780
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Impact of age on measurement variability for axial length in myopic children

ORCID Icon, ORCID Icon & ORCID Icon
Pages 428-433 | Received 06 Dec 2022, Accepted 10 Jul 2023, Published online: 06 Sep 2023

References

  • Wolffsohn JS, Kollbaum PS, Berntsen DA et al. IMI – clinical myopia control trials and instrumentation report. Invest Opthalmol Vis Sci 2019; 60: M132–160. doi:10.1167/iovs.18-25955.
  • Brennan NA, Toubouti YM, Cheng X et al. Efficacy in myopia control. Prog Ret Eye Res 2021; 83: e100923. doi:10.1016/j.preteyeres.2020.100923.
  • International Organisation for Standardisation. ISO 22665:2012 ophthalmic optics and instruments - instruments to measure axial distances in the eye. 1st ed. Luxembourg: International Organization for Standardization; 2012. 1 p.
  • Ohno-Matsui K, Kawasaki R, Jonas JB et al. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol 2015; 159: 877–883. doi:10.1016/j.ajo.2015.01.022.
  • Tideman JWL, Snabel MCC, Tedja MS et al. Association of axial length with risk of uncorrectable visual impairment for Europeans with myopia. JAMA Ophthalmol 2016; 134: 1355–1363. doi:10.1001/jamaophthalmol.2016.4009.
  • Mutti DO, Hayes JR, Mitchell GL et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Opthalmol Vis Sci 2007; 48: 2510–2519. doi:10.1167/iovs.06-0562.
  • Dong J, Zhang Y, Zhang H et al. Comparison of axial length, anterior chamber depth and intraocular lens power between IOLMaster and ultrasound in normal, long and short eyes. PLoS One 2018; 13: e0194273. doi:10.1371/journal.pone.0194273.
  • Drexler W, Findl O, Menapace R et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol 1998; 126: 524–534. doi:10.1016/S0002-9394(98)00113-5.
  • Haigis W, Lege B, Miller N et al. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 2000; 238: 765–773. doi:10.1007/s004170000188.
  • Borgia A, Raimondi R, Sorrentino T et al. Swept-source optical coherence tomography-based biometry: a comprehensive overview. Photonics 2022; 9: e951. doi:10.3390/photonics9120951.
  • Choma M, Sarunic M, Yang C et al. Sensitivity advantage of swept source and fourier domain optical coherence tomography. Opt Express 2003; 11: 2183–2189. doi:10.1364/OE.11.002183.
  • Srivannaboon S, Chirapapaisan C, Chonpimai P et al. Clinical comparison of a new swept-source optical coherence tomography–based optical biometer and a time-domain optical coherence tomography–based optical biometer. J Cataract Refract Surg 2015; 41: 2224–2232. doi:10.1016/j.jcrs.2015.03.019.
  • Aring E, Grönlund MA, Hellström A et al. Visual fixation development in children. Graefes Arch Clin Exp Ophthalmol 2007; 245: 1659–1665. doi:10.1007/s00417-007-0585-6.
  • Ye Y, Zhao Y, Han T et al. Accuracy of axial length, keratometry, and refractive measurement with myopia master in children with ametropia. BMC Ophthalmol 2022; 22: e468. doi:10.1186/s12886-022-02672-9.
  • Huang J, Zhao Y, Savini G et al. Reliability of a new swept-source optical coherence tomography biometer in healthy children, adults and cataract patients. J Ophthalmol 2020; 2020: e8946364. doi:10.1155/2020/8946364.
  • Bullimore MA, Slade S, Yoo P et al. An evaluation of the IOLMaster 700. Eye Contact Lens 2019; 45: 117–123. doi:10.1097/ICL.0000000000000552.
  • Cho YJ, Lim TH, Choi KY et al. Comparison of ocular biometry using new swept-source optical coherence tomography-based optical biometer with other devices. Korean J Ophthalmol 2018; 32: 257–264. doi:10.3341/kjo.2017.0091.
  • Akman A, Asena L, Güngör SG. Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. Br J Ophthalmol 2016; 100: 1201–1205. doi:10.1136/bjophthalmol-2015-307779.
  • Kunert KS, Peter M, Blum M et al. Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography–based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J Cataract Refract Surg 2016; 42: 76–83. doi:10.1016/j.jcrs.2015.07.039.
  • McAlinden C, Khadka J, Pesudovs K. Precision (repeatability and reproducibility) studies and sample-size calculation. J Cataract Refract Surg 2015; 41: 2598–2604. doi:10.1016/j.jcrs.2015.06.029.
  • Carkeet A. Exact parametric confidence intervals for bland-altman limits of agreement. Optom Vis Sci 2015; 92: 71–80. doi:10.1097/OPX.0000000000000513.
  • Zadnik K, Mutti DO, Adams AJ. The repeatability of measurement of the ocular components. Invest Ophthalmol Visual Sci 1992; 33: 2325–2333.
  • Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficiences for reliabilty research. J Chiropr Med 2016; 15: 155–163. doi:10.1016/j.jcm.2016.02.012.
  • Leighton RE, Breslin KM, Saunders KJ et al. An evaluation of the IOLMaster 700 and its agreement with the IOLMaster v3 in children. Ophthalmic Physiol Opt 2022; 42: 48–58. doi:10.1111/opo.12918.
  • Sabur H, Takes O. Agreement of axial length and anterior segment parameters measured with the MYAH device compared to Pentacam AXL and IOLMaster 700 in myopic children. Int Ophthalmol 2023; 43: 475–482. doi:10.1007/s10792-022-02444-w.
  • Rose LT, Moshegov CN. Comparison of the Zeiss IOLMaster and applanation A-scan ultrasound: biometry for intraocular lens calculation. Clin Exp Ophthalmol 2003; 31: 121–124. doi:10.1046/j.1442-9071.2003.00617.x.
  • Tideman JWL, Polling JR, Vingerling JR et al. Axial length growth and the risk of developing myopia in European children. Acta Ophthalmol 2018; 96: 301–309. doi:10.1111/aos.13603.
  • Gifford KL, Richdale K, Kang P et al. IMI – clinical management guidelines report. Invest Opthalmol Vis Sci 2019; 60: M184–203. doi:10.1167/iovs.18-25977.