74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Macula vessel density and its relationship with the central visual field mean sensitivity across different stages of exfoliation glaucoma

ORCID Icon, , , , & ORCID Icon
Pages 184-191 | Received 23 Oct 2022, Accepted 12 Sep 2023, Published online: 16 Oct 2023

References

  • Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA 2014; 311: 1901–1911. doi:10.1001/jama.2014.3192.
  • Flammer J, Orgul S, Costa VP et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21: 359–393. doi:10.1016/S1350-9462(02)00008-3.
  • Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol 2007; 52: 144–154. doi:10.1016/j.survophthal.2007.08.010.
  • Yarmohammadi A, Zangwill LM, Diniz-Filho A et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Visual Sci 2016; 57: 451–459. doi:10.1167/iovs.15-18944.
  • Lee EJ, Lee KM, Lee SH et al. OCT angiography of the peripapillary retina in primary open-angle glaucoma. Invest Ophthalmol Visual Sci 2016; 57: 6265–6270. doi:10.1167/iovs.16-20287.
  • Shoji T, Zangwill LM, Akagi T et al. Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am J Ophthalmol 2017; 182: 107–117. doi:10.1016/j.ajo.2017.07.011.
  • Kromer R, Glusa P, Framme C et al. Optical coherence tomography angiography analysis of macular flow density in glaucoma. Acta Ophthalmol 2019; 97: e199–e206. doi:10.1111/aos.13914.
  • Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol 1990; 300: 5–25. doi:10.1002/cne.903000103.
  • Hood DC, Raza AS, de Moraes CG et al. Glaucomatous damage of the macula. Prog Retin Eye Res 2013; 32: 1–21. doi:10.1016/j.preteyeres.2012.08.003.
  • Zeimer R, Asrani S, Zou S et al. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology 1998; 105: 224–231. doi:10.1016/S0161-6420(98)92743-9.
  • Ritch R, Schlötzer-Schrehardt U. Exfoliation syndrome. Surv Ophthalmol 2011; 45: 265–315. doi:10.1016/S0039-6257(00)00196-X.
  • Heijl A, Bengtsson B, Hyman L et al. Natural history of open-angle glaucoma. Ophthalmology 2009; 116: 2271–2276. doi:10.1016/j.ophtha.2009.06.042.
  • De Moraes CG, Liebmann JM, Liebmann CA et al. Visual field progression outcomes in glaucoma subtypes. Acta Ophthalmol 2013; 91: 288–293. doi:10.1111/j.1755-3768.2011.02260.x.
  • Galassi F, Giambene B, Menchini U. Ocular perfusion pressure and retrobulbar haemodynamics in pseudoexfoliative glaucoma. Graefes Arch Clin Exp Ophthalmol 2008; 246: 411–416. doi:10.1007/s00417-007-0709-z.
  • Hansen C, Bojikian KD, Chu Z et al. Macular microvascular parameters in the ganglion cell-inner plexiform layer derived by optical coherence tomography angiography: vascular structure- central visual function analysis. PloS One 2020; 15: e0240111. doi:10.1371/journal.pone.0240111.
  • Shin JW, Lee J, Kwon J et al. Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages. Br J Ophthalmol 2019; 103: 1827–1833. doi:10.1136/bjophthalmol-2018-312085.
  • Penteado RC, Zangwill LM, Daga FB et al. Optical coherence tomography angiography macular vascular density measurements and the central 10-2 visual field in glaucoma. J Glaucoma 2018; 27: 481–489. doi:10.1097/IJG.0000000000000964.
  • Hodapp E, Parrish RK, Anderson DR. Clinical decisions in glaucoma Mosby: St Louis C.V; 1993.
  • Na JH, Kook MS, Lee Y et al. Structure-function relationship of the macular visual field sensitivity and the ganglion cell complex thickness in glaucoma. Invest Ophthalmol Visual Sci 2012; 53: 5044–5051. doi:10.1167/iovs.11-9401.
  • Shin HY, Park HY, Jung KI et al. Comparative study of macular ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure- function analysis. Invest Ophthalmol Visual Sci 2013; 54:7344–7353. doi:10.1167/iovs.13-12667.
  • Manalastas PIC, Zangwill LM, Saunders LJ et al. Reproducibility of optical coherence tomography angiography macular and optic nerve head vascular density in glaucoma and healthy eyes. J Glaucoma 2017; 26: 851–859. doi:10.1097/IJG.0000000000000768.
  • Venugopal JP, Rao HL, Weinreb RN et al. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br J Ophthalmol 2018; 102: 352–357. doi:10.1136/bjophthalmol-2017-310637.
  • Wolf S, Arend O, Sponsel WE et al. Retinal hemodynamics using scanning laser ophthalmoscopy and hemorheology in chronic open-angle glaucoma. Ophthalmology 1993; 100: 1561–1566. doi:10.1016/S0161-6420(93)31444-2.
  • Huber K, Plane N, Remky A et al. Comparison of colour Doppler imaging and retinal scanning laser fluorescein angiography in healthy volunteers and normal pressure glaucoma patients. Acta Ophthalmol Scand 2004; 82: 426–431. doi:10.1111/j.1395-3907.2004.00269.x.
  • Tobe LA, Harris A, Hussain RM et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period. Br J Ophthalmol 2015; 99: 609–612. doi:10.1136/bjophthalmol-2014-305780.
  • Mansouri K. Optical coherence tomography angiography and glaucoma: searching for the missing link. Expert Rev Med Devices 2016; 13: 879–880. doi:10.1080/17434440.2016.1230014.
  • Philip S, Najafi A, Tantraworasin A et al. Macula vessel density and foveal avascular zone parameters in exfoliation glaucoma compared to primary open-angle glaucoma. Invest Ophthalmol Visual Sci 2019; 60: 1244–1253. doi:10.1167/iovs.18-25986.
  • Subasi S, Yuksel N, Basaran E et al. Comparison of vessel density in macular and peripapillary regions between primary open-angle glaucoma and pseudoexfoliation glaucoma using OCTA. Int Ophthalmol 2021; 41: 173–184. doi:10.1007/s10792-020-01564-5.
  • Jo HY, Sung KR, Shin JW. Peripapillary and macular vessel density measurement by optical coherence tomography angiography in pseudoexfoliation and primary open-angle glaucoma. J Glaucoma 2020; 29: 381–385. doi:10.1097/IJG.0000000000001464.
  • Leng Y, Tam EK, Falavarjani KG et al. Effect of age and myopia on retinal microvasculature. Ophthalmic Surg Lasers Imaging Retina 2018; 49: 925–931. doi:10.3928/23258160-20181203-03.
  • Kim JH, Kang SY, Kim NR et al. Prevalence and characteristics of glaucoma among Korean adults. Korean J Ophthalmol 2011; 25: 110‐115. doi:10.3341/kjo.2011.25.2.110.
  • Mozaffarieh M, Flammer J. New insights in the pathogenesis and treatment of normal tension glaucoma. Curr Opin Pharmacol 2013; 13: 43–49. doi:10.1016/j.coph.2012.10.001.
  • Božić M, Senćanić PH, Spahić G et al. Is nail fold capillaroscopy useful in normotensive and primary open angle glaucoma? A pilot study. Curr Eye Res 2010; 35: 1099–1104. doi:10.3109/02713683.2010.512113.
  • Aydin B, Onol M, Hondur A et al. The effect of oral magnesium therapy on visual field and ocular blood flow in normotensive glaucoma. Eur J Ophthalmol 2010; 20: 131‐135. doi:10.1177/112067211002000118.
  • Provis JM. Development of the primate retinal vasculature. Prog Retin Eye Res 2001; 20: 799–821. doi:10.1016/S1350-9462(01)00012-X.
  • Campbell JP, Zhang M, Hwang TS et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep 2017; 7: 42201. doi:10.1038/srep42201.
  • Bowd C, Zangwill LM, Weinreb RN et al. Estimating optical coherence tomography structural measurement floors to improve detection of progression in advanced glaucoma. Am J Ophthalmol 2017; 175: 37–44. doi:10.1016/j.ajo.2016.11.010.
  • Moghimi S, Bowd C, Zangwill LM et al. Measurement floors and dynamic anges of OCT and OCT angiography in glaucoma. Ophthalmology 2019; 126: 980–988. doi:10.1016/j.ophtha.2019.03.003.
  • Hood DC, Raza AS, de Moraes CG et al. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Transl Vis Sci Technol 2019; 1: 3. doi:10.1167/tvst.1.1.3.
  • Shin HY, Park HY, Jung KI et al. Comparative study of macular ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure-function analysis. Invest Ophthalmol Vis Sci 2013; 54: 7344–7353. doi:10.1167/iovs.13-12667.
  • Kim S, Lee JY, Kim SO et al. Macular structure-function relationship at various spatial locations in glaucoma. Br J Ophthalmol 2015; 99: 1412–1418. doi:10.1136/bjophthalmol-2014-306538.
  • Hood DC, Tsamis E, Bommakanti NK et al. Structure-function agreement is better than commonly thought in eyes with early glaucoma. Invest Ophthalmol Visual Sci 2019; 60: 4241–4248. doi:10.1167/iovs.19-27920.
  • Chen HS, Liu CH, Wu WC et al. Optical coherence tomography angiography of the superficial microvasculature in the macular and peripapillary areas in glaucomatous and healthy eyes. Invest Ophthalmol Visual Sci 2017; 58: 3637–3645. doi:10.1167/iovs.17-21846.
  • Van Melkebeke L, Barbosa-Breda J, Huygens M et al. Optical coherence tomography angiography in glaucoma: a review. Ophthalmic Res 2018; 60: 139–151. doi:10.1159/000488495.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.