183
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Intraocular pressure variation from ocular compression in low and high myopia

ORCID Icon & ORCID Icon
Pages 213-218 | Received 11 Nov 2022, Accepted 10 Mar 2023, Published online: 28 Mar 2023

References

  • Marcus MW, de Vries MM, Junoy Montolio FG et al. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology 2011; 118: 1989–1994.e 1982. doi:10.1016/j.ophtha.2011.03.012.
  • Chon B, Qiu M, Lin SC. Myopia and glaucoma in the South Korean population. Invest Ophthalmol Vis Sci 2013; 54: 6570–6577. doi:10.1167/iovs.13-12173.
  • Shen L, Melles RB, Metlapally R et al. The association of refractive error with glaucoma in a multiethnic population. Ophthalmology 2016; 123: 92–101. doi:10.1016/j.ophtha.2015.07.002.
  • Quigley HA, Addicks EM, Green WR et al. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol 1981; 99: 635–649. doi:10.1001/archopht.1981.03930010635009.
  • Hernandez MR, Ye H. Glaucoma: changes in extracellular matrix in the optic nerve head. Ann Med 1993; 25: 309–315. doi:10.3109/07853899309147290.
  • Tun TA, Thakku SG, Png O et al. Shape changes of the anterior lamina cribrosa in normal, ocular hypertensive, and glaucomatous eyes following acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 2016; 57: 4869–4877. doi:10.1167/iovs.16-19753.
  • Beotra MR, Wang X, Tun TA et al. In vivo three-dimensional lamina cribrosa strains in healthy, ocular hypertensive, and glaucoma eyes following acute intraocular pressure elevation. Invest Ophthalmol Vis Sci 2018; 59: 260–272. doi:10.1167/iovs.17-21982.
  • Tun TA, Atalay E, Baskaran M et al. Association of functional loss with the biomechanical response of the optic nerve head to acute transient intraocular pressure elevations. JAMA Ophthalmol 2018; 136: 184–192. doi:10.1001/jamaophthalmol.2017.6111.
  • Zhang L, Beotra MR, Baskaran M et al. In vivo measurements of prelamina and lamina cribrosa biomechanical properties in humans. Invest Ophthalmol Vis Sci 2020; 61: 27. doi:10.1167/iovs.61.3.27.
  • Chen W, Hu T, Xu Q et al. Acute effects of intraocular pressure-induced changes in Schlemm’s canal morphology on outflow facility in healthy human eyes. Invest Ophthalmol Vis Sci 2020; 61: 36. doi:10.1167/iovs.61.8.36.
  • Shoji T, Kuroda H, Suzuki M et al. Correlation between lamina cribrosa tilt angles, myopia and glaucoma using OCT with a wide bandwidth femtosecond mode-locked laser. PLoS One 2014; 9: e116305. doi:10.1371/journal.pone.0116305.
  • Lam DS, Leung DY, Chiu TY et al. Pressure phosphene self-tonometry: a comparison with goldmann tonometry in glaucoma patients. Invest Ophthalmol Vis Sci 2004; 45: 3131–3136. doi:10.1167/iovs.04-0115.
  • Kagemann L, Wang B, Wollstein G et al. IOP elevation reduces Schlemm’s canal cross-sectional area. Invest Ophthalmol Vis Sci 2014; 55: 1805–1809. doi:10.1167/iovs.13-13264.
  • Bedggood P, Tanabe F, McKendrick AM et al. Optic nerve tissue displacement during mild intraocular pressure elevation: its relationship to central corneal thickness and corneal hysteresis. Ophthalmic Physiol Opt 2018; 38: 389–399. doi:10.1111/opo.12568.
  • Chen Z, Song Y, Li M et al. Schlemm’s canal and trabecular meshwork morphology in high myopia. Ophthalmic Physiol Opt 2018; 38: 266–272. doi:10.1111/opo.12451.
  • Qi J, He W, Lu Q et al. Schlemm canal and trabecular meshwork features in highly myopic eyes with early intraocular pressure elevation after cataract surgery. Am J Ophthalmol 2020; 216: 193–200. doi:10.1016/j.ajo.2020.02.005.
  • Johnstone M, Martin E, Jamil A. Pulsatile flow into the aqueous veins: manifestations in normal and glaucomatous eyes. Exp Eye Res 2011; 92: 318–327. doi:10.1016/j.exer.2011.03.011.
  • Johnstone MA. Intraocular pressure regulation: findings of pulse-dependent trabecular meshwork motion lead to unifying concepts of intraocular pressure homeostasis. J Ocul Pharmacol Ther 2014; 30: 88–93. doi:10.1089/jop.2013.0224.
  • Iwase T, Akahori T, Yamamoto K et al. Evaluation of optic nerve head blood flow in response to increase of intraocular pressure. Sci Rep 2018; 8: 17235. doi:10.1038/s41598-018-35683-y.
  • Choquet H, Khawaja AP, Jiang C et al. Association between myopic refractive error and primary open-angle glaucoma: a 2-sample Mendelian randomization study. JAMA Ophthalmol 2022. doi:10.1001/jamaophthalmol.2022.2762.
  • Brubaker RF. Goldmann’s equation and clinical measures of aqueous dynamics. Exp Eye Res 2004; 78: 633–637. doi:10.1016/j.exer.2003.07.002.
  • Brubaker RF. Flow of aqueous humor in humans [The Friedenwald Lecture]. Invest Ophthalmol Vis Sci 1991; 32: 3145–3166.
  • Danesh-Meyer HV. The water-drinking test: the elegance of simplicity. Clin Exp Ophthalmol 2008; 36: 301–303. doi:10.1111/j.1442-9071.2008.01782.x.
  • Brubaker RF, McLaren JW. Uses of fluorophotometry in glaucoma research. Ophthalmology 1985; 92: 884–890. doi:10.1016/S0161-6420(85)33939-8.
  • Hayashi M, Yablonski ME, Novack GD. Trabecular outflow facility determined by fluorophotometry in human subjects. Exp Eye Res 1989; 48: 621–625. doi:10.1016/0014-4835(89)90004-3.
  • Guo T, Sampathkumar S, Fan S et al. Aqueous humour dynamics and biometrics in the ageing Chinese eye. Br J Ophthalmol 2017; 101: 1290–1296. doi:10.1136/bjophthalmol-2016-309883.
  • Alaghband P, Galvis E, Ramirez A et al. The effect of high-intensity focused ultrasound on aqueous humor dynamics in patients with glaucoma. Ophthalmol Glaucoma 2020; 3: 122–129. doi:10.1016/j.ogla.2019.12.002.
  • Karyotakis NG, Ginis HS, Dastiridou AI et al. Manometric measurement of the outflow facility in the living human eye and its dependence on intraocular pressure. Acta Ophthalmol 2015; 93: e343–348. doi:10.1111/aos.12652.
  • Akahori T, Iwase T, Yamamoto K et al. Changes in choroidal blood flow and morphology in response to increase in intraocular pressure. Invest Ophthalmol Vis Sci 2017; 58: 5076–5085. doi:10.1167/iovs.17-21745.
  • Agoumi Y, Sharpe GP, Hutchison DM et al. Laminar and prelaminar tissue displacement during intraocular pressure elevation in glaucoma patients and healthy controls. Ophthalmology 2011; 118: 52–59. doi:10.1016/j.ophtha.2010.05.016.
  • Fazio MA, Johnstone JK, Smith B et al. Displacement of the lamina cribrosa in response to acute intraocular pressure elevation in normal individuals of African and European descent. Invest Ophthalmol Vis Sci 2016; 57: 3331–3339. doi:10.1167/iovs.15-17940.
  • Munkwitz S, Elkarmouty A, Hoffmann EM et al. Comparison of the iCare rebound tonometer and the Goldmann applanation tonometer over a wide IOP range. Graefes Arch Clin Exp Ophthalmol 2008; 246: 875–879. doi:10.1007/s00417-007-0758-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.