2,882
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Artificial intelligence in the diagnosis of glaucoma and neurodegenerative diseases

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 130-146 | Received 23 Feb 2023, Accepted 07 Jul 2023, Published online: 06 Sep 2023

References

  • Chakraborty U, Banerjee A, Saha JK et al. Artificial intelligence and the fourth industrial revolution. CRC Press; 2022. doi:10.1201/9781003159742.
  • Winston PH. Artificial intelligence. Reading, MA: Addison-Wesley Longman Publishing Co., Inc.; 1992.
  • Wu CW, Chen HY, Chen JY et al. Glaucoma detection using support vector machine method based on Spectralis OCT. Diagnostics 2022; 12: 391. doi:10.3390/diagnostics12020391.
  • Sharma P, Ninomiya T, Omodaka K et al. A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images. Sci Rep 2022; 12: 1–18. doi:10.1038/s41598-022-12486-w.
  • Oh S, Cho KJ, Kim SJ. Development of the integrated glaucoma risk index. Diagnostics 2022; 12: 734. doi:10.3390/diagnostics12030734.
  • Kooner KS, Angirekula A, Treacher AH et al. Glaucoma diagnosis through the integration of optical coherence tomography/angiography and machine learning diagnostic models. Clin Ophthalmol 2022; 16: 2685–2697. doi:10.2147/OPTH.S367722.
  • Gong D, Hu M, Yin Y et al. Practical application of artificial intelligence technology in glaucoma diagnosis. J Ophthalmol 2022; 2022: 1–12. doi:10.1155/2022/5212128.
  • Rebinth A, Kumar SM. Glaucoma diagnosis based on colour and spatial features using kernel SVM. Cardiometry 2022; 2022: 508–515. doi:10.18137/cardiometry.2022.22.508515.
  • Giraddi S, Mugdha S, Kanakaraddi S et al. Glaucoma diagnosis: handcrafted features versus deep learning. Lect Notes Data Eng Commun Technol 2022; 126: 869–881.
  • Wu CW, Shen HL, Lu CJ et al. Comparison of different machine learning classifiers for glaucoma diagnosis based on spectralis oct. Diagnostics 2021; 11: 1718. doi:10.3390/diagnostics11091718.
  • Oh S, Park Y, Cho KJ et al. Explainable machine learning model for glaucoma diagnosis and its interpretation. Diagnostics 2021; 11: 510. doi:10.3390/diagnostics11030510.
  • Zhou W, Gao Y, Ji JH et al. Unsupervised anomaly detection for glaucoma diagnosis. Wireless Commun Mobile Comput 2021; 2021: 1–4. doi:10.1155/2021/5978495.
  • Fernandez Escamez CS, Martin Giral E, Perucho Martinez S et al. High interpretable machine learning classifier for early glaucoma diagnosis. Int J Ophthalmol 2021; 14: 393–398. doi:10.18240/ijo.2021.03.10.
  • Thakur N, Juneja M. Classification of glaucoma using hybrid features with machine learning approaches. Biomed Signal Process Control 2020; 62: 102137. doi:10.1016/j.bspc.2020.102137.
  • Mukherjee R, Kundu S, Dutta K et al. Predictive diagnosis of glaucoma based on analysis of focal notching along the neuro-retinal rim using machine learning. Pattern Recognit Image Anal 2019; 29: 523–532. doi:10.1134/S1054661819030155.
  • MacCormick IJC, Williams BM, Zheng Y et al. Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile. PLoS One 2019; 14: e0209409. doi:10.1371/journal.pone.0209409.
  • Maetschke S, Antony B, Ishikawa H et al. A feature agnostic approach for glaucoma detection in OCT volumes. PLoS One 2019; 14: e0219126. doi:10.1371/journal.pone.0219126.
  • Christopher M, Belghith A, Weinreb RN et al. Retinal nerve fiber layer features identified by unsupervised machine learning on optical coherence tomography scans predict glaucoma progression. Invest Ophthalmol Visual Sci 2018; 59: 2748–2756. doi:10.1167/iovs.17-23387.
  • Kim SJ, Cho KJ, Oh S et al. Development of machine learning models for diagnosis of glaucoma. PLoS One 2017; 12: e0177726. doi:10.1371/journal.pone.0177726.
  • Salam AA, Khalil T, Akram MU et al. Automated detection of glaucoma using structural and non structural features. SpringerPlus 2016; 5: 1–21. doi:10.1186/s40064-016-3175-4.
  • Belghith A, Bowd C, Medeiros FA et al. Learning from healthy and stable eyes: a new approach for detection of glaucomatous progression. Artif Intell Med 2015; 64: 105–115. doi:10.1016/j.artmed.2015.04.002.
  • Yousefi S, Goldbaum MH, Balasubramanian M et al. Glaucoma progression detection using structural retinal nerve fiber layer measurements and functional visual field points. IEEE Trans Biomed Eng 2014; 61: 1143–1154. doi:10.1109/TBME.2013.2295605.
  • Xu J, Ishikawa H, Wollstein G et al. Three-dimensional spectral-domain optical coherence tomography data analysis for glaucoma detection. PLoS One 2013; 8: e55476. doi:10.1371/journal.pone.0055476.
  • Silva FR, Vidotti VG, Cremasco F et al. Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using spectral domain oct and standard automated perimetry. Arq Bras Oftalmol 2013; 76: 170–174. doi:10.1590/S0004-27492013000300008.
  • Barella KA, Costa VP, Gonçalves Vidotti V et al. Glaucoma diagnostic accuracy of machine learning classifiers using retinal nerve fiber layer and optic nerve data from SD-OCT. J Ophthalmol 2013; 2013: 1–7. doi:10.1155/2013/789129.
  • Scheetz J, Koca D, McGuinness M et al. Real-world? Artificial intelligence-based opportunistic screening for diabetic retinopathy in endocrinology and indigenous healthcare settings in Australia. Sci Rep 2021; 11: 1–11. doi:10.1038/s41598-021-94178-5.
  • Pan J, Ho S, Ly A et al. Drusen aware model for age-related macular degeneration recognition. Ophthalmic Physiol Opt 2023; 43: 668–679. doi:10.1111/opo.13108.
  • Wang X, Jiao B, Liu H et al. Machine learning based on optical coherence tomography images as a diagnostic tool for Alzheimer’s disease. CNS Neurosci Ther 2022; 28: 2206–2217. doi:10.1111/cns.13963.
  • Tian J, Smith G, Guo H et al. Modular machine learning for Alzheimer’s disease classification from retinal vasculature. Sci Rep 2021; 11: 1–11. doi:10.1038/s41598-020-80312-2.
  • Zhang Q, Li J, Bian M et al. Retinal imaging techniques based on machine learning models in recognition and prediction of mild cognitive impairment. Neuropsychiatr Dis Treat 2021; 17: 3267–3281. doi:10.2147/NDT.S333833.
  • Diaz M, Tian J, Fang R Machine learning for Parkinson’s disease diagnosis using fundus eye images. Annual Meeting of Radiology Society of North America (RSNA); 2020.
  • Nunes A, Silva G, Duque C et al. Retinal texture biomarkers may help to discriminate between Alzheimer’s, Parkinson’s, and healthy controls. PLoS One 2019; 14: e0218826. doi:10.1371/journal.pone.0218826.
  • Fingert JH, Alward WL, Kwon YH et al. No association between variations in the WDR36 gene and primary open-angle glaucoma. Arch Ophthalmol 2007; 125: 434–436. doi:10.1001/archopht.125.3.434-b.
  • Tham Y-C, Li X, Wong TY et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014; 121: 2081–2090. doi:10.1016/j.ophtha.2014.05.013.
  • Christinaki E, Kulenovic H, Hadoux X et al. Retinal imaging biomarkers of neurodegenerative diseases. Clin Exp Optometry 2021; 105: 194–204. doi:10.1080/08164622.2021.1984179.
  • Smith L, Shin JI, Jacob L et al. Sleep problems and mild cognitive impairment among adults aged ≥50 years from low- and middle-income countries. Exp Gerontol 2021; 154: 111513. doi:10.1016/j.exger.2021.111513.
  • Kalmijn S, Mehta KM, Pols HA et al. Subclinical hyperthyroidism and the risk of dementia. The Rotterdam study. Clin Endocrinol 2000; 53: 733–737. doi:10.1046/j.1365-2265.2000.01146.x.
  • Liao H, Zhu Z, Peng Y. Potential utility of retinal imaging for Alzheimer’s disease: a review. Front Aging Neurosci 2018; 10: 188. doi:10.3389/fnagi.2018.00188.
  • Liu D, Zhang L, Li Z et al. Thinner changes of the retinal nerve fiber layer in patients with mild cognitive impairment and Alzheimer’s disease. BMC Neurol 2015; 15: 1–5. doi:10.1186/s12883-015-0268-6.
  • Thomson KL, Yeo JM, Waddell B et al. A systematic review and meta-analysis of retinal nerve fiber layer change in dementia, using optical coherence tomography. Alzheimer’s Dement 2015; 1: 136–143. doi:10.1016/j.dadm.2015.03.001.
  • Yu J-G, Feng Y-F, Xiang Y et al. Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One 2014; 9: e85718. doi:10.1371/journal.pone.0085718.
  • La Morgia C, Ross‐Cisneros FN, Koronyo Y et al. Melanopsin retinal ganglion cell loss in Alzheimer disease. Ann Neurol 2016; 79: 90–109. doi:10.1002/ana.24548.
  • Blanks JC, Torigoe Y, Hinton DR et al. Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 1996; 17: 377–384. doi:10.1016/0197-4580(96)00010-3.
  • Blanks JC, Schmidt SY, Torigoe Y et al. Retinal pathology in Alzheimer’s disease. II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 1996; 17: 385–395. doi:10.1016/0197-4580(96)00009-7.
  • Curcio CA, Drucker DN. Retinal ganglion cells in Alzheimer’s disease and aging. Ann Neurol 1993; 33: 248–257. doi:10.1002/ana.410330305.
  • Blanks JC, Torigoe Y, Hinton DR et al. Retinal degeneration in the macula of patients with Alzheimer’s disease. Ann N Y Acad Sci 1991; 640: 44–46. doi:10.1111/j.1749-6632.1991.tb00188.x.
  • Cheung CY, Mok V, Foster PJ et al. Retinal imaging in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2021; 92: 983–994. doi:10.1136/jnnp-2020-325347.
  • Chan VT, Sun Z, Tang S et al. Spectral-domain OCT measurements in Alzheimer’s disease: a systematic review and meta-analysis. Ophthalmology 2019; 126: 497–510. doi:10.1016/j.ophtha.2018.08.009.
  • Mutlu U, Colijn JM, Ikram MA et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study. JAMA Neurol 2018; 75: 1256–1263. doi:10.1001/jamaneurol.2018.1563.
  • den Haan J, Csinscik L, Parker T et al. Retinal thickness as potential biomarker in posterior cortical atrophy and typical Alzheimer’s disease. Alzheimer’s Res Ther 2019; 11: 62. doi:10.1186/s13195-019-0516-x.
  • Ning A, Cui J, To E et al. Amyloid-β deposits lead to retinal degeneration in a mouse model of Alzheimer disease. Invest Ophthalmol Visual Sci 2008; 49: 5136–5143. doi:10.1167/iovs.08-1849.
  • Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV et al. Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. NeuroImage 2011; 54: S204–S217. doi:10.1016/j.neuroimage.2010.06.020.
  • Lad EM, Mukherjee D, Stinnett SS et al. Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer’s disease. PLoS One 2018; 13: e0192646. doi:10.1371/journal.pone.0192646.
  • Snyder PJ, Johnson LN, Lim YY et al. Nonvascular retinal imaging markers of preclinical Alzheimer’s disease. Alzheimer’s Dement 2016; 4: 169–178. doi:10.1016/j.dadm.2016.09.001.
  • Zhang YS, Onishi AC, Zhou N et al. Characterization of inner retinal hyperreflective alterations in early cognitive impairment on adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Visual Sci 2019; 60: 3527–3536. doi:10.1167/iovs.19-27135.
  • Kashani AH, Asanad S, Chen J et al. Past, present and future role of retinal imaging in neurodegenerative disease. Prog Retinal Eye Res 2021; 83: 100938. doi:10.1016/j.preteyeres.2020.100938.
  • McMahon PM, Araki SS, Sandberg EA et al. Cost-effectiveness of PET in the diagnosis of Alzheimer disease. Radiology 2003; 228: 515–522. doi:10.1148/radiol.2282020915.
  • Chan VT, Tso TH, Tang F et al. Using retinal imaging to study dementia. J Visualized Exp 2017; e56137. doi:10.3791/56137-v.
  • Alberdi A, Aztiria A, Basarab A. On the early diagnosis of Alzheimer’s disease from multimodal signals: a survey. Artif Intell Med 2016; 71: 1–29. doi:10.1016/j.artmed.2016.06.003.
  • Ge Y-J, Xu W, Ou Y-N et al. Retinal biomarkers in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Ageing Res Rev 2021; 69: 101361. doi:10.1016/j.arr.2021.101361.
  • Alber J, Goldfarb D, Thompson LI et al. Developing retinal biomarkers for the earliest stages of Alzheimer’s disease: what we know, what we don’t, and how to move forward. Alzheimers Dement 2020; 16: 229–243. doi:10.1002/alz.12006.
  • Moher D, Liberati A, Tetzlaff J et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264–269. doi:10.7326/0003-4819-151-4-200908180-00135.
  • Mancino R, Cesareo M, Martucci A et al. Neurodegenerative process linking the eye and the brain. Curr Med Chem 2019; 26: 3754–3763. doi:10.2174/0929867325666180307114332.
  • Dinkin M. Trans-synaptic retrograde degeneration in the human visual system: slow, silent, and real. Curr Neurol Neurosci Rep 2017; 17: 1–15. doi:10.1007/s11910-017-0725-2.
  • Marchesi N, Fahmideh F, Boschi F et al. Ocular neurodegenerative diseases: interconnection between retina and cortical areas. Cells 2021; 10: 2394. doi:10.3390/cells10092394.
  • Zangerl B, Whatham A, Kim J et al. Reconciling visual field defects and retinal nerve fibre layer asymmetric patterns in retrograde degeneration: an extended case series. Clin Exp Optom 2017; 100: 214–226. doi:10.1111/cxo.12478.
  • Guedes G, C Tsai J, A Loewen N. Glaucoma and aging. Curr Aging Sci 2011; 4: 110–117. doi:10.2174/1874609811104020110.
  • Hitzl W, Bunce C, Reitsamer H et al. The projected increase in glaucoma due to the aging population in Austria from 2001 to 2031: results based on data of the Salzburg-Moorfields collaborative glaucoma study. Eur J Ophthalmol 2007; 17: 45–52. doi:10.1177/112067210701700107.
  • Langa KM Cognitive aging, dementia, and the future of an aging population. Future directions for the demography of aging: Proceedings of a workshop; 2018; Washington (DC): National Academies Press.
  • Tong J, Phu J, Khuu SK et al. Development of a spatial model of age-related change in the macular ganglion cell layer to predict function from structural changes. Am J Ophthalmol 2019; 208: 166–177. doi:10.1016/j.ajo.2019.04.020.
  • Burr JM, Mowatt G, Hernández R et al. The clinical effectiveness and cost-effectiveness of screening for open angle glaucoma: a systematic review and economic evaluation. Health Technol Assess (Rockv) 2007; 11: 3–190. doi:10.3310/hta11410.
  • Nayak BK, Maskati QB, Parikh R. The unique problem of glaucoma: under-diagnosis and over-treatment. Indian J Ophthalmol 2011; 59: S1–2. doi:10.4103/0301-4738.73677.
  • Founti P, Coleman AL, Wilson MR et al. Overdiagnosis of open‐angle glaucoma in the general population: the Thessaloniki eye study. Acta Ophthalmol 2018; 96: e859–e864. doi:10.1111/aos.13758.
  • Leung CKS, Lam AKN, Weinreb RN et al. Diagnostic assessment of glaucoma and non-glaucomatous optic neuropathies via optical texture analysis of the retinal nerve fibre layer. Nat Biomed Eng 2022; 6: 593–604. doi:10.1038/s41551-021-00813-x.
  • Yang Y, Zhang H, Yan Y et al. Comparison of optic nerve morphology in eyes with glaucoma and eyes with non-arteritic anterior ischemic optic neuropathy by Fourier domain optical coherence tomography. Exp Ther Med 2013; 6: 268–274. doi:10.3892/etm.2013.1115.
  • Xu Y, Phu J, Aung H et al. Frequency of coexistent eye diseases and cognitive impairment or dementia: a systematic review and meta-analysis. Eye 2023; 2023: 1–9. doi:10.1038/s41433-023-02481-4.
  • Heijl A, Bengtsson B, Hyman L et al. Natural history of open-angle glaucoma. Ophthalmology 2009; 116: 2271–2276. doi:10.1016/j.ophtha.2009.06.042.
  • Jakhar D, Kaur I. Artificial intelligence, machine learning and deep learning: definitions and differences. Clin Exp Dermatol 2020; 45: 131–132. doi:10.1111/ced.14029.
  • Charng J, Alam K, Swartz G et al., Deep learning: applications in retinal and optic nerve diseases. Clin Exp Optom 2022; 106: 1–10.
  • Adadi A, Berrada M. Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 2018; 6: 52138–52160. doi:10.1109/ACCESS.2018.2870052.
  • Hagras H. Toward human-understandable, explainable AI. Computer 2018; 51: 28–36. doi:10.1109/MC.2018.3620965.
  • Samek W, Montavon G, Vedaldi A et al. Explainable AI: interpreting, explaining and visualizing deep learning. Springer Nature; 2019. doi:10.1007/978-3-030-28954-6.
  • Zhou C, Ye J, Wang J et al. Improving the generalization of glaucoma detection on fundus images via feature alignment between augmented views. Biomed Opt Express 2022; 13: 2018–2034. doi:10.1364/BOE.450543.
  • Sudhan MB, Sinthuja M, Pravinth Raja S et al. Segmentation and classification of glaucoma using u-net with deep learning model. J Healthcare Eng 2022; 2022: 1–10. doi:10.1155/2022/1601354.
  • Pascal L, Perdomo OJ, Bost X et al. Multi-task deep learning for glaucoma detection from color fundus images. Sci Rep 2022; 12: 1–10. doi:10.1038/s41598-022-16262-8.
  • Nawaz M, Nazir T, Javed A et al. An efficient deep learning approach to automatic glaucoma detection using optic disc and optic cup localization. Sensors 2022; 22: 434. doi:10.3390/s22020434.
  • Lin M, Hou B, Liu L et al. Automated diagnosing primary open-angle glaucoma from fundus image by simulating human’s grading with deep learning. Sci Rep 2022; 12: 14080. doi:10.1038/s41598-022-17753-4.
  • Joshi S, Partibane B, Hatamleh WA et al. Glaucoma detection using image processing and supervised learning for classification. J Healthcare Eng 2022; 2022: 1–12. doi:10.1155/2022/2988262.
  • Xu Y, Hu M, Liu H et al. A hierarchical deep learning approach with transparency and interpretability based on small samples for glaucoma diagnosis. NPJ Digital Med 2021; 4: 48. doi:10.1038/s41746-021-00417-4.
  • Xu X, Guan Y, Li J et al. Automatic glaucoma detection based on transfer induced attention network. Biomed Eng Online 2021; 20: 39. doi:10.1186/s12938-021-00877-5.
  • Gheisari S, Shariflou S, Phu J et al. A combined convolutional and recurrent neural network for enhanced glaucoma detection. Sci Rep 2021; 11: 1–11. doi:10.1038/s41598-021-81554-4.
  • Ganesh SS, Kannayeram G, Karthick A et al. A novel context aware joint segmentation and classification framework for glaucoma detection. Comput Math Method Med 2021; 2021: 1–19. doi:10.1155/2021/2921737.
  • Devecioglu OC, Malik J, Ince T et al. Real-time glaucoma detection from digital fundus images using self-onns. IEEE Access 2021; 9: 140031–140041. doi:10.1109/ACCESS.2021.3118102.
  • Ko YC, Wey SY, Chen WT et al. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model. PLoS One 2020; 15: e0233079. doi:10.1371/journal.pone.0233079.
  • Christopher M, Nakahara K, Bowd C et al. Effects of study population, labeling and training on glaucoma detection using deep learning algorithms. Transl Vis Sci Technol 2020; 9: 1–14. doi:10.1167/tvst.9.2.27.
  • Civit-Masot J, Dominguez-Morales MJ, Vicente-Diaz S et al. Dual machine-learning system to aid glaucoma diagnosis using disc and cup feature extraction. IEEE Access 2020; 8: 127519–127529. doi:10.1109/ACCESS.2020.3008539.
  • Wang J, Wang Z, Li F et al. Joint retina segmentation and classification for early glaucoma diagnosis. Biomed Opt Express 2019; 10: 2639–2656. doi:10.1364/BOE.10.002639.
  • Haleem MS, Han L, van Hemert J et al. A novel adaptive deformable model for automated optic disc and cup segmentation to aid glaucoma diagnosis. J Med Syst 2018; 42: 1–18. doi:10.1007/s10916-017-0859-4.
  • Ahn JM, Kim S, Ahn KS et al. A deep learning model for the detection of both advanced and early glaucoma using fundus photography. PLoS One 2018; 13: e0207982. doi:10.1371/journal.pone.0207982.
  • Cerentini A, Welfer D, Cordeiro d’Ornellas MC et al. Automatic identification of glaucoma using deep learning methods. Stud Health Technol Inform 2017; 245: 318–321.
  • Sreng S, Maneerat N, Hamamoto K et al. Deep learning for optic disc segmentation and glaucoma diagnosis on retinal images. Appl Sci 2020; 10: 4916. doi:10.3390/app10144916.
  • Patil N, Rao PV, Patil PN. Hybrid CNN assisted computer aided diagnosis system for glaucoma detection and classification: glauconet+. Int J Innovative Technol Exploring Eng 2019; 9: 3060–3072.
  • Kim M, Han JC, Hyun SH et al. Medinoid: computer-aided diagnosis and localization of glaucoma using deep learning †. Appl Sci 2019; 9: 3064. doi:10.3390/app9153064.
  • Nakahara K, Asaoka R, Tanito M et al. Deep learning-assisted (automatic) diagnosis of glaucoma using a smartphone. Br J Ophthalmol 2022; 106: 587–592. doi:10.1136/bjophthalmol-2020-318107.
  • Latha RS, Sreekanth GR, Suganthe RC et al. Diagnosis of diabetic retinopathy and glaucoma from retinal images using deep convolution neural network. 2022 International conference on computer communication and informatics, ICCCI 2022, Coimbatore, India; 2022.
  • Kim DY, Lim YJ, Park JH et al. Efficient deep learning algorithm for Alzheimer’s disease diagnosis using retinal images. 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), Incheon, Republic of Korea; 2022 June 13–15.
  • Singh LK, Pooja, Garg H et al. Performance evaluation of various deep learning based models for effective glaucoma evaluation using optical coherence tomography images. Multimedia Tools Appl 2022; 81: 27737–27781. doi:10.1007/s11042-022-12826-y.
  • Akter N, Fletcher J, Perry S et al. Glaucoma diagnosis using multi-feature analysis and a deep learning technique. Sci Rep 2022; 12: 8064. doi:10.1038/s41598-022-12147-y.
  • Thakoor KA, Li X, Tsamis E et al. Strategies to improve convolutional neural network generalizability and reference standards for glaucoma detection from oct scans. Transl Vis Sci Technol 2021; 10: 16–16. doi:10.1167/tvst.10.4.16.
  • Bowd C, Belghith A, Christopher M et al. Individualized glaucoma change detection using deep learning auto encoder-based regions of interest. Transl Vis Sci Technol 2021; 10: 19–19. doi:10.1167/tvst.10.8.19.
  • Normando EM, Yap TE, Maddison J et al. A CNN-aided method to predict glaucoma progression using DARC (detection of apoptosing retinal cells). Expert Rev Mol Diagn 2020; 20: 737–748. doi:10.1080/14737159.2020.1758067.
  • Raja H, Akram MU, Shaukat A et al. Extraction of retinal layers through convolution neural network (CNN) in an OCT image for glaucoma diagnosis. J Digit Imaging 2020; 33: 1428–1442. doi:10.1007/s10278-020-00383-5.
  • Manassakorn A, Auethavekiat S, Sa-Ing V et al. GlauNet: glaucoma diagnosis for OCTA imaging using a new CNN architecture. IEEE Access 2022; 10: 95613–95622. doi:10.1109/ACCESS.2022.3204029.
  • Wisely CE, Wang D, Henao R et al. Convolutional neural network to identify symptomatic Alzheimer’s disease using multimodal retinal imaging. Br J Ophthalmol 2020; 106: 388–395. doi:10.1136/bjophthalmol-2020-317659.
  • Xiong J, Li F, Song D et al. Multimodal machine learning using visual fields and peripapillary circular oct scans in detection of glaucomatous optic neuropathy. Ophthalmology 2022; 129: 171–180. doi:10.1016/j.ophtha.2021.07.032.
  • Yi S, Zhang G, Qian C et al. A multimodal classification architecture for the severity diagnosis of glaucoma based on deep learning. Front Neurosci 2022; 16: 982. doi:10.3389/fnins.2022.939472.
  • Huang X, Sun J, Gupta K et al. Detecting glaucoma from multi-modal data using probabilistic deep learning. Front Med 2022; 9: 923096. doi:10.3389/fmed.2022.923096.
  • Orlando JI, Fu H, Barbosa Breda J et al. REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med Image Anal 2020; 59: 101570. doi:10.1016/j.media.2019.101570.
  • Diaz-Pinto A, Morales S, Naranjo V et al. Cnns for automatic glaucoma assessment using fundus images: an extensive validation. Biomed Eng Online 2019; 18: 1–19. doi:10.1186/s12938-019-0649-y.
  • Zhang Z, Yin FS, Liu J et al. ORIGA-light: an online retinal fundus image database for glaucoma analysis and research. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina; 2010; IEEE.
  • Fumero F, Alayón S, Sanchez JL et al. RIM-ONE: an open retinal image database for optic nerve evaluation. 2011 24th international symposium on Computer-Based Medical Systems (CBMS), Bristol, UK; 2011; IEEE.
  • Sivaswamy J, Krishnadas S, Joshi GD et al. DRISHTI-GS: retinal image dataset for optic nerve head (ONH) segmentation. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China; 2014; IEEE.
  • Budai A, Bock R, Maier A et al. Robust vessel segmentation in fundus images. Int J Biomed Imaging 2013; 2013: 1–11. doi:10.1155/2013/154860.
  • Islam MT, Mashfu ST, Faisal A et al. Deep learning-based glaucoma detection with cropped optic cup and disc and blood vessel segmentation. IEEE Access 2022; 10: 2828–2841. doi:10.1109/ACCESS.2021.3139160.
  • de Vente C, Vermeer KA, Jaccard N et al. AIROGS: artificial intelligence for RObust glaucoma screening challenge. arXiv: 230201738 2023; 1–19.
  • Hassan T, Raja H, Hassan B et al. A composite retinal fundus and OCT dataset to grade macular and glaucomatous disorders. 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2), Rawalpindi, Pakistan; 2022; IEEE.
  • Holm S, Russell G, Nourrit V et al. DR HAGIS—a fundus image database for the automatic extraction of retinal surface vessels from diabetic patients. J Med Imaging 2017; 4: 014503–014503. doi:10.1117/1.JMI.4.1.014503.
  • Jin K, Huang X, Zhou J et al. Fives: a fundus image dataset for artificial intelligence based vessel segmentation. Sci Data 2022; 9: 475. doi:10.1038/s41597-022-01564-3.
  • Bajwa MN, Singh GAP, Neumeier W et al. G1020: a benchmark retinal fundus image dataset for computer-aided glaucoma detection. Proceedings of the International Joint Conference on Neural Networks, Glasgow, UK; 2020.
  • Cen LP, Ji J, Lin JW et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks. Nat Commun 2021; 12: 4828. doi:10.1038/s41467-021-25138-w.
  • Orlando JI, Barbosa Breda J, Van Keer K et al. Towards a glaucoma risk index based on simulated hemodynamics from fundus images. Medical image computing and computer assisted intervention–MICCAI 2018: 21st international conference; 2018 Sept 16–20; Granada, Spain: Springer. Proceedings, Part II 11.
  • Tugui IM, Iftene A Ocular disease recognition. Proceedings of symposium on logic and artificial intelligence; 2022; Louisiana, USA.
  • Kovalyk O, Morales-Sánchez J, Verdú-Monedero R et al. PAPILA: dataset with fundus images and clinical data of both eyes of the same patient for glaucoma assessment. Sci Data 2022; 9: 291. doi:10.1038/s41597-022-01388-1.
  • Lustig-Barzelay Y, Sher I, Sharvit-Ginon I et al. Machine learning for comprehensive prediction of high risk for Alzheimer’s disease based on chromatic pupilloperimetry. Sci Rep 2022; 12: 9945. doi:10.1038/s41598-022-13999-0.
  • Chaudhary PK, Jain S, Damani T et al. Automatic diagnosis of type of glaucoma using order-one 2d-fbse-ewt. 2022 24th international conference on Digital Signal Processing and its Applications (DSPA), Moscow, Russian Federation; 2022 30 March-1 April.
  • Atalay E, Özalp O, Devecioğlu ÖC et al. Investigation of the role of convolutional neural network architectures in the diagnosis of glaucoma using color fundus photography. Turk J Ophthalmol 2022; 52: 193–200. doi:10.4274/tjo.galenos.2021.29726.
  • Sun S, Ha A, Kim YK et al. Dual-input convolutional neural network for glaucoma diagnosis using spectral-domain optical coherence tomography. Br J Ophthalmol 2021; 105: 1555–1560. doi:10.1136/bjophthalmol-2020-316274.
  • Noury E, Mannil SS, Chang RT et al. Deep learning for glaucoma detection and identification of novel diagnostic areas in diverse real-world datasets. Transl Vis Sci Technol 2022; 11: 11. doi:10.1167/tvst.11.5.11.
  • Ran AR, Cheung CY, Wang X et al. Detection of glaucomatous optic neuropathy with spectral-domain optical coherence tomography: a retrospective training and validation deep-learning analysis. Lancet Digit Health 2019; 1: e172–e182. doi:10.1016/S2589-7500(19)30085-8.
  • George Y, Antony BJ, Ishikawa H et al. Attention-guided 3d-cnn framework for glaucoma detection and structural-functional association using volumetric images. IEEE J Biomed Health Informat 2020; 24: 3421–3430. doi:10.1109/JBHI.2020.3001019.
  • Shin Y, Cho H, Shin YU et al. Comparison between deep-learning-based ultra-wide-field fundus imaging and true-colour confocal scanning for diagnosing glaucoma. J Clin Med 2022; 11: 3168. doi:10.3390/jcm11113168.
  • Mehta P, Petersen CA, Wen JC et al. Automated detection of glaucoma with interpretable machine learning using clinical data and multimodal retinal images. Am J Ophthalmol 2021; 231: 154–169. doi:10.1016/j.ajo.2021.04.021.
  • An G, Omodaka K, Hashimoto K et al. Glaucoma diagnosis with machine learning based on optical coherence tomography and color fundus images. J Healthc Eng 2019; 2019: 1–9. doi:10.1155/2019/4061313.
  • Deperlioglu O, Kose U, Gupta D et al. Explainable framework for glaucoma diagnosis by image processing and convolutional neural network synergy: analysis with doctor evaluation. Future Gen Compt Syst 2022; 129: 152–169. doi:10.1016/j.future.2021.11.018.
  • Zhou B, Khosla A, Lapedriza A et al. Learning deep features for discriminative localization. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2016; Las Vegas, NV.
  • Berchuck SI, Mukherjee S, Medeiros FA. Estimating rates of progression and predicting future visual fields in glaucoma using a deep variational autoencoder. Sci Rep 2019; 9: 18113. doi:10.1038/s41598-019-54653-6.
  • Hemelings R, Elen B, Barbosa-Breda J et al. Deep learning on fundus images detects glaucoma beyond the optic disc. Sci Rep 2021; 11: 20313. doi:10.1038/s41598-021-99605-1.
  • Neto A, Camara J, Cunha A. Evaluations of deep learning approaches for glaucoma screening using retinal images from mobile device. Sensors 2022; 22: 1449. doi:10.3390/s22041449.
  • Suguna G, Lavanya R. Performance assessment of EyeNet model in glaucoma diagnosis. Pattern Recognit Image Anal 2021; 31: 334–344. doi:10.1134/S1054661821020164.
  • Sánchez-Morales A, Morales-Sánchez J, Kovalyk O et al. Improving glaucoma diagnosis assembling deep networks and voting schemes. Diagnostics 2022; 12: 1382. doi:10.3390/diagnostics12061382.
  • Fukai K, Terauchi R, Noro T et al. Real-time risk score for glaucoma mass screening by spectral domain optical coherence tomography: development and validation. Transl Vis Sci Technol 2022; 11: 8–8. doi:10.1167/tvst.11.8.8.
  • Guzman A, Durbin M, Hsiao YS et al. Testing the generalizability of the Hitachi risk score on a different population. Association for Research in Vision and Ophthalmology (ARVO) annual meeting; 2023; USA. p. 4314–C0336.
  • Brusini P. OCT glaucoma staging system: a new method for retinal nerve fiber layer damage classification using spectral-domain OCT. Eye 2018; 32: 113–119. doi:10.1038/eye.2017.159.
  • Medeiros FA, Jammal AA, Mariottoni EB. Detection of progressive glaucomatous optic nerve damage on fundus photographs with deep learning. Ophthalmology 2021; 128: 383–392. doi:10.1016/j.ophtha.2020.07.045.
  • Yang G, Li F, Ding D et al. Automatic diagnosis of glaucoma on color fundus images using adaptive mask deep network. Lect Notes Comput Sci 2021; 12573: 99–110.
  • Wang M, Elze T, Pasquale LR et al. Equitable deep learning for glaucoma progression forecasting. Association for Research in Vision and Ophthalmology (ARVO) annual meeting; 2023; USA. p 340–C0231.
  • Glaucoma Australia Media Release. Glaucoma Australia to fund promising new imaging technology; 2021.
  • Dias DT, Ushida M, Battistella R et al. Neurophthalmological conditions mimicking glaucomatous optic neuropathy: analysis of the most common causes of misdiagnosis. BMC Ophthalmol 2017; 17: 1–5. doi:10.1186/s12886-016-0395-x.
  • Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 2017; 30: 1–10.
  • Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001; 2001: 1189–1232. doi:10.1214/aos/1013203451.
  • Shahbaz R, Salducci M. Law and order of modern ophthalmology: teleophthalmology, smartphones legal and ethics. Eur J Ophthalmol 2021; 31: 13–21. doi:10.1177/1120672120934405.
  • Phu J, Ho K, Kweon S et al. Adaptations of early career optometrists in clinical practice during the COVID-19 pandemic. Clin Exp Optom 2021; 104: 728–733. doi:10.1080/08164622.2021.1924628.
  • Lim JS, Hong M, Lam WST et al. Novel technical and privacy-preserving technology for artificial intelligence in ophthalmology. Curr Opin Ophthalmol 2022; 33: 174–187. doi:10.1097/ICU.0000000000000846.