1,278
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Disorders of vision in multiple sclerosis

, ORCID Icon & ORCID Icon
Pages 3-12 | Received 21 Apr 2021, Published online: 04 Aug 2021

References

  • Brownlee WJ, Hardy TA, Fazekas F, et al. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017;389:1336–1346.
  • Tao C, Simpson S Jr. van der Mei I et al. Higher latitude is significantly associated with an earlier age of disease onset in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87:1343–1349.
  • Lucchinetti CF, Popescu BF, Bunyan RF, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med. 2011;365:2188–2197.
  • Tintore M, À Rovira, Río J, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138:1863–1874.
  • Barzegar M, Shaygannejad V, Mirmosayyeb O, et al. Progression to Secondary Progressive Multiple Sclerosis and its Early Risk Factors: a Population-based Study (2171). Neurology. 2020;94:2171.
  • Fambiatos A, Jokubaitis V, Horakova D, et al. Risk of secondary progressive multiple sclerosis: a longitudinal study. Mult Scler. 2020;26:79–90.
  • Rae-Grant A, Day GS, Marrie RA et al. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018; 90: 777–788.
  • Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med. 2017;376:209–220.
  • Kappos L, Bar-Or A, Cree BAC, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391:1263–1273.
  • van der Mei I, Lucas RM, Taylor BV, et al. Population attributable fractions and joint effects of key risk factors for multiple sclerosis. Mult Scler. 2016;22:461–469.
  • Hughes SE, Spelman T, Gray OM, et al. Predictors and dynamics of postpartum relapses in women with multiple sclerosis. Mult Scler. 2014;20:739–746.
  • Irizar H, Muñoz-Culla M, Zuriarrain O, et al. HLA-DRB1*15:01 and multiple sclerosis: a female association? Mult Scler. 2012;18:569–577.
  • Cree BA. Multiple sclerosis genetics. Handb Clin Neurol. 2014;122:193–209.
  • Sintzel MB, Rametta M, Reder AT. Vitamin D and Multiple Sclerosis: a Comprehensive Review. Neurol Ther. 2018;7:59–85.
  • Abrahamyan S, Eberspächer B, Hoshi MM, et al. Complete Epstein-Barr virus seropositivity in a large cohort of patients with early multiple sclerosis. J Neurol Neurosurg Psychiatry. 2020;91:681–686.
  • Hughes J, Jokubaitis V, Lugaresi A, et al. Association of Inflammation and Disability Accrual in Patients With Progressive-Onset Multiple Sclerosis. JAMA Neurol. 2018;75:1407–1415.
  • Choi SR, Howell OW, Carassiti D, et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain. 2012;135:2925–2937.
  • von Essen MR, Ammitzbøll C, Hansen RH, et al. Proinflammatory CD20+ T cells in the pathogenesis of multiple sclerosis. Brain. 2019;142:120–132.
  • Kunkl M, Frascolla S, Amormino C, et al. T Helper Cells: the Modulators of Inflammation in Multiple Sclerosis. Cells. 2020 Feb 19;9(2):482.
  • Dobson R, Giovannoni G. Autoimmune disease in people with multiple sclerosis and their relatives: a systematic review and meta-analysis. J Neurol. 2013;260:1272–1285.
  • Popescu BF, Lucchinetti CF. Pathology of demyelinating diseases. Annu Rev Pathol. 2012;7:185–217.
  • Hickman S, Izzy S, Sen P, et al. Microglia in neurodegeneration. Nat Neurosci. 2018;21:1359–1369.
  • Mancini A, Tantucci M, Mazzocchetti P, et al. Microglial activation and the nitric oxide/cGMP/PKG pathway underlie enhanced neuronal vulnerability to mitochondrial dysfunction in experimental multiple sclerosis. Neurobiol Dis. 2018;113:97–108.
  • Thompson KK, Tsirka SE. The Diverse Roles of Microglia in the Neurodegenerative Aspects of Central Nervous System (CNS) Autoimmunity. Int J Mol Sci. 2017;18(3):504.
  • Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173.
  • Filippi M, Rocca MA. MR imaging of multiple sclerosis. Radiology. 2011;259:659–681.
  • Gaitán MI, Shea CD, Evangelou IE, et al. Evolution of the blood-brain barrier in newly forming multiple sclerosis lesions. Ann Neurol. 2011;70:22–29.
  • Platten M, Lanz T, Bendszus M, et al. [Clinically isolated syndrome]. Nervenarzt. 2013;84:1247–1259.
  • Clinically Isolated Efendi H. Syndromes: clinical Characteristics, Differential Diagnosis, and Management. Noro Psikiyatr Ars. 2015;52:S1–s11.
  • Oreja-Guevara C, Noval S, Alvarez-Linera J, et al. Clinically isolated syndromes suggestive of multiple sclerosis: an optical coherence tomography study. PLoS One. 2012;7:e33907.
  • Pérez-Rico C, Ayuso-Peralta L, Rubio-Pérez L, et al. Evaluation of visual structural and functional factors that predict the development of multiple sclerosis in clinically isolated syndrome patients. Invest Ophthalmol Vis Sci. 2014;55:6127–6131.
  • Zimmermann HG, Knier B, Oberwahrenbrock T, et al. Association of Retinal Ganglion Cell Layer Thickness With Future Disease Activity in Patients With Clinically Isolated Syndrome. JAMA Neurol. 2018;75:1071–1079.
  • Balcer LJ. Clinical practice. Optic neuritis. N Engl J Med. 2006;354:1273–1280.
  • Kale N. Optic neuritis as an early sign of multiple sclerosis. Eye Brain. 2016;8:195–202.
  • Hoch MJ, Bruno MT, Shepherd TM. Advanced MRI of the Optic Nerve. J Neuroophthalmol. 2017;37:187–196.
  • Britze J, Frederiksen JL. Optical coherence tomography in multiple sclerosis. Eye (Lond). 2018;32:884–888.
  • Kupersmith MJ, Mandel G, Anderson S, et al. Baseline, one and three month changes in the peripapillary retinal nerve fiber layer in acute optic neuritis: relation to baseline vision and MRI. J Neurol Sci. 2011;308:117–123.
  • Ishikawa H, Kezuka T, Shikishima K, et al. Epidemiologic and Clinical Characteristics of Optic Neuritis in Japan. Ophthalmology. 2019;126:1385–1398.
  • Schneider E, Zimmermann H, Oberwahrenbrock T, et al. Optical Coherence Tomography Reveals Distinct Patterns of Retinal Damage in Neuromyelitis Optica and Multiple Sclerosis. PLoS One. 2013;8:e66151.
  • Iorga RE, Moraru A, Ozturk MR, et al. The role of Optical Coherence Tomography in optic neuropathies. Rom J Ophthalmol. 2018;62:3–14.
  • Bsteh G, Hegen H, Teuchner B, et al. Peripapillary retinal nerve fibre layer as measured by optical coherence tomography is a prognostic biomarker not only for physical but also for cognitive disability progression in multiple sclerosis. Mult Scler. 2019;25:196–203.
  • Jankowska-Lech I, Wasyluk J, Palasik W, et al. Peripapillary retinal nerve fiber layer thickness measured by optical coherence tomography in different clinical subtypes of multiple sclerosis. Mult Scler Relat Disord. 2019;27:260–268.
  • Martinez-Lapiscina EH, Arnow S, Wilson JA, et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol. 2016;15:574–584.
  • Carcelén-Gadea M, Quintanilla-Bordás C, Gracia-García A, et al. Functional and structural changes in the visual pathway in multiple sclerosis. Brain Behav. 2019;9:e01467.
  • Lambe J, Fitzgerald KC, Murphy OC, et al. Association of Spectral-Domain OCT With Long-term Disability Worsening in Multiple Sclerosis. Neurology 2021 Apr 20;96(16):e2058–e2069.
  • Spain RI, Liu L, Zhang X et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol. 2018;102:520–524.
  • Lanzillo R, Cennamo G, Criscuolo C, et al. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult Scler. 2018;24:1706–1714.
  • Higashiyama T, Nishida Y, Ohji M. Optical coherence tomography angiography in eyes with good visual acuity recovery after treatment for optic neuritis. PLoS One. 2017;12:e0172168.
  • Hardmeier M, Leocani L, Fuhr P. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler. 2017;23:1309–1319.
  • Behbehani R, Abu Al-Hassan A, Al-Salahat A, et al. Optical coherence tomography segmentation analysis in relapsing remitting versus progressive multiple sclerosis. PLoS One. 2017;12:e0172120.
  • Pihl-Jensen G, Schmidt MF, Frederiksen JL. Multifocal visual evoked potentials in optic neuritis and multiple sclerosis: a review. Clin Neurophysiol. 2017;128:1234–1245.
  • Klistorner A, Arvind H, Nguyen T, et al. Multifocal VEP and OCT in optic neuritis: a topographical study of the structure-function relationship. Doc Ophthalmol. 2009;118:129–137.
  • Beck RW, Cleary PA, Anderson MM Jr., et al. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med. 1992;326:581–588.
  • Beck RW, Trobe JD, Moke PS, et al. High- and low-risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: experience of the optic neuritis treatment trial. Arch Ophthalmol. 2003;121:944–949.
  • Optic Neuritis Study Group. Multiple sclerosis risk after optic neuritis: final optic neuritis treatment trial follow-up. Arch Neurol. 2008;65:727–732.
  • The Optic Neuritis Study G. Multiple Sclerosis Risk After Optic Neuritis: final Optic Neuritis Treatment Trial Follow-up. Arch Neurol. 2008;65:727–732.
  • Wingerchuk DM, Lennon VA, Lucchinetti CF, et al. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6:805–815.
  • Sato DK, Callegaro D, Lana-Peixoto MA, et al. Distinction between MOG antibody-positive and AQP4 antibody-positive NMO spectrum disorders. Neurology. 2014;82:474–481.
  • Bukhari W, Prain KM, Waters P, et al. Incidence and prevalence of NMOSD in Australia and New Zealand. J Neurol Neurosurg Psychiatry. 2017;88:632–638.
  • Kira J. Neuromyelitis optica and opticospinal multiple sclerosis: mechanisms and pathogenesis. Pathophysiology. 2011;18:69–79.
  • Wingerchuk DM. Evidence for humoral autoimmunity in neuromyelitis optica. Neurol Res. 2006;28:348–353.
  • Nicchia GP, Mastrototaro M, Rossi A, et al. Aquaporin-4 orthogonal arrays of particles are the target for neuromyelitis optica autoantibodies. Glia. 2009;57:1363–1373.
  • Chen JJ, Tobin WO, Majed M, et al. Prevalence of Myelin Oligodendrocyte Glycoprotein and Aquaporin-4-IgG in Patients in the Optic Neuritis Treatment Trial. JAMA Ophthalmol. 2018;136:419–422.
  • Matthews L, Enzinger C, Fazekas F, et al. MRI in Leber’s hereditary optic neuropathy: the relationship to multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86:537–542.
  • Bianco A, Bisceglia L, Trerotoli P, et al. Leber’s hereditary optic neuropathy (LHON) in an Apulian cohort of subjects. Acta Myol. 2017;36:163–177.
  • Zuccarelli M, Vella-Szijj J, Serracino-Inglott A, et al. Treatment of Leber’s hereditary optic neuropathy: an overview of recent developments. Eur J Ophthalmol. 2020;30:1220–1227.
  • Kampylafka EI, Alexopoulos H, Kosmidis ML, et al. Incidence and prevalence of major central nervous system involvement in systemic lupus erythematosus: a 3-year prospective study of 370 patients. PLoS One. 2013;8:e55843.
  • Shekhar S, Sonani H, Desai J, et al. Systemic Lupus Erythematosus Presenting With Severe Optic Disc Edema. Pediatr Neurol. 2018;84:53–54.
  • Kermani TA, Schäfer VS, Crowson CS, et al. Increase in age at onset of giant cell arteritis: a population-based study. Ann Rheum Dis. 2010;69:780–781.
  • Pawate S, Moses H, Sriram S. Presentations and outcomes of neurosarcoidosis: a study of 54 cases. Qjm. 2009;102:449–460.
  • Lee HJ, Kim B, Waters P, et al. Chronic relapsing inflammatory optic neuropathy (CRION): a manifestation of myelin oligodendrocyte glycoprotein antibodies. J Neuroinflammation. 2018;15:302.
  • Lazarewicz K, Watson P. Giant cell arteritis. Bmj. 2019;365:l1964.
  • Gonzalez-Gay MA, Vazquez-Rodriguez TR, Lopez-Diaz MJ, et al. Epidemiology of giant cell arteritis and polymyalgia rheumatica. Arthritis Rheum. 2009;61:1454–1461.
  • Chakrabarty A, Mackie S, Harden C, et al. Temporal artery biopsy: audit of histological diagnosis. Rheumatology (Oxford). 2020;59:678–679.
  • Sharma S, Ang M, Najjar RP, et al. Optical coherence tomography angiography in acute non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol. 2017;101:1045–1051.
  • Jouve L, Benrabah R, Héron E, et al. Multiple Sclerosis-related Uveitis: does MS Treatment Affect Uveitis Course? Ocul Immunol Inflamm. 2017;25:302–307.
  • Messenger W, Hildebrandt L, Mackensen F, et al. Characterisation of uveitis in association with multiple sclerosis. Br J Ophthalmol. 2015;99:205–209.
  • Petropoulos IN, Kamran S, Li Y, et al. Corneal Confocal Microscopy: an Imaging Endpoint for Axonal Degeneration in Multiple Sclerosis. Invest Ophthalmol Vis Sci. 2017;58:3677–3681.
  • Leigh RJ, Zee DS. The Neurology of Eye Movements. Oxford, UK: Oxford University Press; 2015.
  • Lekwuwa GU, Barnes GR. Cerebral control of eye movements. I. The relationship between cerebral lesion sites and smooth pursuit deficits. Brain. 1996;119(Pt 2)):473–490.
  • King WM. Binocular coordination of eye movements–Hering’s Law of equal innervation or uniocular control? Eur J Neurosci. 2011;33:2139–2146.
  • Frohman EM, Fujimoto JG, Frohman TC, et al. Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol. 2008;4:664–675.
  • Zee DS, Hain TC, Carl JR. Abduction nystagmus in internuclear ophthalmoplegia. Ann Neurol. 1987;21:383–388.
  • Nij Bijvank JA, van Rijn LJ, Kamminga M, et al. Saccadic fatigability in the oculomotor system. J Neurol Sci. 2019;402:167–174.
  • Hejtmancik JF. Ophthalmology: cataracts dissolved. Nature. 2015;523:540–541.
  • Zhou M, Bakri SJ, Pershing S. Risk factors for incident central serous retinopathy: case-control analysis of a US national managed care population. Br J Ophthalmol. 2019;103:1784–1788.
  • Heath G, Airody A, Gale RP. The Ocular Manifestations of Drugs Used to Treat Multiple Sclerosis. Drugs. 2017;77:303–311.
  • Kalincik T, Diouf I, Sharmin S, et al. Effect of Disease-Modifying Therapy on Disability in Relapsing-Remitting Multiple Sclerosis Over 15 Years. Neurology. 2021;96:e783–e797.
  • Savant V, Gillow T. Interferon-associated retinopathy. Eye (Lond). 2003;17:534–536.
  • Feroze KB, Wang J. Interferon Induced Retinopathy. In: tatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.; 2021.
  • Pelletier D, Hafler DA. Fingolimod for multiple sclerosis. N Engl J Med. 2012;366:339–347.
  • Schelenz D, Kleiter I, Schöllhammer J, et al. [Early onset of fingolimod-associated macular edema]. Ophthalmologe. 2018;115:424–428.
  • Coles AJ, Cohen JA, Fox EJ, et al. Alemtuzumab CARE-MS II 5-year follow-up: efficacy and safety findings. Neurology. 2017;89:1117–1126.
  • Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380:1829–1839.
  • Giovannoni G, Cohen JA, Coles AJ, et al. Alemtuzumab improves preexisting disability in active relapsing-remitting MS patients. Neurology. 2016;87:1985–1992.
  • Fox RJ, Rudick RA. Risk stratification and patient counseling for natalizumab in multiple sclerosis. Neurology. 2012;78:436–437.
  • Bozic C, Richman S, Plavina T, et al. Anti-John Cunnigham virus antibody prevalence in multiple sclerosis patients: baseline results of STRATIFY-1. Ann Neurol. 2011;70:742–750.
  • Weber T, Trebst C, Frye S, et al. Analysis of the systemic and intrathecal humoral immune response in progressive multifocal leukoencephalopathy. J Infect Dis. 1997;176:250–254.
  • Ryschkewitsch CF, Jensen PN, Monaco MC et al. JC virus persistence following progressive multifocal leukoencephalopathy in multiple sclerosis patients treated with natalizumab. Ann Neurol. 2010;68:384–391.
  • Mancinelli CR, Scarpazza C, Cordioli C, et al. Switching to ocrelizumab in RRMS patients at risk of PML previously treated with extended interval dosing of natalizumab. Mult Scler. 2021;27:790–794.
  • Clifford DB, De Luca A, Simpson DM, et al. Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol. 2010;9:438–446.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.