118
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Temporal effects of an original myopia song on school children’s myopia and awareness: a 3-year prospective study

, , , , , , , , , & show all
Pages 537-543 | Received 22 Mar 2023, Accepted 22 Aug 2023, Published online: 21 Nov 2023

References

  • Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt 2012; 32: 3–16. doi:10.1111/j.1475-1313.2011.00884.x.
  • He M, Huang W, Zheng Y, et al. Refractive error and visual impairment in school children in rural southern China. Ophthalmology 2007; 114: 374–382. doi:10.1016/j.ophtha.2006.08.020.
  • Saw SM, Tong L, Chua WH, et al. Incidence and progression of myopia in Singaporean school children. Invest Ophthalmol Visual Sci 2005; 46: 51–57. doi:10.1167/iovs.04-0565.
  • Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 2016; 123: 1036–1042. doi:10.1016/j.ophtha.2016.01.006.
  • Li SM, Liu LR, Li SY, et al. Design, methodology and baseline data of a school-based cohort study in Central China: the Anyang childhood eye study. Ophthalmic Epidemiol 2013; 20: 348–359. doi:10.3109/09286586.2013.842596.
  • Li SM, Li H, Li SY, et al. Time outdoors and myopia progression over 2 years in Chinese children: the Anyang childhood eye study. Invest Ophthalmol Visual Sci 2015; 56: 4734–4740. doi:10.1167/iovs.14-15474.
  • Morgan IG, Ohno-Matsui K, Saw SM. Myopia. Lancet 2012; 379: 1739–1748. doi:10.1016/S0140-6736(12)60272-4.
  • Shih KC, Chan TC, Ng AL, et al. Use of atropine for prevention of childhood myopia progression in clinical practice. Eye Contact Lens 2016; 42: 16–23. doi:10.1097/ICL.0000000000000189.
  • Gong Q, Janowski M, Luo M, et al. Efficacy and adverse effects of atropine in childhood myopia: a meta-analysis. JAMA Ophthalmol 2017; 135: 624–630. doi:10.1001/jamaophthalmol.2017.1091.
  • Bao J, Huang Y, Li X, et al. Spectacle lenses with aspherical lenslets for myopia control vs single-vision spectacle lenses: a randomized clinical trial. JAMA Ophthalmol 2022; 140: 472–478. doi:10.1001/jamaophthalmol.2022.0401.
  • VanderVeen DK, Kraker RT, Pineles SL, et al. Use of orthokeratology for the prevention of myopic progression in children: a report by the American Academy of Ophthalmology. Ophthalmology 2019; 126: 623–636. doi:10.1016/j.ophtha.2018.11.026.
  • Goldschmidt E, Jacobsen N. Genetic and environmental effects on myopia development and progression. Eye (Lond) 2014; 28: 126–133. doi:10.1038/eye.2013.254.
  • Morgan IG, French AN, Ashby RS, et al. The epidemics of myopia: aetiology and prevention. Prog Retin Eye Res 2018; 62: 134–149. doi:10.1016/j.preteyeres.2017.09.004.
  • Grzybowski A, Kanclerz P, Tsubota K, et al. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol 2020; 20: 27. doi:10.1186/s12886-019-1220-0.
  • McCrann S, Flitcroft I, Lalor K, et al. Parental attitudes to myopia: a key agent of change for myopia control. Ophthalmic Physiol Opt 2018; 38: 298–308. doi:10.1111/opo.12455.
  • Li Q, Guo L, Zhang J, et al. Effect of school-based family health education via Social media on children’s myopia and parents’ awareness: a randomized clinical trial. JAMA Ophthalmol 2021; 139: 1165–1172. doi:10.1001/jamaophthalmol.2021.3695.
  • Li SM, Ran AR, Kang MT, et al. Effect of text messaging parents of school-aged children on outdoor time to control myopia: a randomized clinical trial. JAMA Pediatr 2022; 176: 1077–1083. doi:10.1001/jamapediatrics.2022.3542.
  • Ang M, Flanagan JL, Wong CW, et al. Review: myopia control strategies recommendations from the 2018 WHO/IAPB/BHVI meeting on myopia. Br J Ophthalmol 2020; 104: 1482–1487. doi:10.1136/bjophthalmol-2019-315575.
  • Zhang X, Wang Y, Pan C, et al. Effect of genetic-environmental interaction on Chinese childhood myopia. J Ophthalmol 2020; 2020: 6308289. doi:10.1155/2020/6308289.
  • Li SM, Li SY, Kang MT, et al. Near work related parameters and myopia in Chinese children: the Anyang childhood eye study. PLoS ONE 2015; 10: e0134514. doi:10.1371/journal.pone.0134514.
  • He M, Xiang F, Zeng Y, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA 2015; 314: 1142–1148. doi:10.1001/jama.2015.10803.
  • Lingham G, Mackey DA, Lucas R, et al. How does spending time outdoors protect against myopia? A review. Br J Ophthalmol 2020; 104: 593–599. doi:10.1136/bjophthalmol-2019-314675.
  • Wu PC, Tsai CL, Wu HL, et al. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 2013; 120: 1080–1085. doi:10.1016/j.ophtha.2012.11.009.
  • Hansen MH, Laigaard PP, Olsen EM, et al. Low physical activity and higher use of screen devices are associated with myopia at the age of 16-17 years in the CCC2000 eye study. Acta Ophthalmol 2020; 98: 315–321. doi:10.1111/aos.14242.
  • Chase C, Tosha C, Borsting E, et al. Visual discomfort and objective measures of static accommodation. Optom Vis Sci 2009; 86: 883–889. doi:10.1097/OPX.0b013e3181ae1b7c.
  • Li SM, Kang MT, Peng XX, et al. Efficacy of Chinese eye exercises on reducing accommodative lag in school-aged children: a randomized controlled trial. PLoS ONE 2015; 10: e0117552. doi:10.1371/journal.pone.0117552.
  • Deere K, Williams C, Leary S, et al. Myopia and later physical activity in adolescence: a prospective study. Br J Sports Med 2009; 43: 542–544. doi:10.1136/bjsm.2008.049288.
  • Ip JM, Saw SM, Rose KA, et al. Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Visual Sci 2008; 49: 2903–2910. doi:10.1167/iovs.07-0804.
  • Rose KA, Morgan IG, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 2008; 115: 1279–1285. doi:10.1016/j.ophtha.2007.12.019.
  • Glasman LR, Albarracín D. Forming attitudes that predict future behavior: a meta-analysis of the attitude-behavior relation. Psychol Bull 2006; 132: 778–822. doi:10.1037/0033-2909.132.5.778.
  • O’Connor TM, Chen TA, Baranowski J, et al. Physical activity and screen-media-related parenting practices have different associations with children’s objectively measured physical activity. Child Obes 2013; 9: 446–453. doi:10.1089/chi.2012.0131.
  • Xu H, Wen LM, Rissel C. Associations of parental influences with physical activity and screen time among young children: a systematic review. J Obes 2015; 2015: 546925. doi:10.1155/2015/546925.
  • Allen PM, O’Leary DJ. Accommodation functions: co-dependency and relationship to refractive error. Vision Res 2006; 46: 491–505. doi:10.1016/j.visres.2005.05.007.
  • Price H, Allen PM, Radhakrishnan H, et al. The Cambridge anti-myopia study: variables associated with myopia progression. Optom Vis Sci 2013; 90: 1274–1283. doi:10.1097/OPX.0000000000000067.
  • Mutti DO, Mitchell GL, Hayes JR, et al. Accommodative lag before and after the onset of myopia. Invest Ophthalmol Visual Sci 2006; 47: 837–846. doi:10.1167/iovs.05-0888.
  • Berntsen DA, Sinnott LT, Mutti DO, et al. A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation. Invest Ophthalmol Visual Sci 2012; 53: 640–649. doi:10.1167/iovs.11-7769.
  • Kang MT, Li SM, Peng X, et al. Chinese eye exercises and myopia development in school age children: a nested case-control study. Sci Rep 2016; 6: 28531. doi:10.1038/srep28531.
  • Lin Z, Vasudevan B, Jhanji V, et al. Eye exercises of acupoints: their impact on refractive error and visual symptoms in Chinese urban children. BMC Complement Altern Med 2013; 13: 306. doi:10.1186/1472-6882-13-306.
  • Jensen H. Myopia in teenagers. An eight-year follow-up study on myopia progression and risk factors. Acta Ophthalmol Scand 1995; 73: 389–393. doi:10.1111/j.1600-0420.1995.tb00294.x.
  • Smith EL 3rd. Optical treatment strategies to slow myopia progression: effects of the visual extent of the optical treatment zone. Exp Eye Res 2013; 114: 77–88. doi:10.1016/j.exer.2012.11.019.
  • Stone RA, Pardue MT, Iuvone PM, et al. Pharmacology of myopia and potential role for intrinsic retinal circadian rhythms. Exp Eye Res 2013; 114: 35–47. doi:10.1016/j.exer.2013.01.001.
  • Tan G, Dan ZR, Zhang Y, et al. Altered brain network centrality in patients with adult comitant exotropia strabismus: A resting-state fMRI study. J Int Med Res. 2018;46: 392–402. doi:10.1177/0300060517715340.
  • Tan G, Huang X, Zhang Y, et al. A functional MRI study of altered spontaneous brain activity pattern in patients with congenital comitant strabismus using amplitude of low-frequency fluctuation: Neuropsychiatr Dis Treat. 2016;12: 1243–50. doi:10.2147/NDT.S104756.
  • Zhu PW, Huang X, Ye L, et al. Altered intrinsic functional connectivity of the primary visual cortex in youth patients with comitant exotropia: a resting state fMRI study. Int J Ophthalmol. 2018 Apr;18:11(4): 668–673. doi:10.18240/ijo.2018.04.22.
  • Huang X, Li HJ, Zhang Y, et al. Microstructural changes of the whole brain in patients with comitant strabismus: evidence from a diffusion tensor imaging study. Neuropsychiatr Dis Treat. 2016;12: 2007–14. doi:10.2147/NDT.S108834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.