2,508
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Predicting the child who will become myopic – can we prevent onset?

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 815-824 | Received 07 Nov 2022, Accepted 06 Apr 2023, Published online: 16 May 2023

References

  • Ip JM, Huynh SC, Kifley A et al. Variation of the contribution from axial length and other oculometric parameters to refraction by age and ethnicity. Invest Ophthalmol Visual Sci 2007; 48: 4846–4853. doi:10.1167/iovs.07-0101.
  • Tideman JWL, Snabel MCC, Tedja MS et al. Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia. JAMA Ophthalmol 2016; 134: 1355–1363. doi:10.1001/jamaophthalmol.2016.4009.
  • Haarman AEG, Enthoven CA, Tideman JWL et al. The complications of myopia: a review and meta-analysis. Invest Ophthalmol Visual Sci 2020; 61: 49. doi:10.1167/iovs.61.4.49.
  • Holden BA, Fricke TR, Wilson DA et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016; 123: 1036–1042. doi:10.1016/j.ophtha.2016.01.006.
  • Morgan IG, French AN, Ashby RS et al. The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res 2018; 62: 134–149. doi:10.1016/j.preteyeres.2017.09.004.
  • Sankaridurg P, Tahhan N, Kandel H et al. IMI Impact of myopia. Invest Ophthalmol Visual Sci 2021; 62: 14. doi:10.1167/iovs.62.5.2.
  • Fricke TR, Jong M, Naidoo KS et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling. Brit J Ophthalmol 2018; 102: 855–862. doi:10.1136/bjophthalmol-2017-311266.
  • Bullimore MA, Richdale K. Myopia control 2020: where are we and where are we heading? Ophthal Physl Opt 2020; 40: 254–270. doi:10.1111/opo.12686.
  • Wildsoet CF, Chia A, Cho P et al. IMI – interventions for controlling myopia onset and progression report. Invest Ophthalmol Visual Sci 2019; 60: M106–M131. doi:10.1167/iovs.18-25958.
  • Huang JH, Wen DZ, Wang QM et al. Efficacy comparison of 16 interventions for myopia control in children a network meta-analysis. Ophthalmology 2016; 123: 697–708. doi:10.1016/j.ophtha.2015.11.010.
  • Mutti DO, Mitchell GL, Jones LA et al. Axial growth and changes in lenticular and corneal power during emmetropization in infants. Invest Ophthalmol Visual Sci 2005; 46: 3074–3080. doi:10.1167/iovs.04-1040.
  • Mutti DO, Sinnott LT, Mitchell GL et al. Ocular component development during infancy and early childhood. Optom Vis Sci 2018; 95: 976–985. doi:10.1097/OPX.0000000000001296.
  • Mayer DL, Hansen RM, Moore BD et al. Cycloplegic refractions in healthy children aged 1 through 48 months. Arch Ophthalmol 2001; 119: 1625–1628. doi:10.1001/archopht.119.11.1625.
  • Gwiazda J, Thorn F, Bauer J et al. Emmetropization and the progression of manifest refraction in children followed from infancy to puberty. Clin Vision Sci 1993; 8: 337–344.
  • Morgan IG, Rose KA, Ellwein LB. Is emmetropia the natural endpoint for human refractive development? An analysis of population-based data from the refractive error study in children (RESC). Acta Ophthalmol 2010; 88: 877–884. doi:10.1111/j.1755-3768.2009.01800.x.
  • Wolffsohn JS, Flitcroft DI, Gifford KL et al. IMI - Myopia control reports overview and introduction. Invest Ophthalmol Visual Sci 2019; 60: M1–M19. doi:10.1167/iovs.18-25980.
  • Xiang F, He MG, Morgan IG. Annual changes in refractive errors and ocular components before and after the onset of myopia in Chinese children. Ophthalmology 2012; 119: 1478–1484. doi:10.1016/j.ophtha.2012.01.017.
  • Mutti DO, Hayes JR, Mitchell GL et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Visual Sci 2007; 48: 2510–2519. doi:10.1167/iovs.06-0562.
  • Rozema J, Dankert S, Iribarren R et al. Axial growth and lens power loss at myopia onset in Singaporean children. Invest Ophthalmol Visual Sci 2019; 60: 3091–3099. doi:10.1167/iovs.18-26247.
  • Li L, Zhong H, Li J et al. Incidence of myopia and biometric characteristics of premyopic eyes among Chinese children and adolescents. BMC Ophthalmol 2018; 18. doi:10.1186/s12886-018-0836-9.
  • Chua SYL, Sabanayagam C, Cheung YB et al. Age of onset of myopia predicts risk of high myopia in later childhood in myopic Singapore children. Ophthal Physl Opt 2016; 36: 388–394. doi:10.1111/opo.12305.
  • McCullough S, Adamson G, Breslin KMM et al. Axial growth and refractive change in white European children and young adults: predictive factors for myopia. Sci Rep 2020; 10: 15189. doi:10.1038/s41598-020-72240-y.
  • Flitcroft DI, He MG, Jonas JB et al. IMI – defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Visual Sci 2019; 60: M20–M30. doi:10.1167/iovs.18-25957.
  • Hirsch MJ. Predictability of refraction at age 14 on the basis of testing at age 6–interim report from the Ojai longitudinal study of refraction. Amer J Opt Arch Am A 1964; 41: 567–573. doi:10.1097/00006324-196410000-00001.
  • Janssens A, Martens FK. Reflection on modern methods: revisiting the area under the ROC curve. Int J Epidemiol 2020; 49: 1397–1403. doi:10.1093/ije/dyz274.
  • Zadnik K, Sinnott LT, Cotter SA et al. Prediction of juvenile-onset myopia. JAMA Ophthalmol 2015; 133: 683–689. doi:10.1001/jamaophthalmol.2015.0471.
  • Ma YY, Zou HD, Lin SL et al. Cohort study with 4-year follow-up of myopia and refractive parameters in primary schoolchildren in Baoshan District, Shanghai. Clin Exp Ophthalmol 2018; 46: 861–872. doi:10.1111/ceo.13195.
  • French AN, Morgan IG, Mitchell P et al. Risk factors for incident myopia in Australian schoolchildren the Sydney adolescent vascular and eye study. Ophthalmology 2013; 120: 2100–2108. doi:10.1016/j.ophtha.2013.02.035.
  • Brennan NA, Toubouti YM, Cheng X et al. Efficacy in myopia control. Prog Retin Eye Res 2021; 83: 30. doi:10.1016/j.preteyeres.2020.100923.
  • Wolffsohn JS, Kollbaum PS, Berntsen DA et al. IMI – clinical myopia control trials and instrumentation report. Invest Ophthalmol Visual Sci 2019; 60: M132–M160. doi:10.1167/iovs.18-25955.
  • Tideman JWL, Polling JR, Vingerling JR et al. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmol 2018; 96: 301–309. doi:10.1111/aos.13603.
  • Truckenbrod C, Meigen C, Brandt M et al. Longitudinal analysis of axial length growth in a German cohort of healthy children and adolescents. Ophthal Physl Opt 2021; 41: 532–540. doi:10.1111/opo.12817.
  • Diez PS, Yang LH, Lu MX et al. LMS parameters, percentile, and Z-score growth curves for axial length in Chinese schoolchildren in Wuhan. Sci Rep 2022; 12: 10. doi:10.1038/s41598-022-08907-5.
  • Diez PS, Yang LH, Lu MX et al. Growth curves of myopia-related parameters to clinically monitor the refractive development in Chinese schoolchildren. Graef Arch Clin Exp 2019; 257: 1045–1053. doi:10.1007/s00417-019-04290-6.
  • Cole TJ, Green PJ. Smoothing reference centile curves - the LMS method and penalized likelihood. Stat Med 1992; 11: 1305–1319. doi:10.1002/sim.4780111005.
  • Chen YX, Zhang J, Morgan IG et al. Identifying children at risk of high myopia using population centile curves of refraction. PLoS One 2016; 11: 10. doi:10.1371/journal.pone.0167642.
  • Guo XX, Fu M, Ding XH et al. Significant axial elongation with minimal change in refraction in 3-to 6-year-old chinese preschoolers the Shenzhen kindergarten eye study. Ophthalmology 2017; 124: 1826–1838. doi:10.1016/j.ophtha.2017.05.030.
  • Lu TL, Wu JF, Ye X et al. Axial length and associated factors in children: the Shandong children eye study. Ophthalmologica 2016; 235: 78–86. doi:10.1159/000441900.
  • Grosvenor T, Scott R. Role of the axial length corneal radius ratio in determining the refractive state of the eye. Optom Vis Sci 1994; 71: 573–579. doi:10.1097/00006324-199409000-00005.
  • Blanco FG, Fernandez JCS, Sanz MA. Axial length, corneal radius, and age of myopia onset. Optom Vis Sci 2008; 85: 89–96. doi:10.1097/OPX.0b013e3181622602.
  • Foo VHX, Verkicharla PK, Ikram MK et al. Axial length/corneal radius of curvature ratio and myopia in 3-year-old children. Transl Vis Sci Technol 2016; 5: 6. doi:10.1167/tvst.5.1.5.
  • He XG, Zou HD, Lu L et al. Axial length/corneal radius ratio: association with refractive state and role on myopia detection combined with visual acuity in Chinese schoolchildren. PLoS One 2015; 10: 19. doi:10.1371/journal.pone.0111766.
  • Tao ZY, Deng HW, Zhong HH et al. A longitudinal study of the effect of ocular biometrics measures on myopia onset. Graef Arch Clin Exp 2021; 259: 999–1008. doi:10.1007/s00417-020-05010-1.
  • Goss DA, Jackson TW. Clinical findings before the onset of myopia in youth.1. Ocular optical components. Optom Vis Sci 1995; 72: 870–878. doi:10.1097/00006324-199512000-00005.
  • Grosvenor T. High axial length corneal radius ratio as a risk factor in the development of myopia. Am J Optom Phys Opt 1988; 65: 689–696. doi:10.1097/00006324-198809000-00001.
  • Liu L, Li R, Huang D et al. Prediction of premyopia and myopia in Chinese preschool children: a longitudinal cohort. BMC Ophthalmol 2021; 21: 283. doi:10.1186/s12886-021-02045-8.
  • Zadnik K, Manny RE, Yu JA et al. Ocular component data in schoolchildren as a function of age and gender. Optom Vis Sci 2003; 80: 226–236. doi:10.1097/00006324-200303000-00012.
  • He X, Sankaridurg P, Naduvilath T et al. Normative data and percentile curves for axial length and axial length/corneal curvature in Chinese children and adolescents aged 4–18 years. Brit J Ophthalmol 2021: 1–9. doi:10.1136/bjophthalmol-2021-319431.
  • Morgan IG, Wu PC, Ostrin LA et al. IMI risk factors for myopia. Invest Ophthalmol Visual Sci 2021; 62: 20. doi:10.1167/iovs.62.5.3.
  • Sankaridurg P, He XG, Naduvilath T et al. Comparison of noncycloplegic and cycloplegic autorefraction in categorizing refractive error data in children. Acta Ophthalmol 2017; 95: E633–E640. doi:10.1111/aos.13569.
  • Morgan IG, Rose KA. Myopia and international educational performance. Ophthal Physl Opt 2013; 33: 329–338. doi:10.1111/opo.12040.
  • O’Donoghue L, Kapetanankis VV, McClelland JF et al. Risk factors for childhood myopia: findings from the NICER study. Invest Ophthalmol Visual Sci 2015; 56: 1524–1530. doi:10.1167/iovs.14-15549.
  • Saw SM, Cheng A, Fong A et al. School grades and myopia. Ophthal Physl Opt 2007; 27: 126–129. doi:10.1111/j.1475-1313.2006.00455.x.
  • Ding X, Morgan IG, Hu Y et al. Exposure to the life of a school child rather than age determines myopic shifts in refraction in school children. Invest Ophthalmol Visual Sci 2022; 63: 15. doi:10.1167/iovs.63.3.15.
  • Plotnikov D, Williams C, Atan D et al. Effect of education on myopia: evidence from the United Kingdom ROSLA 1972 reform. Invest Ophthalmol Visual Sci 2020; 61: 7. doi:10.1167/iovs.61.11.7.
  • Huang HM, Chang DST, Wu PC. The association between near work activities and myopia in children-a systematic review and meta-analysis. PLoS One 2015; 10. doi:10.1371/journal.pone.0140419.
  • Sherwin JC, Reacher MH, Keogh RH et al. The association between time spent outdoors and myopia in children and adolescents a systematic review and meta-analysis. Ophthalmology 2012; 119: 2141–2151. doi:10.1016/j.ophtha.2012.04.020.
  • Xiong S, Sankaridurg P, Naduvilath T et al. Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Acta Ophthalmol 2017; 95: 551–566. doi:10.1111/aos.13403.
  • Lingham G, Mackey DA, Lucas R et al. How does spending time outdoors protect against myopia? A review. Brit J Ophthalmol 2020; 104: 593–599. doi:10.1136/bjophthalmol-2019-314675.
  • Read SA, Collins MJ, Vincent SJ. Light exposure and eye growth in childhood. Invest Ophthalmol Visual Sci 2015; 56: 6779–6787. doi:10.1167/iovs.14-15978.
  • Hua WJ, Jin JX, Wu XY et al. Elevated light levels in schools have a protective effect on myopia. Ophthal Physl Opt 2015; 35: 252–262. doi:10.1111/opo.12207.
  • Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res 2013; 114: 106–119. doi:10.1016/j.exer.2013.02.007.
  • Guggenheim JA, Williams C, Northstone K et al. Does vitamin D mediate the protective effects of time outdoors on myopia? Findings from a prospective birth cohort. Invest Ophthalmol Visual Sci 2014; 55: 8550–8558. doi:10.1167/iovs.14-15839.
  • Cuellar-Partida G, Williams KM, Yazar S et al. Genetically low vitamin D concentrations and myopic refractive error: a Mendelian randomization study. Int J Epidemiol 2017; 46: 1882–1890. doi:10.1093/ije/dyx068.
  • Atchison DA, Li SM, Li H et al. Relative peripheral hyperopia does not predict development and progression of myopia in children. Invest Ophthalmol Visual Sci 2015; 56: 6162–6170. doi:10.1167/iovs.15-17200.
  • Wen L, Cao Y, Cheng Q et al. Objectively measured near work, outdoor exposure and myopia in children. Brit J Ophthalmol 2020; 104: 1542–1547. doi:10.1136/bjophthalmol-2019-315258.
  • Bhandari KR, Shukla D, Mirhajianmoghadam H et al. Objective measures of near viewing and light exposure in schoolchildren during COVID-19. Optom Vis Sci 2022; 99: 241–252. doi:10.1097/OPX.0000000000001871.
  • Read SA, Vincent SJ, Tan CS et al. Patterns of daily outdoor light exposure in Australian and Singaporean children. Transl Vis Sci Technol 2018; 7: 8. doi:10.1167/tvst.7.3.8.
  • Hammond CJ, Snieder H, Gilbert CE et al. Genes and environment in refractive error: the twin eye study. Invest Ophthalmol Visual Sci 2001; 42: 1232–1236.
  • Zhang XY, Qu XH, Zhou XT. Association between parental myopia and the risk of myopia in a child. Exp Ther Med 2015; 9: 2420–2428. doi:10.3892/etm.2015.2415.
  • Jones-Jordan LA, Sinnott LT, Manny RE et al. Early childhood refractive error and parental history of myopia as predictors of myopia. Invest Ophthalmol Visual Sci 2010; 51: 115–121. doi:10.1167/iovs.08-3210.
  • Rudnicka AR, Kapetanakis VV, Wathern AK et al. Global variations and time trends in the prevalence of childhood myopia, a systematic review and quantitative meta-analysis: implications for aetiology and early prevention. Br J Ophthalmol 2016; 100: 882–890. doi:10.1136/bjophthalmol-2015-307724.
  • Wang YM, Lu SY, Zhang XJ et al. Myopia genetics and heredity. Children (Basel) 2022; 9: 19. doi:10.3390/children9030382.
  • Hysi PG, Choquet H, Khawaja AP et al. Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nat Genet 2020; 52: 401–407. doi:10.1038/s41588-020-0599-0.
  • Guggenheim JA, St Pourcain B, McMahon G et al. Assumption-free estimation of the genetic contribution to refractive error across childhood. Mol Vis 2015; 21: 621–632.
  • Morgan IG, French AN, Rose KA. Risk factors for myopia: putting causal pathways into a social context. In: Ang M, Wong TY eds. Updates on myopia. Springer Singapore; 2020. p. 133–170.
  • Gwiazda J, Thorn F, Held R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom Vis Sci 2005; 82: 273–278. doi:10.1097/01.OPX.0000159363.07082.7D.
  • Mutti DO, Mitchell GL, Hayes JR et al. Accommodative lag before and after the onset of myopia. Invest Ophthalmol Visual Sci 2006; 47: 837–846. doi:10.1167/iovs.05-0888.
  • Kaphle D, Varnas SR, Schmid KL et al. Accommodation lags are higher in myopia than in emmetropia: measurement methods and metrics matter. Ophthalmic Physiol Opt 2022; 42: 1103–1114. doi:10.1111/opo.13021.
  • Langaas T, Riddell PM, Svarverud E et al. Variability of the accommodation response in early onset myopia. Optom Vis Sci 2008; 85: 37–48. doi:10.1097/OPX.0b013e31815ed6e9.
  • Troilo D, Smith EL, Nickla DL et al. IMI - Report on experimental models of emmetropization and myopia. Invest Ophthalmol Visual Sci 2019; 60: M31–M88. doi:10.1167/iovs.18-25967.
  • Lan WZ, Yang ZK, Liu W et al. A longitudinal study on the relationship between myopia development and near accommodation lag in myopic children. Ophthal Physl Opt 2008; 28: 57–61. doi:10.1111/j.1475-1313.2007.00536.x.
  • Berntsen DA, Sinnott LT, Mutti DO et al. Accommodative lag and juvenile-onset myopia progression in children wearing refractive correction. Vision Res 2011; 51: 1039–1046. doi:10.1016/j.visres.2011.02.016.
  • Logan NS, Radhakrishnan H, Cruickshank FE et al. IMI accommodation and binocular vision in myopia development and progression. Invest Ophthalmol Visual Sci 2021; 62: 21. doi:10.1167/iovs.62.5.4.
  • Mutti DO, Jones LA, Moeschberger ML et al. AC/A ratio, age, and refractive error in children. Invest Ophthalmol Visual Sci 2000; 41: 2469–2478.
  • Mutti DO, Mitchell GL, Jones-Jordan LA et al. The response AC/A ratio before and after the onset of myopia. Invest Ophthalmol Visual Sci 2017; 58: 1594–1602. doi:10.1167/iovs.16-19093.
  • Ekdawi NS, Nusz KJ, Diehl NN et al. The development of myopia among children with intermittent exotropia. Am J Ophthalmol 2010; 149: 503–507. doi:10.1016/j.ajo.2009.10.009.
  • Gwiazda JE, Hyman L, Norton TT et al. Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Invest Ophthalmol Visual Sci 2004; 45: 2143–2151. doi:10.1167/iovs.03-1306.
  • Goss DA, Jackson TW. Clinical findings before the onset of myopia in youth: 3. Heterophoria. Optom Vis Sci 1996; 73: 269–278. doi:10.1097/00006324-199604000-00009.
  • Goss DA. Clinical accommodation and heterophoria findings preceding juvenile onset of myopia. Optom Vis Sci 1991; 68: 110–116. doi:10.1097/00006324-199102000-00005.
  • Drobe B, de Saint-Andre R. The pre-myopic syndrome. Ophthalmic Physiol Opt 1995; 15: 375–378. doi:10.1046/j.1475-1313.1995.9500075o.x.
  • Cheng D, Woo GC, Drobe B et al. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children three-year results of a randomized clinical trial. JAMA Ophthalmol 2014; 132: 258–264. doi:10.1001/jamaophthalmol.2013.7623.
  • Group CoMETSGftPEDI. Progressive-addition lenses versus single-vision lenses for slowing progression of myopia in children with high accommodative lag and near esophoria. Invest Ophthalmol Visual Sci 2011; 52: 2749–2757. doi:10.1167/iovs.10-6631.
  • Wu PC, Tsai CL, Wu HL et al. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 2013; 120: 1080–1085. doi:10.1016/j.ophtha.2012.11.009.
  • Jin J-X, Hua W-J, Jiang X et al. Effect of outdoor activity on myopia onset and progression in school-aged children in northeast China: the Sujiatun eye care study. BMC Ophthalmol 2015; 15: 11. doi:10.1186/s12886-015-0052-9.
  • Wu PC, Chen CT, Lin KK et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology 2018; 125: 1239–1250. doi:10.1016/j.ophtha.2017.12.011.
  • He MG, Xiang F, Zeng YF et al. Effect of time spent outdoors at school on the development of myopia among children in China a randomized clinical trial. JAMA-J Am Med Assoc 2015; 314: 1142–1148. doi:10.1001/jama.2015.10803.
  • He X, Sankaridurg P, Wang J et al. Time outdoors in reducing myopia: a school-based cluster randomized trial with objective monitoring of outdoor time and light intensity. Ophthalmology 2022; 129: 1245–1254. doi:10.1016/j.ophtha.2022.06.024.
  • Bleich SN, Vercammen KA, Zatz LY et al. Interventions to prevent global childhood overweight and obesity: a systematic review. Lancet Diabetes Endocrinol 2018; 6: 332–346. doi:10.1016/S2213-8587(17)30358-3.
  • Guo Y, Liu L, Lv Y et al. Outdoor jogging and myopia progression in school children from rural Beijing: the Beijing children eye study. Transl Vis Sci Technol 2019; 8: 2. doi:10.1167/tvst.8.3.2.
  • Fang PC, Chung MY, Yu HJ et al. Prevention of myopia onset with 0.025% atropine in premyopic children. J Ocul Pharmacol Ther 2010; 26: 341–345. doi:10.1089/jop.2009.0135.
  • Jethani J. Efficacy of low-concentration atropine (0.01%) eye drops for prevention of axial myopic progression in premyopes. Indian J Ophthalmol 2022; 70: 238–240. doi:10.4103/ijo.IJO_1462_21.
  • Yam JC, Zhang XJ, Zhang Y et al. Effect of low-concentration atropine eyedrops vs placebo on myopia incidence in children. JAMA 2023; 329: 472–481. doi:10.1001/jama.2022.24162.
  • The use of atropine 0.01% in the prevention and control of myopia (ATOM3). https://ClinicalTrials.gov/show/NCT03140358.
  • Smith EL, Hung LF, Huang J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys. Vision Res 2009; 49: 2386–2392. doi:10.1016/j.visres.2009.07.011.
  • Cho P, Cheung SW. Retardation of myopia in orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Visual Sci 2012; 53: 7077–7085. doi:10.1167/iovs.12-10565.
  • Chamberlain P, Bradley A, Arumugam B et al. Long-term effect of dual-focus contact lenses on myopia progression in children: a 6-year multicenter clinical trial. Optom Vis Sci 2022; 99: 204–212. doi:10.1097/OPX.0000000000001873.
  • Walline JJ, Walker MK, Mutti DO et al. Effect of high add power, medium add power, or single-vision contact lenses on myopia progression in children: the BLINK randomized clinical trial. JAMA 2020; 324: 571–580. doi:10.1001/jama.2020.10834.
  • Bao J, Huang Y, Li X et al. Spectacle lenses with aspherical lenslets for myopia control vs single-vision spectacle lenses. JAMA Ophthalmol 2022; 140: 472–478. doi:10.1001/jamaophthalmol.2022.0401.
  • Lam CSY, Tang WC, Tse DYY et al. Defocus incorporated multiple segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol 2020; 104: 363–368. doi:10.1136/bjophthalmol-2018-313739.
  • Rappon J, Chung C, Young G et al. Control of myopia using diffusion optics spectacle lenses: 12-month results of a randomised controlled, efficacy and safety study (CYPRESS). Br J Ophthalmol 2022; bjophthalmol–20. doi:10.1136/bjo-2021-321005.
  • Jonas JB, Ang M, Cho P et al. IMI Prevention of myopia and its progression. Invest Ophthalmol Visual Sci 2021; 62: 6-6. doi:10.1167/iovs.62.5.6.
  • Zadnik K, Mutti DO, Friedman NE et al. Ocular predictors of the onset of juvenile myopia. Invest Ophthalmol Visual Sci 1999; 40: 1936–1943.