171
Views
2
CrossRef citations to date
0
Altmetric
Research

Anterior chamber depth measurement using Pentacam and Biograph in children

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 582-586 | Received 27 Nov 2019, Accepted 23 Jun 2021, Published online: 06 Sep 2021

References

  • Mutti DO, Mitchell GL, Jones LA, et al. Axial growth and changes in lenticular and corneal power during emmetropization in infants. Invest Ophthalmol Vis Sci. 2005;46:3074–3080.
  • Tsorbatzoglou A, Németh G, Széll N, et al. Anterior segment changes with age and during accommodation measured with partial coherence interferometry. J Cataract Refract Surg. 2007;33:1597–1601.
  • Langenbucher A, Huber S, Nguyen NX, et al. Measurement of accommodation after implantation of an accommodating posterior chamber intraocular lens. J Cataract Refract Surg. 2003;29:677–685.
  • Camellin M, Calossi A. A new formula for intraocular lens power calculation after refractive corneal surgery. J Refract Surg. 2006;22:187–199.
  • Alfonso JF, Fernández-Vega L, Lisa C, et al. Central vault after phakic intraocular lens implantation: correlation with anterior chamber depth, white-to-white distance, spherical equivalent, and patient age. J Cataract Refract Surg. 2012;38:46–53.
  • Saxena R, Boekhoorn SS, Mulder PG, et al. Long-term follow-up of endothelial cell change after Artisan phakic intraocular lens implantation. Ophthalmology. 2008;115(608–613):e601.
  • Devereux JG, Foster PJ, Baasanhu J, et al. Anterior chamber depth measurement as a screening tool for primary angle-closure glaucoma in an East Asian population. Arch Ophthalmol. 2000;118:257–263.
  • Barrett BT, McGraw PV, Murray LA, et al. Anterior chamber depth measurement in clinical practice. Optom Vis Sci. 1996;73:482–486.
  • Bueno-Gimeno I, Espana-Gregori E, Gené-Sampedro A, et al. Anterior chamber depth measurement in teenagers. Comparison of two techniques. J Optom. 2013;6:161–166.
  • Solomon OD. Corneal indentation during ultrasonic pachometry. Cornea. 1999;18:214–215.
  • Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85:472–485.
  • O’Donnell C, Hartwig A, Radhakrishnan H. Comparison of central corneal thickness and anterior chamber depth measured using LenStar LS900, Pentacam, and Visante AS-OCT. Cornea. 2012;31:983–988.
  • Bjeloš Rončević M, Bušić M, Cima I, et al. Comparison of optical low-coherence reflectometry and applanation ultrasound biometry on intraocular lens power calculation. Graefes Arch Clin Exp Ophthalmol. 2011;249:69–75.
  • Gursoy H, Sahin A, Basmak H, et al. Lenstar versus ultrasound for ocular biometry in a pediatric population. Optom Vis Sci. 2011;88:912–919.
  • Wilson ME, Trivedi RH. Axial length measurement techniques in pediatric eyes with cataract. Saudi J Ophthalmol. 2012;26:13–17.
  • Rabsilber TM, Khoramnia R, Auffarth GU. Anterior chamber measurements using Pentacam rotating Scheimpflug camera. J Cataract Refract Surg. 2006;32:456–459.
  • Elbaz U, Barkana Y, Gerber Y, et al. Comparison of different techniques of anterior chamber depth and keratometric measurements. Am J Ophthalmol. 2007;143:48–53.
  • Srivannaboon S, Chirapapaisan C, Chonpimai P, et al. Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg. 2015;41:2224–2232.
  • Wang Q., Ding X., Savini G., et al. Anterior chamber depth measurements using Scheimpflug imaging and optical coherence tomography: repeatability, reproducibility, and agreement. J Cataract Refract Surg. 2015;41:178–185.
  • Sen E, Inanc M, Elgin U, et al. Comparison of anterior segment measurements with LenStar and Pentacam in patients with newly diagnosed glaucoma. Int Ophthalmol. 2018;38:171–174.
  • Huang J, Pesudovs K, Wen D, et al. Comparison of anterior segment measurements with rotating Scheimpflug photography and partial coherence reflectometry. J Cataract Refract Surg. 2011;37:341–348.
  • Uçakhan O, Akbel V, Biyikli Z. Bıyıklı Z et al. Comparison of corneal curvature and anterior chamber depth measurements using the manual keratometer, Lenstar LS 900 and the Pentacam. Middle East Afr J Ophthalmol. 2013;20:201–206.
  • Domínguez-Vicent A, Pérez-Vives C, Ferrer-Blasco T, et al. Device interchangeability on anterior chamber depth and white-to-white measurements: a thorough literature review. Int J Ophthalmol. 2016;9:1057–1065.
  • Emamian MH, Hashemi H, Khabazkhoob M, et al. Cohort Profile: shahroud schoolchildren eye cohort study (SSCECS). Int J Epidemiol. 2019;48:27–27f.
  • Mapstone R, Clark CV. Diurnal variation in the dimensions of the anterior chamber. Arch Ophthalmol. 1985;103:1485–1486.
  • Holladay JT, Gills JP, Leidlein J, et al. Achieving emmetropia in extremely short eyes with two piggyback posterior chamber intraocular lenses. Ophthalmology. 1996;103:1118–1123.
  • Hosny M, Alio JL, Claramonte P, et al. Relationship between anterior chamber depth, refractive state, corneal diameter, and axial length. J Refract Surg. 2000;16:336–340.
  • Ning X, Yang Y, Yan H, et al. Anterior chamber depth - a predictor of refractive outcomes after age-related cataract surgery. BMC Ophthalmol. 2019;19:134.
  • Erickson P. Effects of intraocular lens position errors on postoperative refractive error. J Cataract Refract Surg. 1990;16:305–311.
  • Gür Güngör S, Akman A, Asena L, et al. Changes in anterior chamber depth after phacoemulsification in pseudoexfoliative eyes and their effect on accuracy of intraocular lens power calculation. Turk J Ophthalmol. 2016;46:255–258.
  • Engren AL, Behndig A. Anterior chamber depth, intraocular lens position, and refractive outcomes after cataract surgery. J Cataract Refract Surg. 2013;39:572–577.
  • Cheung SW, Chan R, Cheng RC, et al. Effect of cycloplegia on axial length and anterior chamber depth measurements in children. Clin Exp Optom. 2009;92:476–481.
  • Malyugin BE, Shpak AA, Pokrovskiy DF. Accommodative changes in anterior chamber depth in patients with high myopia. J Cataract Refract Surg. 2012;38:1403–1407.
  • Domínguez-Vicent A, Monsálvez-Romín D, Del Águila-Carrasco AJ, et al. Changes in the anterior chamber during accommodation assessed with a Scheimpflug system. J Cataract Refract Surg. 2014;40:1790–1797.
  • Ni Y, Liu XL, Wu MX, et al. Objective evaluation of the changes in the crystalline lens during accommodation in young and presbyopic populations using Pentacam HR system. Int J Ophthalmol. 2011;4:611–615.
  • Huang J, McAlinden C, Su B, et al. The effect of cycloplegia on the lenstar and the IOLMaster biometry. Optom Vis Sci. 2012;89:1691–1696.
  • Alderson A, Davies LN, Mallen EA, et al. A method for profiling biometric changes during disaccommodation. Optom Vis Sci. 2012;89:E738–748.
  • Hashemi H, Yekta A, Heydarian S, et al. Heritability of anterior chamber indices in rural population. J Glaucoma. 2018;27:1165–1168.
  • Onay MP, Eǧilmez S, Üretmen Ö, et al. Evaluation of cornea and anterior chamber using pentacam in pediatric cases. Turk Ophthamol Soc. 2011;41:133–137.
  • Wang J, He X, Xiong S, et al. Distribution of anterior chamber parameters in normal chinese children and the associated factors. J Glaucoma. 2018;27:357–363.
  • Jin P, Li M, He X, et al. Anterior-chamber angle and axial length measurements in normal chinese children. J Glaucoma. 2016;25:692–697.
  • Orucoglu F, Akman M, Onal S. Analysis of age, refractive error and gender related changes of the cornea and the anterior segment of the eye with Scheimpflug imaging. Cont Lens Ant Eye. 2015;38:345–350.
  • Hashemi H, Khabazkhoob M, Mohazzab-Torabi S, et al. Anterior chamber angle and anterior chamber volume in a 40- to 64-year-old population. Eye Cont Lens. 2016;42:244–249.
  • Dogan M, Elgin U, Sen E, et al. Comparison of anterior segment parameters and axial lengths of myopic, emmetropic, and hyperopic children. Int Ophthalmol. 2019;39:335–340.
  • Yekta A, Fotouhi A, Hashemi H, et al. Relationship between refractive errors and ocular biometry components in carpet weavers. 2010.
  • Queirós A, González-Méijome J, Jorge J. Influence of fogging lenses and cycloplegia on open-field automatic refraction. Ophthal Phys Optics. 2008;28:387–392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.