifying choriocapillaris flow voids using swept-source optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2018;59:203–211.
  • Olver JM. Functional anatomy of the choroidal circulation: methyl methacrylate casting of human choroid. Eye (Lond). 1990;4(Pt 2)):262–272.
  • Li X-X, Wu W, Zhou H, et al. A quantitative comparison of five optical coherence tomography angiography systems in clinical performance. Int J Ophthalmol. 2018;11:1784.
  • Wong CW, Teo YCK, Tsai STA, et al. Characterization of the choroidal vasculature in myopic maculopathy with optical coherence tomographic angiography. Retina. 2018.
  • Sayanagi K, Ikuno Y, Uematsu S, et al. Features of the choriocapillaris in myopic maculopathy identified by optical coherence tomography angiography. Br J Ophthalmol. 2017;101:1524–1529.
  • Scherm P, Pettenkofer M, Maier M, et al. Choriocapillary blood flow in myopic subjects measured with optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina. 2019;50:e133–e139.
  • Spaide RF. Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol. 2016;170:58–67.
  • Borrelli E, Souied EH, Freund KB, et al. Reduced choriocapillaris flow in eyes with type 3 neovascularization and age-related macular degeneration. Retina. 2018;38:1968–1976.
  • Zhang QQ, Shi YY, Zhou H, et al. Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source optical coherence tomography angiography. Quant Imag Med Surg. 2018;8:658–666.
  • Mastropasqua R, Viggiano P, Borrelli E, et al. In vivo mapping of the choriocapillaris in high myopia: a widefield swept source optical coherence tomography angiography. Sci Rep. 2019;9:18932.
  • Zhao J, Wang YX, Zhang Q, et al. Macular choroidal small-vessel layer, Sattler’s layer and Haller’s layer thicknesses: the Beijing eye study. Sci Rep. 2018;8:4411.
  • Maruko I, Spaide RF, Koizumi H, et al. Choroidal blood flow visualization in high myopia using a projection artifact method in optical coherence tomography angiography. Retina. 2017;37:460–465.
  • Devarajan K, Sim R, Chua J, et al. Optical coherence tomography angiography for the assessment of choroidal vasculature in high myopia. Br J Ophthalmol. 2020;104:917–923.
  • Spaide RF, Klancnik JM Jr., Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50.
  • Chen Q, He J, Hua Y, et al. Exploration of peripapillary vessel density in highly myopic eyes with peripapillary intrachoroidal cavitation and its relationship with ocular parameters using optical coherence tomography angiography. Clin Exp Ophthalmol. 2017;45:884–893.
  • Shin JW, Kwon J, Lee J, et al. Choroidal microvasculature dropout is not associated with myopia, but is associated with glaucoma. J Glaucoma. 2018;27:189–196.
  • Comune C, Montorio D, Cennamo G. Optical coherence tomography angiography in myopic peripapillary intrachoroidal cavitation complicated by choroidal neovascularization. Eur J Ophthalmol. 16 July 2020. Online ahead of print.
  • Lee SH, Lee EJ, Kim T-W. Comparison of vascular–function and structure–function correlations in glaucomatous eyes with high myopia. Br J Ophthalmol. 2020;104:807–812.
  • Na H-M, Lee EJ, Lee SH, et al. Evaluation of peripapillary choroidal microvasculature to detect glaucomatous damage in eyes with high myopia. J Glaucoma. 2020;29:39–45.
  • Kim GN, Lee EJ, Kim TW. Microstructure of nonjuxtapapillary microvasculature dropout in healthy myopic eyes. Invest Ophthalmol Vis Sci. 2020;61:8.
  • Kaneko Y, Moriyama M, Hirahara S, et al. Areas of nonperfusion in peripheral retina of eyes with pathologic myopia detected by ultra-widefield fluorescein angiography. Invest Ophthalmol Vis Sci. 2014;55:1432–1439.
  • Quaranta M, Arnold J, Coscas G, et al. Indocyanine green angiographic features of pathologic myopia. Am J Ophthalmol. 1996;122:663–671.
  • Moriyama M, Ohno-Matsui K, Futagami S, et al. Morphology and long-term changes of choroidal vascular structure in highly myopic eyes with and without posterior staphyloma. Ophthalmology. 2007;114:1755–1762.
  • OhnoMatsui K, Morishima N, Ito M, et al. Posterior routes of choroidal blood outflow in high myopia. Retina-J Ret Vit Dis. 1996;16:419–425.
  • Akyol N, Kukner AS, Ozdemir T, et al. Choroidal and retinal blood flow changes in degenerative myopia. Canadian Journal of Ophthalmology. 1996;31:113–119.
  • Benavente-Perez A, Hosking SL, Logan NS, et al. Ocular blood flow measurements in healthy human myopic eyes. Graefes Arch Clin Experiment Ophthalmol. 2010;248:1587–1594.
  • Karczewicz D, Modrzejewska M. [Blood flow in eye arteries assessed by Doppler ultrasound in patients with myopia]. Klinika Oczna. 2004;106:211–213.
  • Montanari P, Marangoni P, Pinotti D, et al. High myopia and glaucoma: colour Doppler imaging of the optic nerve vasculature. Acta Ophthalmol Scand. 1999;77:42–43.
  • Mrugacz M, Bryl A. [Evaluation of the arterial blood flow parameters in the eye of myopic patients]. Polski Merkuriusz Lekarski. 2013;34:205–209.
  • Galassi F, Sodi A, Ucci F, et al. Ocular haemodynamics in glaucoma associated with high myopia. Int Ophthalmol. 1998;22:299–305.
  • Dimitrova G, Tamaki Y, Kato S, et al. Retrobulbar circulation in myopic patients with or without myopic choroidal neovascularisation. Br J Ophthalmol. 2002;86:771–773.
  • Stalmans I, Vandewalle E, Anderson DR, et al. Use of colour Doppler imaging in ocular blood flow research. Acta Opthalmolog. 2011;89:e609–630.
  • Silver DM, Geyer O. Pressure-volume relation for the living human eye. Curr Eye Res. 2000;20:115–120.
  • Mori F, Konno S, Hikichi T, et al. Factors affecting pulsatile ocular blood flow in normal subjects. Br J Ophthalmol. 2001;85:529–530.
  • Lam AKC, Wong S, Lam CSY, et al. The effect of myopic axial elongation and posture on the pulsatile ocular blood flow in young normal subjects. Optometry Vision Sci. 2002;79:300–305.
  • Berisha F, Findl O, Lasta M, et al. A study comparing ocular pressure pulse and ocular fundus pulse in dependence of axial eye length and ocular volume. Acta Ophthalmol. 2010;88:766–772.
  • Dastiridou AI, Ginis H, Tsilimbaris M, et al. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of axial length. Invest Ophthalmol Vis Sci. 2013;54:2087–2092.
  • Yang YS, Koh JW. Choroidal blood flow change in eyes with high myopia. Korean J Ophthalmol. 2015;29:309–314.
  • Dastiridou AI, Ginis HS, De Brouwere D, et al. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of intraocular pressure. Invest Ophthalmol Vis Sci. 2009;50:5718–5722.
  • Shimada N, Ohno-Matsui K, Harino S, et al. Reduction of retinal blood flow in high myopia. Graefes Arch Clin Experiment Ophthalmol. 2004;242:284–288.
  • Zheng Q, Zong Y, Li L, et al. Retinal vessel oxygen saturation and vessel diameter in high myopia. Ophthalm Physiolog Optics. 2015;35:562–569.
  • La Spina C, Corvi F, Bandello F, et al. Static characteristics and dynamic functionality of retinal vessels in longer eyes with or without pathologic myopia. Graefes Arch Clin Experiment Ophthalmol. 2016;254:827–834.
  • Li H, Mitchell P, Rochtchina E, et al. Retinal vessel caliber and myopic retinopathy: the blue mountains eye study. Ophthalmic Epidemiol. 2011;18:275–280.
  • Chen HC, Patel V, Wiek J, et al. Vessel diameter changes during the cardiac cycle. Eye. 1994;8:97–103.
  • Hao H, Sasongko MB, Wong TY, et al. Does retinal vascular geometry vary with cardiac cycle? Invest Ophthalmol Vis Sci. 2012;53:5799–5805.
  • Streese L, Brawand LY, Gugleta K, et al. New frontiers in noninvasive analysis of retinal wall-to-lumen ratio by retinal vessel wall analysis. Transl Vis Sci Techn. 2020;9:7.
  • Heitmar R. Retinal Vessel Oxygen Saturation and its implications in myopia. Acta ophthal. 2015. 93.
  • Lim LS, Lim XH, Tan L. Retinal vascular oxygen saturation and its variation with refractive error and axial length. Transl Vis Sci Techn. 2019. 8.
  • Neriyanuri S, Bedggood PA, Symons RCA, et al. Characterizing spatial and temporal heterogeneity in retinal capillary blood flow. Invest Ophthalmol Vis Sci. 2019;60:4596.
  • Qu D, Lin Y, Jiang H, et al. Retinal nerve fiber layer (RNFL) integrity and its relations to retinal microvasculature and microcirculation in myopic eyes. Eye and Vision. 2018;5:25.
  • Benavente-Perez A, Hosking SL, Logan NS. Myopes exhibit reduced choroidal blood velocity which is highly responsive to hypercapnia. Invest Ophthalmol Vis Sci. 2008;49:3581.
  • Samra WA, Pournaras C, Riva C, et al. Choroidal hemodynamic in myopic patients with and without primary open-angle glaucoma. Acta Ophthalmol. 2013;91:371–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.