871
Views
8
CrossRef citations to date
0
Altmetric
Review

Retinal imaging biomarkers of neurodegenerative diseases

, , , , , , & show all
Pages 194-204 | Received 07 Jul 2021, Accepted 20 Sep 2021, Published online: 09 Nov 2021

References

  • Dementia. Accessed May 7, 2021. https://www.who.int/news-room/fact-sheets/detail/dementia
  • Dorsey ER, Sherer T, Okun MS, et al. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis 2018; 8: S3.
  • Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler J 2020; 26: 1816–1821.
  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 2017; 9: a028035.
  • Snyder PJ, Alber J, Alt C, et al. Retinal imaging in Alzheimer’s and neurodegenerative diseases. Alzheimer’s Dement 2021; 17: 103–111.
  • Koronyo-Hamaoui M, Koronyo Y, Ljubimov A V., et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. Neuroimage 2011; 54: S204–S217.
  • Kashani AH, Asanad S, and Ch, et al. Past, present and future role of retinal imaging in neurodegenerative disease. Prog Retin Eye Res Published online January 15 2021; 83:100938.
  • Seung HS, Sümbül U. Neuronal cell types and connectivity: lessons from the retina. Neuron. 2014; 83: 1262–1272.
  • Pelak VS, Hall DA. Neuro-ophthalmic manifestations of neurodegenerative disease. Ophthalmol Clin North Am. 2004; 17: 311–320.
  • Patel SN, Shi A, Wibbelsman TD, et al. Ultra-widefield retinal imaging: an update on recent advances. Ther Adv Ophthalmol. 2020; 12: 2515841419899495.
  • Garg AK, Knight D, Lando L, et al. Advances in retinal oximetry. Transl Vis Sci Technol. 2021; 10: 1–18.
  • Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991; 254: 1178–1181.
  • Leitgeb R, Hitzenberger C, Fercher A. Performance of Fourier domain vs time domain optical coherence tomography. Opt Express. 2003; 11: 889.
  • McCabe JM, Croce KJ. Optical coherence tomography. Circulation. 2012; 126: 2140–2143.
  • De Carlo TE, Romano A, Waheed NK, et al. A review of optical coherence tomography angiography (OCTA). Int J Retin Vitr. 2015; 1: 5.
  • Rocholz R, Corvi F, and Weichsel J, et al. OCT Angiography (OCTA) in Retinal Diagnostics. In: JF. Bille, (Ed.), High resolution imaging in microscopy and ophthalmology. Springer International Publishing; 2019. p. 135–160.
  • Dysli C, Wolf S, Berezin MY, et al. Fluorescence lifetime imaging ophthalmoscopy. Prog Retin Eye Res. 2017; 60: 120–143.
  • Sauer L. Review of clinical approaches in fluorescence lifetime imaging ophthalmoscopy. J Biomed Opt. 2018; 23: 1.
  • Sauer L, Vitale AS, Modersitzki NK, et al. Fluorescence lifetime imaging ophthalmoscopy: autofluorescence imaging and beyond. Eye. 2021; 35(1): 93–109.
  • Hadoux X, Hui F, Lim JKH, et al. Non-invasive in vivo hyperspectral imaging of the retina for potential biomarker use in Alzheimer’s disease. Nat Commun. 2019; 10: 1.
  • Lemmens S, Van Eijgen J, Van Keer K, et al. Hyperspectral imaging and the retina: worth the wave? Transl Vis Sci Technol. 2020; 9: 1–17.
  • Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18: 459–480.
  • Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement. 2020; 16: 391–460. https://doi.org/https://doi.org/10.1002/alz.12068
  • Alzheimer’s Association. 2021 Alzheimer’s disease facts and figures. Alzheimers Dement. 2021; 17(3): 327–406. doi:https://doi.org/10.1002/alz.12328.
  • The Shimada H. DIAN study. Brain Nerve. 2013; 65: 1179–1184.
  • Masters CL, Bateman R, Blennow K, et al. Alzheimer’s disease. Nat Rev Dis Prim. 2015; 1: 1–18.
  • Jack CR, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011; 7: 257–262.
  • Mucke L. Neuroscience: alzheimer’s disease. Nature. 2009; 461: 895–897.
  • Rabinovici GD, Rosen HJ, Alkalay A, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2011; 77: 2034–2042.
  • Wittenberg R, Knapp M, Karagiannidou M, et al. Economic impacts of introducing diagnostics for mild cognitive impairment Alzheimer’s disease patients. Alzheimer’s Dement Transl Res Clin Interv. 2019; 5: 382–387.
  • Claveau JS, Presse N, Kergoat MJ, et al. The lost years: delay between the onset of cognitive symptoms and clinical assessment at a memory clinic. Can Geriatr J. 2018; 21: 152–156.
  • Liss JL, Seleri Assunção S, Cummings J, et al. Practical recommendations for timely, accurate diagnosis of symptomatic Alzheimer’s disease (MCI and dementia) in primary care: a review and synthesis. J Intern Med. 2021; 290: 310–334. Published online.
  • Cummings JL, Doody R, Clark C. Disease-modifying therapies for Alzheimer disease: challenges to early intervention. Neurology. 2007; 69: 1622–1634.
  • Cummings J, Ritter A, Zhong K. Clinical trials for disease-modifying therapies in Alzheimer’s disease: a primer, lessons learned, and a blueprint for the future. J Alzheimer’s Dis. 2018; 64: S3–S22.
  • Chiasseu M, Alarcon-Martinez L, Belforte N, et al. Tau accumulation in the retina promotes early neuronal dysfunction and precedes brain pathology in a mouse model of Alzheimer’s disease. Mol Neurodegener. 2017; 12: 1–20.
  • den Haan J, Morrema THJ, Verbraak FD, et al. Amyloid-beta and phosphorylated tau in post-mortem Alzheimer’s disease retinas. Acta Neuropathol Commun. 2018; 6: 147.
  • Koronyo Y, Biggs D, Barron E, et al. Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer’s disease. JCI Insight. 2017; 2: 16.
  • Vandenabeele M, Veys L, Lemmens S, et al. The App NL-G-F mouse retina is a site for preclinical Alzheimer’s disease diagnosis and research. Acta Neuropathol Commun. 2021; 9: 1–16.
  • Lim JKH, Li QX, He Z, et al. Retinal functional and structural changes in the 5xFAD mouse model of Alzheimer’s disease. Front Neurosci. 2020; 14: 862.
  • Salobrar-García E, de Hoz R, Ramírez AI, et al. Changes in visual function and retinal structure in the progression of Alzheimer’s disease. PLoS One. 2019; 14: e0220535. Barnes S, ed.
  • McGrory S, Cameron JR, Pellegrini E, et al. The application of retinal fundus camera imaging in dementia: a systematic review. Alzheimer’s Dement. 2017; 6: 91–107.
  • Czakó C, Kovács T, Ungvari Z, et al. Retinal biomarkers for Alzheimer’s disease and vascular cognitive impairment and dementia (VCID): implication for early diagnosis and prognosis. GeroScience. 2020; 42: 1499–1525.doi:https://doi.org/10.1002/dad2.13452
  • Alber J, Goldfarb D, Thompson LI, et al. Developing retinal biomarkers for the earliest stages of Alzheimer’s disease: what we know, what we don’t, and how to move forward. Alzheimer’s Dement. 2020; 16: 229–243.
  • Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol. 2011; 70: 871–880.
  • Van der Flier WM, Skoog I, Schneider JA, et al. Vascular cognitive impairment. Nat Rev Dis Prim. 2018; 4: 18003.
  • Cheung CYL, Ong YT, Ikram MK, et al. Microvascular network alterations in the retina of patients with Alzheimer’s disease. Alzheimer’s Dement. 2014; 10: 135–142.
  • Lemmens S, Devulder A, Van Keer K, et al. Systematic review on fractal dimension of the retinal vasculature in neurodegeneration and stroke: assessment of a potential biomarker. Front Neurosci. 2020; 14: 16.
  • Frost S, Kanagasingam Y, Sohrabi H, et al. Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl Psychiatry. 2013; 3: 2.
  • Ong Y-T, Hilal S, Cheung CY, et al. Retinal vascular fractals and cognitive impairment. Dement Geriatr Cogn Dis Extra. 2014; 4: 305–313.
  • Cheung CYL, Ong S, Ikram MK, et al. Retinal vascular fractal dimension is associated with cognitive dysfunction. J Stroke Cerebrovasc Dis. 2014; 23: 43–50.
  • Hilal S, Ong YT, Cheung CY, et al. Microvascular network alterations in retina of subjects with cerebral small vessel disease. Neurosci Lett. 2014; 577: 95–100.
  • Williams MA, McGowan AJ, Cardwell CR, et al. Retinal microvascular network attenuation in Alzheimer’s disease. Alzheimer’s Dement. 2015; 1: 229–235.
  • Shi H, Koronyo Y, Rentsendorj A, et al. Identification of early pericyte loss and vascular amyloidosis in Alzheimer’s disease retina. Acta Neuropathol. 2020; 139: 813–836.
  • Einarsdottir AB, Hardarson SH, Kristjansdottir JV, et al. Retinal oximetry imaging in Alzheimer’s disease. J Alzheimer’s Dis. 2015; 49: 79–83.
  • Olafsdottir OB, Saevarsdottir HS, Hardarson SH, et al. Retinal oxygen metabolism in patients with mild cognitive impairment. Alzheimer’s Dement. 2018; 10: 340–345.
  • Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008; 49: 390–398.
  • Perani D, Della Rosa PA, Cerami C, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. NeuroImage Clin. 2014; 6: 445–454.
  • Thal DR, Griffin W. Sue T., de Vos Rob A. I, et al. Cerebral amyloid angiopathy and its relationship to Alzheimer’s disease. Acta Neuropathol. 2008;115:599–609.
  • Berisha F, Feke GT, Trempe CL, et al. Retinal abnormalities in early Alzheimer’s disease. Investig Ophthalmol Vis Sci. 2007; 48: 2285–2289.
  • Feke GT, Hyman BT, Stern RA, et al. Retinal blood flow in mild cognitive impairment and Alzheimer’s disease. Alzheimer’s Dement. 2015; 1: 144–151.
  • Hinton DR, Sadun AA, Blanks JC, et al. Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med. 1986; 315(8): 485–487.
  • Coppola G, Di Renzo A, Ziccardi L, et al. Optical coherence tomography in Alzheimer’s disease: a meta-analysis. PLoS One. 2015; 10: 8.
  • Chan VTT, Sun Z, Tang S, et al. Spectral-domain OCT measurements in Alzheimer’s disease: a systematic review and meta-analysis. Ophthalmology. 2019; 126: 497–510.
  • Sadun AA, Bassi CJ. Optic nerve damage in Alzheimer’s disease. Ophthalmology. 1990; 97: 9–17.
  • den Haan J, Verbraak FD, Visser PJ, et al. Retinal thickness in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimer’s Dement. 2017; 6: 162–170.
  • Cunha LP, Lopes LC, Costa-Cunha LVF, et al. Macular thickness measurements with frequency domain-oct for quantification of retinal neural loss and its correlation with cognitive impairment in Alzheimer?S disease. PLoS One. 2016; 11: e0153830.
  • Iseri PK, Altinaş Ö, Tokay T, et al. Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuro-Ophthalmol. 2006; 26: 18–24.
  • Ko F, Muthy ZA, Gallacher J, et al. Association of retinal nerve fiber layer thinning with current and future cognitive decline: a study using optical coherence tomography. JAMA Neurol. 2018; 75: 1198–1205.
  • Cabrera Debuc D, Gaca-Wysocka M, Grzybowski A, et al. Identification of retinal biomarkers in Alzheimer’s disease using optical coherence tomography: recent insights, challenges, and opportunities. J Clin Med. 2019; 8: 996.
  • Lemmens S, Van Craenendonck T, and Van Eijgen J, et al. Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer’s disease patients. Alzheimer’s Res Ther. 2020; 12(1):144. doi:https://doi.org/10.1186/s13195-020-00715-1
  • Zhang J-F, Wiseman S, Valdés-Hernández MC, et al. The application of optical coherence tomography angiography in cerebral small vessel disease, ischemic stroke, and dementia: a systematic review. Front Neurol. 2020; 11: 1009.
  • Song A, Johnson N, Ayala A, et al. Optical coherence tomography in patients with Alzheimer’s disease: what can it tell us? Eye Brain. 2021; 13: 1–20.doi:https://doi.org/10.1133/dad2.12149
  • Rifai OM, McGrory S, and Robbins CB, et al. The application of optical coherence tomography angiography in Alzheimer’s disease: a systematic review. Alzheimer’s Dement. 2021; 13(1):e12149. doi:https://doi.org/10.1002/dad2.12149.
  • Bulut M, Kurtuluş F, Gözkaya O, et al. Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol. 2018; 102: 233–237.
  • Jentsch S, Schweitzer D, Schmidtke KU, et al. Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer’s disease. Acta Ophthalmol. 2015; 93: e241–e247.
  • Sadda SVR, Borrelli E, Fan W, et al. A pilot study of fluorescence lifetime imaging ophthalmoscopy in preclinical Alzheimer’s disease. Eye. 2019; 33: 1271–1279.
  • More SS, Vince R. Hyperspectral imaging signatures detect amyloidopathy in Alzheimer's mouse retina well before onset of cognitive decline. ACS Chem Neurosci. 2015; 6: 306–315.
  • More SS, Beach JM, Vince R. Early detection of amyloidopathy in Alzheimer’s mice by hyperspectral endoscopy. Investig Ophthalmol Vis Sci. 2016; 57: 3231–3238.doi:https://doi.org/10.1002/dadm3.12149
  • Lim JKH, Li QX, and Ryan T, et al. Retinal hyperspectral imaging in the 5xFAD mouse model of Alzheimer’s disease. Sci Rep. 2021;11(1):6387. doi:https://doi.org/10.1038/s41598-021-85554-2.
  • More SS, Beach JM, McClelland C, et al. In vivo assessment of retinal biomarkers by hyperspectral imaging: early detection of Alzheimer’s disease. ACS Chem Neurosci. 2019; 10: 4492–4501.
  • Moinuddin O, Khandwala NS, Young KZ, et al. The role of optical coherence tomography in identifying retinal biomarkers in FTD: a review. Neurol Clin Pract. 2021 January 25;11: e516–e523. Published online.
  • Snowden JS, Neary D, Mann DMA. Frontotemporal dementia. Br J Psychiatry. 2002; 180: 140–143.
  • Kim BJ, Irwin DJ, Song D, et al. Optical coherence tomography identifies outer retina thinning in frontotemporal degeneration. Neurology. 2017; 89: 1604–1611.
  • Harrison IF, Whitaker R, Bertelli PM, et al. Optic nerve thinning and neurosensory retinal degeneration in the rTg4510 mouse model of frontotemporal dementia. Acta Neuropathol Commun. 2019; 7: 4.
  • Ferrari L, Huang SC, Magnani G, et al. Optical coherence tomography reveals retinal neuroaxonal thinning in frontotemporal dementia as in Alzheimer’s disease. J Alzheimer’s Dis. 2017; 56: 1101–1107.
  • Leger F, Fernagut PO, Canron MH, et al. Protein aggregation in the aging retina. J Neuropathol Exp Neurol. 2011; 70: 63–68.
  • Kim BJ, Grossman M, Song D, et al. Persistent and progressive outer retina thinning in frontotemporal degeneration. Front Neurosci. 2019; 13: 298.
  • Kersten HM, Ryan B, Brickell KL, et al. The New Zealand genetic frontotemporal dementia study (FTDGeNZ): baseline retinal characteristics. Invest Ophthalmol Vis Sci. 2019; 60: 2292.doi:https://doi.org/10.1345/dad2.12149
  • Young KZ, Moinuddin O, and Khandwala N, et al. Exploring retinal imaging as a novel biomarker of Alzheimer’s disease. Alzheimer’s Dement. 2020; 16(Suppl.4):e044895. doi:https://doi.org/10.1002/alz.044895
  • Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003; 39: 889–909.
  • Betarbet R, Sherer TB, Di DA, et al. Mechanistic approaches to Parkinson’s disease pathogenesis. Brain Pathol. 2006; 12: 499–510.
  • Galvin JE, Pollack J, Morris JC. Clinical phenotype of Parkinson disease dementia. Neurology. 2006; 67: 1605–1611.
  • Sabbagh MN, Adler CH, Lahti TJ, et al. Parkinson disease with dementia: comparing patients with and without Alzheimer pathology. Alzheimer Dis Assoc Disord. 2009; 23: 295–297.
  • Armstrong RA. Oculo-visual dysfunction in Parkinson’s disease. J Parkinsons Dis. 2015; 5: 715–726.
  • Guo L, Normando EM, Shah PA, et al. Oculo-visual abnormalities in Parkinson’s disease: possible value as biomarkers. Mov Disord. 2018; 33: 1390–1406.
  • Archibald NK, Clarke MP, Mosimann UP, et al. Visual symptoms in Parkinson’s disease and Parkinson’s disease dementia. Mov Disord. 2011;26: 2387–2395.
  • Bodis-Wollner I. Foveal vision is impaired in Parkinson’s disease. Park Relat Disord. 2013; 19: 1–14.
  • Weil RS, Schrag AE, Warren JD, et al. Visual dysfunction in Parkinson’s disease. Brain. 2016; 139: 2827–2843.
  • Beach TG, Carew J, Serrano G, et al. Phosphorylated α-synuclein-immunoreactive retinal neuronal elements in Parkinson’s disease subjects. Neurosci Lett. 2014; 571: 34–38.
  • Ortuño-Lizarán I, Beach TG, Serrano GE, et al. Phosphorylated α-synuclein in the retina is a biomarker of Parkinson’s disease pathology severity. Mov Disord. 2018; 33: 1315–1324.
  • Veys L, Vandenabeele M, Ortuño-Lizarán I, et al. Retinal α-synuclein deposits in Parkinson’s disease patients and animal models. Acta Neuropathol. 2019; 137: 379–395.
  • Yu JG, Feng YF, Xiang Y, et al. Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One. 2014; 9: e85718.
  • Zhou WC, Tao JX, Li J. Optical coherence tomography measurements as potential imaging biomarkers for Parkinson’s disease: a systematic review and meta-analysis. Eur J Neurol. 2021; 28: 763–774.
  • Huang L, Wang C, Wang W, et al. The specific pattern of retinal nerve fiber layer thinning in Parkinson’s disease: a systematic review and meta-analysis. J Neurol. 2020; 1: 3.
  • Huang L, Zhang D, Ji J, et al. Central retina changes in Parkinson’s disease: a systematic review and meta-analysis. J Neurol. 2020; 1: 3.
  • La Morgia C, Barboni P, Rizzo G, et al. Loss of temporal retinal nerve fibers in Parkinson disease: a mitochondrial pattern? Eur J Neurol. 2013; 20: 198–201.
  • Inzelberg R, Ramirez JA, Nisipeanu P, et al. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res. 2004; 44: 2793–2797.
  • Hajee ME, March WF, Lazzaro DR, et al. Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol. 2009; 127: 737–741.
  • Cubo E, Tedejo RP, Rodriguez Mendez V, et al. Retina thickness in Parkinson’s disease and essential tremor. Mov Disord. 2010; 25: 2461–2462.
  • Altintaş Ö, Işeri P, Özkan B, et al. Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol. 2008; 116: 137–146.
  • Moreno-Ramos T, Benito-León J, Villarejo A, et al. Retinal nerve fiber layer thinning in dementia associated with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. J Alzheimer’s Dis. 2013; 34: 659–664.
  • Zou J, Liu K, Li F, et al. Combination of optical coherence tomography (OCT) and OCT angiography increases diagnostic efficacy of Parkinson’s disease. Quant Imaging Med Surg. 2020; 10: 1930–1939.
  • Robbins CB, Thompson AC, Bhullar PK, et al. Characterization of retinal microvascular and choroidal structural changes in Parkinson Disease. JAMA Ophthalmol. 2021; 139: 182–188. American Medical Association.
  • Kane JPM, Surendranathan A, Bentley A, et al. Clinical prevalence of Lewy body dementia. Alzheimer’s Res Ther. 2018; 10: 1–8.
  • Jones SAV, O’Brien JT. The prevalence and incidence of dementia with Lewy bodies: a systematic review of population and clinical studies. Psychol Med. 2014; 44: 673–683.
  • Irwin D. J., Hurtig H. I, The contribution of Tau, Amyloid-Beta and Alpha-Synuclein pathology to dementia in Lewy body disorders. J Alzheimer’s Dis Park. 2018. 8(04)
  • Meeus B, Theuns J, Van Broeckhoven C. The genetics of dementia with Lewy bodies: what are we missing? Arch Neurol. 2012; 69: 1113–1118.
  • Chia R, Sabir MS, Bandres-Ciga S, et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet. 2021; 53: 294–303.doi:https://doi.org/10.1002/dad2.16783
  • Price DL, Rockenstein E, and Mante M, et al. Longitudinal live imaging of retinal α-synuclein:: GFPdeposits in a transgenic mouse model of Parkinson’s disease/dementia with Lewy bodies. Sci Rep. 2016; 6:29523. doi:https://doi.org/10.1002/dad2.12149.
  • Vonsattel JP, Myers RH, Stevens TJ, et al. Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol. 1985; 44: 559–577.
  • Horvath S, Langfelder P, Kwak S, et al. Huntington’s disease accelerates epigenetic aging of human brain and disrupts DNA methylation levels. Aging (Albany NY). 2016; 8: 1485–1512.
  • Helmlinger D, Yvert G, Picaud S, et al. Progressive retinal degeneration and dysfunction in R6 Huntington’s disease mice. Hum Mol Genet. 2002; 11: 3351–3359.
  • Batcha AH, Greferath U, Jobling AI, et al. Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodelling in the R6/1 mouse model of Huntington’s disease. Neurobiol Dis. 2012; 45: 887–896.
  • Lin CY, Hsu YH, Lin MH, et al. Neurovascular abnormalities in humans and mice with Huntington’s disease. Exp Neurol. 2013; 250: 20–30.
  • Kersten HM, Danesh-Meyer H V., Kilfoyle DH, et al. Optical coherence tomography findings in Huntington’s disease: a potential biomarker of disease progression. J Neurol. 2015; 262: 2457–2465.
  • Gatto E, Parisi V, Persi G, et al. Optical coherence tomography (OCT) study in Argentinean Huntington’s disease patients. Int J Neurosci. 2018; 128: 1157–1162.
  • Gulmez Sevim D, Unlu M, Gultekin M, et al. Retinal single-layer analysis with optical coherence tomography shows inner retinal layer thinning in Huntington’s disease as a potential biomarker. Int Ophthalmol. 2019; 39: 611–621.
  • Andrade C, Beato J, Monteiro A, et al. Spectral-domain optical coherence tomography as a potential biomarker in Huntington’s disease. Mov Disord. 2016; 31: 377–383.
  • Di Maio LG, Montorio D, Peluso S, et al. Optical coherence tomography angiography findings in Huntington’s disease. Neurol Sci. 2021; 42: 995–1001.
  • Simpson S, Blizzard L, Otahal P, et al. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011; 82: 1132–1141.
  • Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N Engl J Med. 2018; 378: 169–180. Longo DL, ed.
  • Compston A, Coles A. Multiple sclerosis. Lancet. 2008; 372: 1502–1517.
  • McDonald WI, Compston A, Edan G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001; 50: 121–127.
  • Jakob E, Reuland MS, Mackensen F, et al. Uveitis subtypes in a German interdisciplinary uveitis center - Analysis of 1916 patients. J Rheumatol. 2009; 36: 127–136.
  • Shugaiv E, Tüzün E, Kürtüncü M, et al. Uveitis as a prognostic factor in multiple sclerosis. Mult Scler J. 2015; 21: 105–107.
  • Birch MK, Barbosa S, Blumhardt LD, et al. Retinal venous sheathing and the blood-retinal barrier in multiple sclerosis. Arch Ophthalmol. 1996; 114: 34–39.
  • Einarsdottir AB, Olafsdottir OB, Hjaltason H, et al. Retinal oximetry is affected in multiple sclerosis. Acta Ophthalmol. 2018; 96: 528–530.
  • Svrčinová T, Mareš J, Chrapek O, et al. Changes in oxygen saturation and the retinal nerve fibre layer in patients with optic neuritis – a pilot study. Acta Ophthalmol. 2018; 96: e309–e314.
  • Svrčinová T, Hok P, Šínová I, et al. Changes in oxygen saturation and the retinal nerve fibre layer in patients with optic neuritis associated with multiple sclerosis in a 6-month follow-up. Acta Ophthalmol. 2020; 98: 841–847.
  • Saidha S, Syc SB, Durbin MK, et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler J. 2011; 17: 1449–1463.
  • Walter SD, Ishikawa H, Galetta KM, et al. Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology. 2012; 119: 1250–1257.
  • Petzold A, Balcer L, Calabresi PA, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2017; 16: 797–812.
  • Gelfand JM, Nolan R, Schwartz DM, et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain. 2012; 135: 1786–1793.
  • Lambe J, Saidha S, Bermel RA. Optical coherence tomography and multiple sclerosis: update on clinical application and role in clinical trials. Mult Scler J. 2020; 26: 624–639.
  • D’Haeseleer M, Hostenbach S, Peeters I, et al. Cerebral hypoperfusion: a new pathophysiologic concept in multiple sclerosis? J Cereb Blood Flow Metab. 2015; 35: 1406–1410.
  • Juurlink BHJ. The evidence for hypoperfusion as a factor in multiple sclerosis lesion development. Mult Scler Int. 2013; 2013: 1–6.
  • Kleerekooper I, Houston S, Dubis AM, et al. Optical Coherence Tomography Angiography (OCTA) in multiple sclerosis and neuromyelitis optica spectrum disorder. Front Neurol. 2020; 11: 604049.
  • Murphy OC, Kwakyi O, Iftikhar M, et al. Alterations in the retinal vasculature occur in multiple sclerosis and exhibit novel correlations with disability and visual function measures. Mult Scler J. 2020; 26: 815–828.
  • Rogaczewska M, Michalak S, Stopa M. Differentiation between multiple sclerosis and neuromyelitis optica spectrum disorder using optical coherence tomography angiography. Sci Rep. 2021; 11: 10697.
  • Cennamo G, Carotenuto A, Montorio D, et al. Peripapillary vessel density as early biomarker in multiple sclerosis. Front Neurol. 2020; 11: 542.
  • Spain R I., Liu L, Zhang X, et al. Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br J Ophthalmol. 2018; 102: 520–524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.